
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5344760/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Discovery and 3D imaging of a novel ΔNp63-expressing basal cell type in human pancreatic ducts with implications in disease. Gut, 2022, 71, 2030-2042.	12.1	15
2	Relevance of biopsy-derived pancreatic organoids in the development of efficient transcriptomic signatures to predict adjuvant chemosensitivity in pancreatic cancer. Translational Oncology, 2022, 16, 101315.	3.7	8
3	Ketogenic HMG 0A lyase and its product βâ€hydroxybutyrate promote pancreatic cancer progression. EMBO Journal, 2022, 41, e110466.	7.8	24
4	Sympathetic axonal sprouting induces changes in macrophage populations and protects against pancreatic cancer. Nature Communications, 2022, 13, 1985.	12.8	14
5	Small Activating RNA Modulation of the G Protein oupled Receptor for Cancer Treatment. Advanced Science, 2022, 9, .	11.2	10
6	Iron-Sensitive Prodrugs That Trigger Active Ferroptosis in Drug-Tolerant Pancreatic Cancer Cells. Journal of the American Chemical Society, 2022, 144, 11536-11545.	13.7	29
7	An ionizable supramolecular dendrimer nanosystem for effective siRNA delivery with a favorable safety profile. Nano Research, 2021, 14, 2247.	10.4	21
8	A transcriptomic signature to predict adjuvant gemcitabine sensitivity in pancreatic adenocarcinoma. Annals of Oncology, 2021, 32, 250-260.	1.2	45
9	A Novel Imaging Approach for Single-Cell Real-Time Analysis of Oncolytic Virus Replication and Efficacy in Cancer Cells. Human Gene Therapy, 2021, 32, 166-177.	2.7	5
10	Metabolomic profiling of pancreatic adenocarcinoma reveals key features driving clinical outcome and drug resistance. EBioMedicine, 2021, 66, 103332.	6.1	20
11	Exploring the Complementarity of Pancreatic Ductal Adenocarcinoma Preclinical Models. Cancers, 2021, 13, 2473.	3.7	6
12	Dendrimeric nanosystem consistently circumvents heterogeneous drug response and resistance in pancreatic cancer. Exploration, 2021, 1, 21-34.	11.0	64
13	Squamousness gain defines pancreatic ductal adenocarcinoma hepatic metastases phenotype, and gemcitabine response. European Journal of Cancer, 2021, 155, 42-53.	2.8	1
14	A glycosyltransferase gene signature to detect pancreatic ductal adenocarcinoma patients with poor prognosis. EBioMedicine, 2021, 71, 103541.	6.1	22
15	New Insights Into Pancreatic Cancer: Notes from a Virtual Meeting. Gastroenterology, 2021, 161, 785-791.	1.3	5
16	Induction of Apoptosis in Human Pancreatic Cancer Stem Cells by the Endoplasmic Reticulum-Targeted Alkylphospholipid Analog Edelfosine and Potentiation by Autophagy Inhibition. Cancers, 2021, 13, 6124.	3.7	7
17	Basalâ€like and classical cells coexist in pancreatic cancer revealed by singleâ€cell analysis on biopsyâ€derived pancreatic cancer organoids from the classical subtype. FASEB Journal, 2020, 34, 12214-12228.	0.5	83
18	Establishment of a pancreatic adenocarcinoma molecular gradient (PAMG) that predicts the clinical outcome of pancreatic cancer. EBioMedicine, 2020, 57, 102858.	6.1	57

NELSON J DUSETTI

#	Article	IF	CITATIONS
19	Evidencing a Pancreatic Ductal Adenocarcinoma Subpopulation Sensitive to the Proteasome Inhibitor Carfilzomib. Clinical Cancer Research, 2020, 26, 5506-5519.	7.0	20
20	Targeting Mitochondrial Complex I Overcomes Chemoresistance in High OXPHOS Pancreatic Cancer. Cell Reports Medicine, 2020, 1, 100143.	6.5	74
21	Combined Targeting of G9a and Checkpoint Kinase 1 Synergistically Inhibits Pancreatic Cancer Cell Growth by Replication Fork Collapse. Molecular Cancer Research, 2020, 18, 448-462.	3.4	10
22	Gemcitabine Exposure Induces Epigenomic Remodeling in Pancreatic Cancer Cells during Resistance Development. FASEB Journal, 2020, 34, 1-1.	0.5	0
