Javier Mata-Contreras

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/534437/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Microwave Microfluidic Sensor Based on a Microstrip Splitter/Combiner Configuration and Split Ring Resonators (SRRs) for Dielectric Characterization of Liquids. IEEE Sensors Journal, 2017, 17, 6589-6598.	4.7	275
2	Splitter/Combiner Microstrip Sections Loaded With Pairs of Complementary Split Ring Resonators (CSRRs): Modeling and Optimization for Differential Sensing Applications. IEEE Transactions on Microwave Theory and Techniques, 2016, 64, 4362-4370.	4.6	149
3	Highly-Sensitive Microwave Sensors Based on Open Complementary Split Ring Resonators (OCSRRs) for Dielectric Characterization and Solute Concentration Measurement in Liquids. IEEE Access, 2018, 6, 48324-48338.	4.2	149
4	Split Ring Resonator-Based Microwave Fluidic Sensors for Electrolyte Concentration Measurements. IEEE Sensors Journal, 2019, 19, 2562-2569.	4.7	146
5	Application of Split Ring Resonator (SRR) Loaded Transmission Lines to the Design of Angular Displacement and Velocity Sensors for Space Applications. IEEE Transactions on Microwave Theory and Techniques, 2017, 65, 4450-4460.	4.6	133
6	Analytical Method to Estimate the Complex Permittivity of Oil Samples. Sensors, 2018, 18, 984.	3.8	131
7	Chipless-RFID: A Review and Recent Developments. Sensors, 2019, 19, 3385.	3.8	98
8	Transmission Lines Loaded With Pairs of Stepped Impedance Resonators: Modeling and Application to Differential Permittivity Measurements. IEEE Transactions on Microwave Theory and Techniques, 2016, 64, 3864-3877.	4.6	94
9	Modeling and Applications of Metamaterial Transmission Lines Loaded With Pairs of Coupled Complementary Split-Ring Resonators (CSRRs). IEEE Antennas and Wireless Propagation Letters, 2016, 15, 154-157.	4.0	83
10	Near-Field Chipless-RFID System With High Data Capacity for Security and Authentication Applications. IEEE Transactions on Microwave Theory and Techniques, 2017, 65, 5298-5308.	4.6	78
11	Microwave Encoders for Chipless RFID and Angular Velocity Sensors Based on S-Shaped Split Ring Resonators. IEEE Sensors Journal, 2017, 17, 4805-4813.	4.7	72
12	Near-Field Chipless-RFID System With Erasable/Programmable 40-bit Tags Inkjet Printed on Paper Substrates. IEEE Microwave and Wireless Components Letters, 2018, 28, 272-274.	3.2	68
13	Detecting the Rotation Direction in Contactless Angular Velocity Sensors Implemented With Rotors Loaded With Multiple Chains of Resonators. IEEE Sensors Journal, 2018, 18, 7055-7065.	4.7	60
14	Modeling Metamaterial Transmission Lines Loaded With Pairs of Coupled Split-Ring Resonators. IEEE Antennas and Wireless Propagation Letters, 2015, 14, 68-71.	4.0	58
15	Multistate Multiresonator Spectral Signature Barcodes Implemented by Means of S-Shaped Split Ring Resonators (S-SRRs). IEEE Transactions on Microwave Theory and Techniques, 2017, 65, 2341-2352.	4.6	50
16	Differential Microfluidic Sensors Based on Dumbbell-Shaped Defect Ground Structures in Microstrip Technology: Analysis, Optimization, and Applications. Sensors, 2019, 19, 3189.	3.8	46
17	Very Low-Cost 80-Bit Chipless-RFID Tags Inkjet Printed on Ordinary Paper. Technologies, 2018, 6, 52.	5.1	45
18	Differential-Mode to Common-Mode Conversion Detector Based on Rat-Race Hybrid Couplers: Analysis and Application to Differential Sensors and Comparators. IEEE Transactions on Microwave Theory and Techniques, 2020, 68, 1312-1325.	4.6	45

