Qingyi Lu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5344310/publications.pdf

Version: 2024-02-01

123	6,299	43	75
papers	citations	h-index	g-index
128	128	128	8231 citing authors
all docs	docs citations	times ranked	

#	Article	IF	CITATIONS
1	Tailored dodecahedral polyoxometalates nanoframes with in situ encapsulated Co, N, C for oxygen evolution reaction. Chemical Engineering Journal, 2022, 430, 133116.	12.7	8
2	In-situ generation of In2O3 nanoparticles inside In[Co(CN)6] quasi-metal-organic-framework nanocubes for efficient electroreduction of CO2 to formate. Journal of Colloid and Interface Science, 2022, 608, 1942-1950.	9.4	17
3	Molybdenum Sulfide Selenide Nanosheets Synergized with Nitrogenâ€Rich Carbon Frameworks toward High Performance and Stable Sodium Storage. Advanced Materials Interfaces, 2022, 9, .	3.7	8
4	Robust hollow Bowl-like α-Fe2O3 nanostructures with enhanced electrochemical lithium storage performance. Journal of Colloid and Interface Science, 2022, 622, 780-788.	9.4	10
5	Phosphorus-doped cobaltous oxide core@shell microspheres with enhanced performances in energy conversion and storage. Journal of Power Sources, 2021, 483, 229137.	7.8	9
6	One-pot synthesis of mesoporous palladium/C nanodendrites as high-performance oxygen reduction eletrocatalysts through a facile dual surface protecting agent-assisted strategy. Dalton Transactions, 2021, 50, 6297-6305.	3.3	4
7	Intrinsic activity modulation and structural design of NiFe alloy catalysts for an efficient oxygen evolution reaction. Chemical Science, 2021, 12, 3818-3835.	7.4	60
8	High-entropy effect of a metal phosphide on enhanced overall water splitting performance. Journal of Materials Chemistry A, 2021, 9, 17913-17922.	10.3	82
9	Waste leather-derived (Cr, N)-co-doped carbon cloth coupling with Mo2C nanoparticles as a self-supported electrode for highly active hydrogen evolution reaction performances. Journal of Power Sources, 2020, 476, 228706.	7.8	19
10	A mechanical rotatable magnetic force microscope operated in a 7ÂT superconducting magnet. Ultramicroscopy, 2020, 217, 113071.	1.9	3
11	Agaric-derived N-doped carbon nanorod arrays@nanosheet networks coupled with molybdenum carbide nanoparticles as highly efficient pH-universal hydrogen evolution electrocatalysts. Nanoscale, 2020, 12, 5159-5169.	5.6	26
12	A Universal Strategy for Carbon-Supported Transition Metal Phosphides as High-Performance Bifunctional Electrocatalysts towards Efficient Overall Water Splitting. ACS Applied Materials & Samp; Interfaces, 2020, 12, 19447-19456.	8.0	103
13	Rapid solvent-evaporation strategy for three-dimensional cobalt-based complex hierarchical architectures as catalysts for water oxidation. Scientific Reports, 2019, 9, 15681.	3.3	11
14	Tube-in-tube tin dioxide superstructures with enhanced lithium storage performance. Chemical Communications, 2019, 55, 2222-2225.	4.1	9
15	Templated synthesis of titanium dioxide tube-in-tube superstructures with enhanced photocatalytic and lithium storage performance. Chemical Engineering Journal, 2019, 370, 1434-1439.	12.7	10
16	Space-confined growth of novel self-supporting carbon-based nanotube array composites. Composites Part B: Engineering, 2019, 161, 328-335.	12.0	6