23	Emerging epigenomic landscapes of pancreatic cancer in the era of precision medicine. Nature Communications, 2019, 10, 3875.	12.8	59
24	PML hyposumoylation is responsible for the resistance of pancreatic cancer. FASEB Journal, 2019, 33, 12447-12463.	0.5	12
25	Pancreatic Cancer Organoids for Determining Sensitivity to Bromodomain and Extra-Terminal Inhibitors (BETi). Frontiers in Oncology, 2019, 9, 475.	2.8	31
26	Pancreatic Cancer Heterogeneity Can Be Explained Beyond the Genome. Frontiers in Oncology, 2019, 9, 246.	2.8	46
27	Prognostic significance of circulating PD-1, PD-L1, pan-BTN3As, BTN3A1 and BTLA in patients with pancreatic adenocarcinoma. Oncolmmunology, 2019, 8, e1561120.	4.6	92
28	Complete Regression of Advanced Pancreatic Ductal Adenocarcinomas upon Combined Inhibition of EGFR and C-RAF. Cancer Cell, 2019, 35, 573-587.e6.	16.8	75
29	Optimization of a Bioluminescence Resonance Energy Transfer-Based Assay for Screening of Trypanosoma cruzi Protein/Protein Interaction Inhibitors. Molecular Biotechnology, 2018, 60, 369-379.	2.4	4
30	Prevalence of Microsatellite Instability in Intraductal Papillary Mucinous Neoplasms of the Pancreas. Gastroenterology, 2018, 154, 1061-1065.	1.3	79
31	Differential Therapy Based on Tumor Heterogeneity in Pancreatic Cancer. , 2018, , 1203-1217.		0
32	BTN3A is a prognosis marker and a promising target for Vγ9Vδ2 T cells based-immunotherapy in pancreatic ductal adenocarcinoma (PDAC). Oncolmmunology, 2018, 7, e1372080.	4.6	47
33	Cadherin-1 and cadherin-3 cooperation determines the aggressiveness of pancreatic ductal adenocarcinoma. British Journal of Cancer, 2018, 118, 546-557.	6.4	20
34	<scp>MAGP</scp> †and fibronectin control <scp>EGFL</scp> 7 functions by driving its deposition into distinct endothelial extracellular matrix locations. FEBS Journal, 2018, 285, 4394-4412.	4.7	16
35	Distinct epigenetic landscapes underlie the pathobiology of pancreatic cancer subtypes. Nature Communications, 2018, 9, 1978.	12.8	177
36	E2F signature is predictive for the pancreatic adenocarcinoma clinical outcome and sensitivity to E2F inhibitors, but not for the response to cytotoxic-based treatments. Scientific Reports, 2018, 8, 8330.	3.3	21

NELSON J DUSETTI

#	Article	IF	CITATIONS
37	GATA6 regulates EMT and tumour dissemination, and is a marker of response to adjuvant chemotherapy in pancreatic cancer. Gut, 2017, 66, 1665-1676.	12.1	212
38	Gene expression profiling of patientâ€derived pancreatic cancer xenografts predicts sensitivity to the <scp>BET</scp> bromodomain inhibitor <scp>JQ</scp> 1: implications for individualized medicine efforts. EMBO Molecular Medicine, 2017, 9, 482-497.	6.9	66
39	Speeding towards individualized treatment for pancreatic cancer by taking an alternative road. Cancer Letters, 2017, 410, 63-67.	7.2	31
40	Pancreatic Adenocarcinoma Therapeutic Targets Revealed by Tumor-Stroma Cross-Talk Analyses in Patient-Derived Xenografts. Cell Reports, 2017, 21, 2458-2470.	6.4	148
41	TP53INP1 Downregulation Activates a p73-Dependent DUSP10/ERK Signaling Pathway to Promote Metastasis of Hepatocellular Carcinoma. Cancer Research, 2017, 77, 4602-4612.	0.9	39
42	Abstract 4842: TP53INP1 negatively regulates ERK1/2 via p73-dependent DUSP10 expression to promote metastasis in hepatocellular carcinoma. , 2017, , .		1
43	Differential Therapy Based on Tumor Heterogeneity in Pancreatic Cancer. , 2017, , 1-15.		0
44	Abstract 4396: Multiomics assessment of the cancer and stromal compartments of patient-derived pancreatic xenografts reveals clinically-relevant subtypes and novel targeted therapies. , 2017, , .		0
45	The pancreatitis-associated protein VMP1, a key regulator of inducible autophagy, promotes KrasG12D-mediated pancreatic cancer initiation. Cell Death and Disease, 2016, 7, e2295-e2295.	6.3	25