JAVIER MATA-CONTRERAS

#	Article	IF	CITATIONS
19	Configurations of Splitter/Combiner Microstrip Sections Loaded with Stepped Impedance Resonators (SIRs) for Sensing Applications. Sensors, 2016, 16, 2195.	3.8	44
20	Miniature Microwave Notch Filters and Comparators Based on Transmission Lines Loaded with Stepped Impedance Resonators (SIRs). Micromachines, 2016, 7, 1.	2.9	37
21	High-Density Microwave Encoders for Motion Control and Near-Field Chipless-RFID. IEEE Sensors Journal, 2019, 19, 3673-3682.	4.7	36
22	A Review of Sensing Strategies for Microwave Sensors Based on Metamaterial-Inspired Resonators: Dielectric Characterization, Displacement, and Angular Velocity Measurements for Health Diagnosis, Telecommunication, and Space Applications. International Journal of Antennas and Propagation, 2017, 2017, 1-13.	1.2	35
23	Enhancing the Per-Unit-Length Data Density in Near-Field Chipless-RFID Systems With Sequential Bit Reading. IEEE Antennas and Wireless Propagation Letters, 2019, 18, 89-92.	4.0	34
24	Time-Domain-Signature Chipless RFID Tags: Near-Field Chipless-RFID Systems With High Data Capacity. IEEE Microwave Magazine, 2019, 20, 87-101.	0.8	33
	Ultra-Compact (80 <formula formulatype="inline"> <tex) 0.784314="" 1="" 10="" 50<="" etqq1="" overlock="" rgbt="" td="" tf="" tj=""><td>512 Td (N</td><td>otation="Te<mark>X</mark>"</td></tex)></formula>	512 Td (N	otation="Te <mark>X</mark> "
25	(UWB) Bandpass Filters With Common-Mode Noise Suppression. IEEE Transactions on Microwave Theory and Techniques, 2015, 63, 1272-1280.	4.6	30
26	Estimation of the complex permittivity of liquids by means of complementary split ring resonator (CSRR) loaded transmission lines. , 2017, , .		29
27	Near-field chipless RFID encoders with sequential bit reading and high data capacity. , 2017, , .		26
28	High data density and capacity in chipless radiofrequency identification (chipless-RFID) tags based on double-chains of S-shaped split ring resonators (S-SRRs). EPJ Applied Metamaterials, 2017, 4, 8.	1.5	23
29	Near-Field Chipless Radio-Frequency Identification (RFID) Sensing and Identification System with Switching Reading. Sensors, 2018, 18, 1148.	3.8	17
30	Experimental performance of a meta-distributed amplifier. , 2007, , .		15
31	Active Distributed Mixers Based on Composite Right/Left-Handed Transmission Lines. IEEE Transactions on Microwave Theory and Techniques, 2009, 57, 1091-1101.	4.6	13
32	Solute Concentration Measurements in Diluted Solutions by Means of Split Ring Resonators. , 2018, , .		13
33	Electromagnetic Rotary Encoders based on Split Ring Resonators (SRR) Loaded Microstrip Lines. , 2018, , .		12
34	Estimation of conductive losses in complementary split ring resonator (CSRR) loading an embedded microstrip line and applications. , 2017, , .		11
35	All-dielectric Electromagnetic Encoders based on Permittivity Contrast for Displacement/Velocity Sensors and Chipless-RFID Tags. , 2019, , .		11
36	Cascaded splitter/combiner microstrip sections loaded with complementary split ring resonators (CSRRs): Modeling, analysis and applications. , 2016, , .		10

#	Article	IF	CITATIONS
37	Enhancing commonâ€mode suppression in microstrip differential lines by means of chirped and multiâ€ŧuned electromagnetic bandgaps. Microwave and Optical Technology Letters, 2016, 58, 328-332.	1.4	9
38	Design and Experimental Performance of Diplexing MMIC Distributed Amplifier. IEEE Microwave and Wireless Components Letters, 2013, 23, 365-367.	3.2	7
39	Transmission line metamaterials based on pairs of coupled split ring resonators (SRRs) and complementary split ring resonators (CSRR): A comparison to the light of the lumped element equivalent circuits. , 2015, , .		7
40	Active GaN MMIC diplexer based on distributed amplification concept. Microwave and Optical Technology Letters, 2013, 55, 1041-1045.	1.4	6
41	Stub-Loaded Microstrip Line Loaded with Half-Wavelength Resonators and Application to Near-Field Chipless-RFID. , 2018, , .		3
42	Diplexing distributed amplifier with improved isolation. Electronics Letters, 2011, 47, 922.	1.0	2
43	Diplexing dual-gate FET distributed mixer. Electronics Letters, 2012, 48, 381.	1.0	2
44	Ultra-wideband (UWB) balanced bandpass filters with wide stop band and intrinsic common-mode rejection based on embedded capacitive electromagnetic bandgaps (EBG). , 2014, , .		2
45	Microwave sensors based on symmetry properties and metamaterial concepts: A review of some recent developments (Invited paper). , 2017, , .		2
46	Application of metamaterial concepts to chipless-RFID. , 2018, , .		0
47	Microwave Rotary Encoders. Lecture Notes in Electrical Engineering, 2020, , 105-134.	0.4	0
48	System Requirements for Industrial Scenarios and Applications. Lecture Notes in Electrical Engineering, 2020, , 77-103.	0.4	0
49	State-of-the-Art in Chipless-RFID Technology. Lecture Notes in Electrical Engineering, 2020, , 1-26.	0.4	Ο
50	Time-Domain Signature Near-Field Chipless-RFID Systems. Lecture Notes in Electrical Engineering, 2020, , 27-75.	0.4	0
51	Concluding Remarks and Future Prospects. Lecture Notes in Electrical Engineering, 2020, , 135-142.	0.4	0