17	Structural Diversity and Sensing Properties of Metal–Organic Frameworks with Multicarboxylate and 1 <i>H</i> Inidazol-4-yl-Containing Ligands. Crystal Growth and Design, 2018, 18, 1136-1146.	3.0	71
18	Delicate Control of Multishelled Zn–Mn–O Hollow Microspheres as a High-Performance Anode for Lithium-Ion Batteries. Langmuir, 2018, 34, 1242-1248.	3.5	20

#	Article	IF	Citations
19	In Situ Antisolvent Approach to Hydrangeaâ€like HCo ₃ O ₄ â€NC@CoNiâ€LDH Core@Shell Superstructures for Highly Efficient Water Electrolysis. Chemistry - A European Journal, 2018, 24, 400-408.	3.3	21
20	Quantum Effects Allow the Construction of Twoâ€Dimensional Co ₃ O ₄ â€Embedded Nitrogenâ€Doped Porous Carbon Nanosheet Arrays from Bimetallic MOFs as Bifunctional Oxygen Electrocatalysts. Chemistry - A European Journal, 2018, 24, 14522-14530.	3.3	22
21	<i>In situ</i> construction of hierarchical Co/MnO@graphite carbon composites for highly supercapacitive and OER electrocatalytic performances. Nanoscale, 2018, 10, 13702-13712.	5.6	45
22	Thickness-control of ultrathin two-dimensional cobalt hydroxide nanosheets with enhanced oxygen evolution reaction performance. Chemical Engineering Journal, 2017, 316, 225-231.	12.7	70
23	Tunable Co ₃ O ₄ hollow structures (from yolk–shell to multi-shell) and their Li storage properties. Journal of Materials Chemistry A, 2017, 5, 12757-12761.	10.3	39
24	Synthesis of unit-cell-thick \hat{l} ±-Fe2O3 nanosheets and their transformation to \hat{l} 3-Fe2O3 nanosheets with enhanced LIB performances. Chemical Engineering Journal, 2017, 326, 292-297.	12.7	63
25	One-step synthesis of novel Cu@polymer nanocomposites through a self-activated route and their application as nonenzymatic glucose sensors. Dalton Transactions, 2017, 46, 9918-9924.	3.3	10
26	Twoâ€Dimensional Hollow TiO ₂ Nanoplates with Enhanced Photocatalytic Activity. Chemistry - A European Journal, 2016, 22, 6368-6373.	3.3	18
27	Carbon nanocages@ultrathin carbon nanosheets: One-step facile synthesis and application as anode material for lithium-ion batteries. Carbon, 2016, 105, 586-592.	10.3	35
28	Templateâ€Free Synthesis of Nanorodâ€Assembled Hierarchical Zn _{1â°'<i>x</i>} Mn _{<i>x</i>} S Hollow Nanostructures with Enhanced Pseudocapacitive Properties. Chemistry - A European Journal, 2016, 22, 18859-18864.	3.3	9
29	Synthesis and property studies of hollow nanostructures. CrystEngComm, 2016, 18, 7399-7409.	2.6	19
30	Hybrid α-Fe2O3@Ni(OH)2 nanosheet composite for high-rate-performance supercapacitor electrode. Scientific Reports, 2016, 6, 31751.	3.3	24
31	Hollow ZnxCd1â^'xS nanospheres with enhanced photocatalytic activity under visible light. Scientific Reports, 2016, 6, 29997.	3.3	16
32	Generalized Lowâ€Temperature Fabrication of Scalable Multiâ€Type Twoâ€Dimensional Nanosheets with a Green Soft Template. Chemistry - A European Journal, 2016, 22, 5575-5582.	3.3	19
33	Hollow α-Fe ₂ O ₃ core–shell colloidosomes: facile one-pot synthesis and high lithium anodic performances. CrystEngComm, 2016, 18, 544-549.	2.6	16
34	Green synthesis of fluorescent carbon quantum dots and carbon spheres from pericarp. Science China Chemistry, 2015, 58, 863-870.	8.2	44
35	Green synthesis of MnO x nanostructures and studies of their supercapacitor performance. Science China Chemistry, 2015, 58, 627-633.	8.2	14