46	Response to "Is the Reg3α (HIP/PAP) Protein Really an Obesogenic Factor?― Journal of Cellular Physiology, 2016, 231, 2-2.	4.1	2
47	Cancer-associated fibroblast-derived annexin A6+ extracellular vesicles support pancreatic cancer aggressiveness. Journal of Clinical Investigation, 2016, 126, 4140-4156.	8.2	169
48	A pancreatic ductal adenocarcinoma subpopulation is sensitive to FK866, an inhibitor of NAMPT. Oncotarget, 2016, 7, 53783-53796.	1.8	28
49	Abstract A61: CAF-derived ANXA6+-exosomes support pancreatic cancer aggressiveness and serve as a circulating biomarker. , 2016, , .		0
50	Abstract A48: Multi-omics characterization of PDAC subtypes using PDX reveals that epigenetic but not genetic analysis permit a clinically relevant classification. , 2016, , .		0
51	Abstract B72: Pancreatic cancer cell drives stroma composition. , 2016, , .		0
52	Stromal SLIT2 impacts on pancreatic cancer-associated neural remodeling. Cell Death and Disease, 2015, 6, e1592-e1592.	6.3	52
53	Transcriptomic Analysis Predicts Survival and Sensitivity to Anticancer Drugs of Patients with a Pancreatic Adenocarcinoma. American Journal of Pathology, 2015, 185, 1022-1032.	3.8	46
54	Loss of Tribbles pseudokinase-3 promotes Akt-driven tumorigenesis via FOXO inactivation. Cell Death and Differentiation, 2015, 22, 131-144.	11.2	70

#	Article	IF	CITATIONS
55	Targeting CD44 as a novel therapeutic approach for treating pancreatic cancer recurrence. Oncoscience, 2015, 2, 572-575.	2.2	21
56	A subgroup of pancreatic adenocarcinoma is sensitive to the 5-aza-dC DNA methyltransferase inhibitor. Oncotarget, 2015, 6, 746-754.	1.8	21
57	Deciphering the cellular source of tumor relapse identifies CD44 as a major therapeutic target in pancreatic adenocarcinoma. Oncotarget, 2015, 6, 7408-7423.	1.8	28
58	TRIB3 suppresses tumorigenesis by controlling mTORC2/AKT/FOXO signaling. Molecular and Cellular Oncology, 2015, 2, e980134.	0.7	16
59	Abstract B06: Impact of intratumoral microenvironment and epithelial cells crosstalk in pancreatic carcinogenesis. , 2015, , .		0
60	Selection of Intracellular Single-Domain Antibodies Targeting the HIV-1 Vpr Protein by Cytoplasmic Yeast Two-Hybrid System. PLoS ONE, 2014, 9, e113729.	2.5	14
61	The E3 Ubiquitin Ligase Thyroid Hormone Receptor-interacting Protein 12 Targets Pancreas Transcription Factor 1a for Proteasomal Degradation. Journal of Biological Chemistry, 2014, 289, 35593-35604.	3.4	20
62	Genetic inactivation of <i>Nupr1</i> acts as a dominant suppressor event in a two-hit model of pancreatic carcinogenesis. Gut, 2014, 63, 984-995.	12.1	32
63	The Functional Landscape of Hsp27 Reveals New Cellular Processes such as DNA Repair and Alternative Splicing and Proposes Novel Anticancer Targets. Molecular and Cellular Proteomics, 2014, 13, 3585-3601.	3.8	65
64	Redox-sensitive TP53INP1 SUMOylation as an oxidative stress sensor to activate TP53. Molecular and Cellular Oncology, 2014, 1, e964044.	0.7	2
65	Copy Number Gain of hsa-miR-569 at 3q26.2 Leads to Loss of TP53INP1 and Aggressiveness of Epithelial Cancers. Cancer Cell, 2014, 26, 863-879.	16.8	46
66	<scp>PAP</scp> / <scp>HIP</scp> Protein Is an Obesogenic Factor. Journal of Cellular Physiology, 2014, 229, 225-231.	4.1	6
67	Oxidative stress-induced p53 activity is enhanced by a redox-sensitive TP53INP1 SUMOylation. Cell Death and Differentiation, 2014, 21, 1107-1118.	11.2	64
68	Novel role of VMP1 as modifier of the pancreatic tumor cell response to chemotherapeutic drugs. Journal of Cellular Physiology, 2013, 228, 1834-1843.	4.1	10
69	Oxidative Stress Induced by Inactivation of TP53INP1 Cooperates with KrasG12D to Initiate and Promote Pancreatic Carcinogenesis in the Murine Pancreas. American Journal of Pathology, 2013, 182, 1996-2004.	3.8	34