36	Bottom-up-then-up-down Route for Multi-level Construction of Hierarchical Bi2S3 Superstructures with Magnetism Alteration. Scientific Reports, 2015, 5, 10599.	3.3	19

#	Article	IF	CITATIONS
37	General synthesis of binary PtM and ternary PtM ₁ M ₂ alloy nanoparticles on graphene as advanced electrocatalysts for methanol oxidation. Journal of Materials Chemistry A, 2015, 3, 15882-15888.	10.3	31
38	Three-dimensional honeycomb-like networks of birnessite manganese oxide assembled by ultrathin two-dimensional nanosheets with enhanced Li-ion battery performances. Nanoscale, 2015, 7, 8101-8109.	5.6	21
39	Synthesis of polyhedral iron oxide nanocrystals bound by high-index facets. Science China Chemistry, 2014, 57, 114-121.	8.2	8
40	Porous Tin Oxide Nanosheets with Enhanced Conversion Efficiency as Dye-Sensitized Solar Cell Electrode. Journal of Physical Chemistry C, 2014, 118, 16856-16862.	3.1	17
41	Water Amount Dependence on Morphologies and Properties of ZnO nanostructures in Double-solvent System. Scientific Reports, 2014, 4, 3736.	3.3	43
42	Single-Crystalline Hyperbranched Nanostructure of Iron Hydroxyl Phosphate Fe5(PO4)4(OH)3·2H2O for Highly Selective Capture of Phosphopeptides. Scientific Reports, 2014, 4, 3753.	3.3	18
43	An Unprecedented Homochiral Metal–Organic Framework Based on Achiral Nanosized Pyridine and V-Shaped Polycarboxylate Acid Ligand. Crystal Growth and Design, 2013, 13, 440-445.	3.0	42
44	Biopolymer-assisted construction and gas-sensing study of uniform solid and hollow ZnSn(OH)6 spheres. Sensors and Actuators B: Chemical, 2013, 178, 119-124.	7.8	29
45	Bi-directional-bi-dimensionality alignment of self-supporting Mn3O4 nanorod and nanotube arrays with different bacteriostasis and magnetism. Nanoscale, 2013, 5, 12231.	5.6	4
46	Evolution of nickel sulfide hollow spheres through topotactic transformation. Nanoscale, 2013, 5, 12224.	5.6	33
47	Facile synthesis of hollow Co3O4 boxes for high capacity supercapacitor. Journal of Power Sources, 2013, 227, 101-105.	7.8	250
48	Fabrication of Zn2SnO4/SnO2 hollow spheres and their application in dye-sensitized solar cells. RSC Advances, 2013, 3, 2893.	3.6	28
49	Two-Dimensional \hat{l}^2 -MnO2 Nanowire Network with Enhanced Electrochemical Capacitance. Scientific Reports, 2013, 3, 2193.	3.3	83
50	A second-order nonlinear optical material with a hydrated homochiral helix obtained via spontaneous symmetric breaking crystallization from an achiral ligand. Chemical Communications, 2013, 49, 3585.	4.1	50
51	Al ³⁺ -controlled synthesis and magnetic property of α-Fe ₂ O ₃ nanoplates. CrystEngComm, 2013, 15, 443-446.	2.6	48
52	Monodisperse CuO Hard and Hollow Nanospheres as Visibleâ€Light Photocatalysts. European Journal of Inorganic Chemistry, 2013, 2013, 1358-1362.	2.0	32
53	Biomoleculeâ€Assisted Construction of Cadmium Sulfide Hollow Spheres with Structureâ€Dependent Photocatalytic Activity. ChemPhysChem, 2013, 14, 591-596.	2.1	18
54	Nickel ions inducing growth of high-index faceted \hat{l}_{\pm} -Fe2O3 and their facet-controlled magnetic properties. RSC Advances, 2013, 3, 8261.	3.6	17

#	Article	IF	Citations
55	Metal–organic frameworks constructed from flexible V-shaped ligands: adjustment of the topology, interpenetration and porosity via a solvent system. Chemical Communications, 2012, 48, 10016.	4.1	96
56	Metal–Organic Frameworks Based on Flexible V-Shaped Polycarboxylate Acids: Hydrogen Bondings, Non-Interpenetrated and Polycatenated. Crystal Growth and Design, 2012, 12, 4072-4082.	3.0	67
57	Controlled Growth and Applications of Complex Metal Oxide ZnSn(OH) ₆ Polyhedra. Inorganic Chemistry, 2012, 51, 10990-10995.	4.0	37
58	Synthesis of copper(ii) coordination polymers and conversion into CuO nanostructures with good photocatalytic, antibacterial and lithium ion battery performances. Journal of Materials Chemistry, 2012, 22, 12609.	6.7	78
59	Dendrite-like Co3O4 nanostructure and its applications in sensors, supercapacitors and catalysis. Dalton Transactions, 2012, 41, 5862.	3.3	125
60	Inside Cover: Metal Ions Induce Growth and Magnetism Alternation of \hat{l}_{\pm} -Fe2O3 Crystals Bound by High-Index Facets (Chem. Eur. J. 29/2012). Chemistry - A European Journal, 2012, 18, 8850-8850.	3.3	0
61	Metal Ions Induce Growth and Magnetism Alternation of αâ€Fe ₂ O ₃ Crystals Bound by Highâ€Index Facets. Chemistry - A European Journal, 2012, 18, 8957-8963.	3.3	57
62	Magnetite syntheses from room temperature to $150 \hat{A}^{\circ} \text{C}$ with and without microwaves. Ceramics International, 2012, 38, 2563-2568.	4.8	33
63	Facile synthesis of Ni3(BO3)2 nanoribbons and their antimicrobial, electrochemical and electrical properties. Journal of Materials Chemistry, 2011, 21, 13889.	6.7	17
64	Synthesis and mechanism studies of novel drum-like Cd(OH)2 superstructures. Chemical Communications, 2011, 47, 4141.	4.1	13
65	TiO2/Ni nanocomposites: Biocompatible and recyclable magnetic photocatalysts. Catalysis Communications, 2011, 12, 611-615.	3.3	29
66	Facile synthesis of mono-dispersive hierarchical nickel-based microspheres as potential catalysts. Catalysis Communications, 2011, 12, 1031-1036.	3.3	19
67	Graphene oxide induced growth of one-dimensional fusiform zirconia nanostructures for highly selective capture of phosphopeptides. Chemical Communications, 2011, 47, 11772.	4.1	41
68	Fabrication of Cu3V2O7(OH)2·2H2O Nanoribbons and Cu3V2O7(OH)2·2H2O/PANI Nanocomposites Used in Supercapacitors. Chemistry Letters, 2010, 39, 192-193.	1.3	3
69	Preparation of mesoporous NiO with a bimodal pore size distribution and application in electrochemical capacitors. Electrochimica Acta, 2010, 55, 6830-6835.	5.2	146
70	Lowâ€Symmetry Iron Oxide Nanocrystals Bound by Highâ€Index Facets. Angewandte Chemie - International Edition, 2010, 49, 6328-6332.	13.8	121
71	Selective synthesis of nickel oxide nanowires and length effect on their electrochemical properties. Nanoscale, 2010, 2, 920.	5.6	100
72	Hierarchical ZnO Nanorod-Assembled Hollow Superstructures for Catalytic and Photoluminescence Applications. Crystal Growth and Design, 2010, 10, 40-43.	3.0	88

#	Article	IF	CITATIONS
73	Glucose-assisted synthesis of copper micropuzzles and their application as nonenzymatic glucose sensors. Chemical Communications, 2010, 46, 2010.	4.1	65
74	Synthesis of Mn3O4 octahedrons and other manganese-based nanostructures through a simple and green route. CrystEngComm, 2010, 12, 3401.	2.6	42
75	Fabrication of novel comb-like Cu2O nanorod-based structures through an interface etching method and their application as ethanol sensors. Chemical Communications, 2010, 46, 7022.	4.1	72
76	Controlled fabrication and property studies of nickel hydroxide and nickel oxidenanostructures. CrystEngComm, 2010, 12, 1404-1409.	2.6	28