70	Development of an ELISA detecting Tumor Protein 53-Induced Nuclear Protein 1 in serum of prostate cancer patients. Results in Immunology, 2013, 3, 51-56.	2.2	5
71	Insights into the epigenetic mechanisms controlling pancreatic carcinogenesis. Cancer Letters, 2013, 328, 212-221.	7.2	72
72	Strengthened glycolysis under hypoxia supports tumor symbiosis and hexosamine biosynthesis in pancreatic adenocarcinoma. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 3919-3924.	7.1	359

#	Article	IF	CITATIONS
73	Meaning of tumor protein 53-induced nuclear protein 1 in the molecular mechanism of gemcitabine sensitivity. Molecular and Clinical Oncology, 2013, 1, 100-104.	1.0	2
74	CDK2 and PKA Mediated-Sequential Phosphorylation Is Critical for p19INK4d Function in the DNA Damage Response. PLoS ONE, 2012, 7, e35638.	2.5	19
75	TP53INP1 overexpression in prostate cancer correlates with poor prognostic factors and is predictive of biological cancer relapse. Prostate, 2012, 72, 117-128.	2.3	19
76	TP53INP1, a tumor suppressor, interacts with LC3 and ATG8-family proteins through the LC3-interacting region (LIR) and promotes autophagy-dependent cell death. Cell Death and Differentiation, 2012, 19, 1525-1535.	11.2	109
77	Pancreatic Cancer Genetics. , 2012, , 51-79.		0
78	Absence of Tumor Suppressor Tumor Protein 53-Induced Nuclear Protein 1 (TP53INP1) Sensitizes Mouse Thymocytes and Embryonic Fibroblasts to Redox-Driven Apoptosis. Antioxidants and Redox Signaling, 2011, 15, 1639-1653.	5.4	29
79	TP53INP1 decreases pancreatic cancer cell migration by regulating SPARC expression. Oncogene, 2011, 30, 3049-3061.	5.9	71
80	Tumor Protein p53â€Induced Nuclear Protein (TP53INP1) Expression in Medullary Thyroid Carcinoma: A Molecular Guide to the Optimal Extent of Surgery?. World Journal of Surgery, 2010, 34, 830-835.	1.6	10
81	VAV2 regulates epidermal growth factor receptor endocytosis and degradation. Oncogene, 2010, 29, 2528-2539.	5.9	42
82	The SV2 variant of KLF6 is down-regulated in hepatocellular carcinoma and displays anti-proliferative and pro-apoptotic functions. Journal of Hepatology, 2010, 53, 880-888.	3.7	32
83	CIP4 is a new ArgBP2 interacting protein that modulates the ArgBP2 mediated control of WAVE1 phosphorylation and cancer cell migration. Cancer Letters, 2010, 288, 116-123.	7.2	21
84	Tumor Protein 53–Induced Nuclear Protein 1 Is a Major Mediator of p53 Antioxidant Function. Cancer Research, 2009, 69, 219-226.	0.9	135
85	MCC, a new interacting protein for Scrib, is required for cell migration in epithelial cells. FEBS Letters, 2009, 583, 2326-2332.	2.8	27
86	MicroRNAs in Pancreatic Ductal Adenocarcinoma: New Diagnostic and Therapeutic Clues. Pancreatology, 2009, 9, 66-72.	1.1	18
87	Identification of multi‣H3 domainâ€containing protein interactome in pancreatic cancer: A yeast twoâ€hybrid approach. Proteomics, 2008, 8, 3071-3081.	2.2	41
88	Roles for MicroRNAs, miR-93 and miR-130b, and Tumor Protein 53–Induced Nuclear Protein 1 Tumor Suppressor in Cell Growth Dysregulation by Human T-Cell Lymphotrophic Virus 1. Cancer Research, 2008, 68, 8976-8985.	0.9	172
89	Tumor protein 53-induced nuclear protein 1 expression is repressed by miR-155, and its restoration inhibits pancreatic tumor development. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 16170-16175.	7.1	513
90	Colitis and Colitis-Associated Cancer Are Exacerbated in Mice Deficient for Tumor Protein 53-Induced Nuclear Protein 1. Molecular and Cellular Biology, 2007, 27, 2215-2228.	2.3	85

#	Article	IF	CITATIONS
91	TP53INP1 is a novel p73 target gene that induces cell cycle arrest and cell death by modulating p73 transcriptional activity. Oncogene, 2005, 24, 8093-8104.	5.9	119