77	One-step fabrication of Cd(OH)2 nanorings via a solution phase synthesis. Chemical Communications, 2010, 46, 6183.	4.1	19
78	Glycine-assisted double-solvothermal approach for various cuprous oxide structures with good catalytic activities. CrystEngComm, 2010, 12, 406-412.	2.6	63
79	Single Crystalline Cadmium Sulfide Nanowires with Branched Structure. Nanoscale Research Letters, 2009, 4, 371-376.	5.7	20
80	Magnetic field-assisted hydrothermal synthesis of magnetic microwire arrays. Chemical Physics Letters, 2009, 482, 118-120.	2.6	3
81	Sandwich-Type Polymer Nanofiber Structure of Poly(furfuryl Alcohol): An Effective Template for Ordered Porous Films. Journal of Physical Chemistry B, 2009, 113, 12477-12481.	2.6	3
82	Copper-based nanostructures: promising antibacterial agents and photocatalysts. Chemical Communications, 2009, , 3571.	4.1	95
83	Facile synthesis of nickel oxide nanotubes and their antibacterial, electrochemical and magnetic properties. Chemical Communications, 2009, , 7542.	4.1	152
84	Morphology effect on antibacterial activity of cuprous oxide. Chemical Communications, 2009, , 1076.	4.1	170
85	Synthesis of nanorods and nanowires using biomolecules under conventional- and microwave-hydrothermal conditions. Journal of Materials Science, 2008, 43, 2377-2386.	3.7	34
86	CdS Nanorod-Based Structures: From Two- and Three-Dimensional Leaves to Flowers. Journal of Physical Chemistry C, 2008, 112, 13359-13365.	3.1	34
87	Cellulose-Directed Growth of Selenium Nanobelts in Solution. Chemistry of Materials, 2006, 18, 159-163.	6.7	77
88	Fast Synthesis of Cerium Oxide Nanoparticles and Nanorods. Journal of Nanoscience and Nanotechnology, 2006, 6, 3812-3819.	0.9	67
89	Multi-level assemblies of lead sulphide nanorods. Nanotechnology, 2006, 17, 2574-2580.	2.6	27
90	Gluconate controls one-dimensional growth of tellurium nanostructures. Journal of Materials Research, 2006, 21, 343-348.	2.6	14

#	Article	IF	CITATIONS
91	Protein-assisted synthesis of single-crystal nanowires of bismuth compounds. Chemical Communications, 2005, , 531.	4.1	52
92	Three-Dimensional Low Symmetry Mesoporous Silica Structures Templated from Tetra-Headgroup Rigid Bolaform Quaternary Ammonium Surfactant. Journal of the American Chemical Society, 2005, 127, 6780-6787.	13.7	79
93	Interface Reaction for the Self-Assembly of Silver Nanocrystals under Microwave-Assisted Solvothermal Conditions. Chemistry of Materials, 2005, 17, 856-860.	6.7	120
94	A Green Chemical Approach to the Synthesis of Tellurium Nanowires. Langmuir, 2005, 21, 6002-6005.	3.5	117
95	Microwave-assisted synthesis of one-dimensional nanostructures. Journal of Materials Research, 2004, 19, 1649-1655.	2.6	34
96	Biomolecule-Assisted Synthesis of Highly Ordered Snowflakelike Structures of Bismuth Sulfide Nanorods. Journal of the American Chemical Society, 2004, 126, 54-55.	13.7	258
97	Ordered SBA-15 Nanorod Arrays Inside a Porous Alumina Membrane. Journal of the American Chemical Society, 2004, 126, 8650-8651.	13.7	246
98	One-Step Nanocasting Synthesis of Highly Ordered Single Crystalline Indium Oxide Nanowire Arrays from Mesostructured Frameworks. Journal of the American Chemical Society, 2003, 125, 4724-4725.	13.7	203
99	Controllable Assembly of Ordered Semiconductor Ag2S Nanostructures. Nano Letters, 2003, 3, 85-88.	9.1	123
100	The assembly of semiconductor sulfide nanocrystallites with organic reagents as templates. Nanotechnology, 2002, 13, 741-745.	2.6	32
101	Ligand-assisted Solvothermal Growth of CdS Nanowires. Chemistry Letters, 2002, 31, 732-733.	1.3	6
102	Creation of a Unique Self-Supported Pattern of Radially Aligned Semiconductor Ag2S Nanorods. Angewandte Chemie - International Edition, 2002, 41, 1932-1934.	13.8	85
103	Synthesis of germanium oxide mesostructures with a new intermediate state. Microporous and Mesoporous Materials, 2002, 56, 219-225.	4.4	18
104	A template-free method for hollow Ag2S semiconductor with a novel quasi-network microstructure. Chemical Physics Letters, 2002, 360, 355-358.	2.6	21
105	In situ adsorption method for synthesis of binary semiconductor CdS nanocrystals inside mesoporous SBA-15. Chemical Physics Letters, 2002, 360, 585-591.	2.6	36
106	One-Step Synthesis and Assembly of Copper Sulfide Nanoparticles to Nanowires, Nanotubes, and Nanovesicles by a Simple Organic Amine-Assisted Hydrothermal Process. Nano Letters, 2002, 2, 725-728.	9.1	288
107	Controlled Synthesis of Semiconductor PbS Nanocrystals and Nanowires Inside Mesoporous Silica SBA-15 Phase. Nano Letters, 2001, 1, 743-748.	9.1	158
108	A simple synthetic method for MSe2 (M=Fe, Co or Ni) nanocrystallites at low temperature. Materials Chemistry and Physics, 2001, 69, 278-280.	4.0	11

#	Article	IF	Citations
109	A Benzene-Thermal Synthetic Route to Nanocrystalline ZrN. Chemistry Letters, 2000, 29, 74-75.	1.3	7
110	The synthesis of CuFeSe2 through a solventothermal process. Journal of Crystal Growth, 2000, 217, 271-273.	1.5	16
111	Hydrothermal growth of \hat{l}^2 -Ag2Se tubular crystals. Chemical Communications, 2000, , 715-716.	4.1	29
112	Synthesis of Nanocrystalline $CuMS2(M = In or Ga)$ through a Solvothermal Process. Inorganic Chemistry, 2000, 39, 1606-1607.	4.0	98
113	Lowâ€Temperature Synthesis of Nanocrystalline Titanium Nitride via a Benzene–Thermal Route. Journal of the American Ceramic Society, 2000, 83, 430-432.	3.8	72
114	A solvothermal reaction route for the synthesis of CuFeS ₂ ultrafine powder. Journal of Materials Research, 1999, 14, 3870-3872.	2.6	6
115	A hydrothermal reaction to synthesize CuFeS2 nanorods. Inorganic Chemistry Communication, 1999, 2, 569-571.	3.9	51
116	Benzene-thermal co-reduction reaction for nanocrystalline intermetallics Fe3Si and Ni3Al. Solid State lonics, 1999, 124, 317-321.	2.7	6
117	The co-reduction route to TiC nanocrystallites at low temperature. Chemical Physics Letters, 1999, 314, 37-39.	2.6	23
118	A Simple Method for the Preparation of Nanocrystalline Transition Metal Sulfides. Journal of Solid State Chemistry, 1999, 146, 484-487.	2.9	27
119	A Novel Low-Temperature Synthetic Route to Crystalline Si3N4. Advanced Materials, 1999, 11, 653-655.	21.0	41
120	Growth of SiC nanorods at low temperature. Applied Physics Letters, 1999, 75, 507-509.	3.3	121
121	Solvothermal reaction route to nanocrystalline semiconductors AgMS2 (M=Ga, In). Chemical Communications, 1999, , 1093-1094.	4.1	47
122	A Low Temperature Nitridation Route for Nanocrystalline AlN. Chemistry Letters, 1999, 28, 1239-1240.	1.3	16
123	The Solvothermal Synthesis for Nanocrystalline Feln2S4at Low Temperature. Chemistry Letters, 1999, 28, 481-482.	1.3	17