92	Cloning of IP15, a pancreatitis-induced gene whose expression inhibits cell growth. Biochemical and Biophysical Research Communications, 2004, 319, 1001-1009.	2.1	10
93	Evidence of CXC, CC and C chemokine production by lymphatic endothelial cells. Immunology, 2003, 108, 523-530.	4.4	54
94	TP53INP1s and Homeodomain-interacting Protein Kinase-2 (HIPK2) Are Partners in Regulating p53 Activity. Journal of Biological Chemistry, 2003, 278, 37722-37729.	3.4	140
95	Cloning and Expression of the Rat Vacuole Membrane Protein 1 (VMP1), a New Gene Activated in Pancreas with Acute Pancreatitis, Which Promotes Vacuole Formation. Biochemical and Biophysical Research Communications, 2002, 290, 641-649.	2.1	81
96	p53-dependent expression of the stress-induced protein (SIP). European Journal of Cell Biology, 2002, 81, 294-301.	3.6	76
97	Cdx1 promotes cellular growth of epithelial intestinal cells through induction of the secretory protein PAP I. European Journal of Cell Biology, 2001, 80, 156-163.	3.6	48
98	Molecular and Functional Characterization of the Stress-induced Protein (SIP) Gene and Its Two Transcripts Generated by Alternative Splicing. Journal of Biological Chemistry, 2001, 276, 44185-44192.	3.4	69
99	Expression Profiling in Pancreas during the Acute Phase of Pancreatitis Using cDNA Microarrays. Biochemical and Biophysical Research Communications, 2000, 277, 660-667.	2.1	31
100	Cloning and Expression of the Mouse PIP49 (Pancreatitis Induced Protein 49) mRNA Which Encodes a New Putative Transmembrane Protein Activated in the Pancreas with Acute Pancreatitis. Molecular Cell Biology Research Communications: MCBRC: Part B of Biochemical and Biophysical Research Communications, 2000, 4, 188-193.	1.6	8
101	CDXI promotes cellular growth and increases resistance to apoptosis of epithelial intestinal cells through induction of the secretory protein PAP I. Gastroenterology, 2000, 118, A551.	1.3	0
102	Tumor necrosis factor $\hat{l}\pm$ triggers antiapoptotic mechanisms in rat pancreatic cells through pancreatitis-associated protein I activation. Gastroenterology, 2000, 119, 816-828.	1.3	121
103	Cloning and expression of the rat VMP1 (vacuole membrane protein 1) mRNA, a new gene activated in pancreas with acute pancreatitis, which promotes vacuole formation. Gastroenterology, 2000, 118, A195.	1.3	0
104	Lymphatic Endothelial Tumors Induced by Intraperitoneal Injection of Incomplete Freund's Adjuvant. Experimental Cell Research, 1999, 246, 368-375.	2.6	65
105	The pancreatitis-associated protein is induced by free radicals in AR4-2J cells and confers cell resistance to apoptosis. Gastroenterology, 1998, 114, 808-816.	1.3	116
106	PAP Gene Transcription Induced by Cycloheximide in AR4-2J Cells Involves ADP-Ribosylation. Biochemical and Biophysical Research Communications, 1998, 251, 710-713.	2.1	13
107	Clinical Evaluation of Pancreatitis-Associated Protein as a Serum Marker of Hepatocellular Carcinoma: Comparison with α-Fetoprotein. Oncology, 1998, 55, 421-425.	1.9	15
108	The Pancreatitis-associated Protein I Promoter Allows Targeting to the Pancreas of a Foreign Gene, Whose Expression Is Up-regulated during Pancreatic Inflammation. Journal of Biological Chemistry, 1997, 272, 5800-5804.	3.4	28

#	Article	IF	CITATIONS
109	Characterization of a Silencer Regulatory Element in the Rat PAP I Gene Which Confers Tissue-Specific Expression and Is Promoter-Dependent. Archives of Biochemistry and Biophysics, 1997, 340, 111-116.	3.0	10
110	Molecular cloning, sequencing and expression of the mRNA encoding human Cdx1 and Cdx2 homeobox. Down-regulation of Cdx1 and Cdx2 mRNA expression during colorectal carcinogenesis. International Journal of Cancer, 1997, 74, 35-44.	5.1	201
111	Induction of Lithostathine/regmRNA Expression by Serum from Rats with Acute Pancreatitis and Cytokines in Pancreatic Acinar AR-42J Cells. Archives of Biochemistry and Biophysics, 1996, 330, 129-132.	3.0	54
112	The rat genes encoding the pancreatitis associated-proteins I, II and III (<i>Pap1, Pap2, Pap3</i>), and the lithostathin/pancreatic stone protein/regeneration protein (<i>Reg</i>) colocalize at 4q33→q34. Cytogenetic and Genome Research, 1996, 72, 83-85.	1.1	47
113	Mechanism of PAP I gene induction during hepatocarcinogenesis: clinical implications. British Journal of Cancer, 1996, 74, 1767-1775.	6.4	16
114	Cloning, expression and chromosomal localization of the rat pancreatitis-associated protein III gene. Biochemical Journal, 1995, 307, 9-16.	3.7	27
115	Identification of a transcriptional regulatory region of the rat pancreatitis-associated protein I (PAP) Tj ETQq1 1 0	.784314 r 8.7	gBT /Overloc
116	Immunocytochemical localization of pancreatitis-associated protein in human small intestine. Digestive Diseases and Sciences, 1995, 40, 519-524.	2.3	41
117	Two transcripts are generated from the pancreatitis associated protein II gene by alternative splicing in the 5′ untranslated region. Biochimica Et Biophysica Acta Gene Regulatory Mechanisms, 1995, 1261, 272-274.	2.4	5
118	Pancreatitis-associated Protein I (PAP I), an Acute Phase Protein Induced by Cytokines. Journal of Biological Chemistry, 1995, 270, 22417-22421.	3.4	95
119	Developmental, Nutritional, and Hormonal Regulation of the Pancreatitis-Associated Protein I and III Gene Expression in the Rat Small Intestine. Scandinavian Journal of Gastroenterology, 1995, 30, 664-669.	1.5	13
120	Serum from Rats with Acute Pancreatitis Induces Expression of the PAP mRNA in the Pancreatic Acinar Cell Line Ar-42J. Biochemical and Biophysical Research Communications, 1994, 204, 238-243.	2.1	13
121	Molecular Cloning, Genomic Organization, and Chromosomal Localization of the Human Pancreatitis-Associated Protein (PAP) Gene. Genomics, 1994, 19, 108-114.	2.9	62
122	Rapid PCR cloning and sequence determination of the rat lithostathine gene. Biochimica Et Biophysica Acta Gene Regulatory Mechanisms, 1993, 1174, 99-102.	2.4	6
123	The pancreatitis associated protein III (PAP III), a new member of the PAP gene family. Biochimica Et Biophysica Acta Gene Regulatory Mechanisms, 1993, 1216, 329-331.	2.4	44
124	Identification of a second rat pancreatitis-associated protein. Messenger RNA cloning, gene structure, and expression during acute pancreatitis. Biochemistry, 1993, 32, 9236-9241.	2.5	51
125	Lithostathine, an Inhibitor of CaCO3, Crystal Growth in Pancreatic Juice, Induces Bacterial Aggregation. Pancreas, 1993, 8, 597-601.	1.1	33
126	Changes in Gene Expression During Pancreatic Regeneration. Pancreas, 1991, 6, 150-156.	1.1	29

#	Article	IF	CITATIONS
127	Changes in pancreatic trophism and gene expression during a prolonged fasting period in rats. International Journal of Gastrointestinal Cancer, 1991, 8, 177-86.	0.4	6
128	Changes in Growth and Pancreatic mRNA Concentrations During Postnatal Development of Rat Pancreas. Pancreas, 1990, 5, 421-426.	1.1	9
129	Time-Dependent Effect of Melatonin on Actin mRNA Levels and Incorporation of 35S-Methionine Into Actin and Proteins by the Rat Hypothalamus. Journal of Pineal Research, 1990, 9, 51-63.	7.4	6
130	Diurnal changes in actin mRNA levels and incorporation of35S-methionine into actin in the rat hypothalamus. Cellular and Molecular Neurobiology, 1990, 10, 207-216.	3.3	7
131	Nucleotide cDNA and complete deduced amino acid sequence of aTrypanosoma cruziribosomal P protein (P-JL5). Nucleic Acids Research, 1990, 18, 3399-3399.	14.5	28
132	Limitation and challenges in using pancreatic cancerâ€derived organoids as a preclinical tool. Cancer Communications, 0, , .	9.2	0