Ferenc IstvÃ;n Nagy

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5342823/publications.pdf

Version: 2024-02-01

		12330	12272
174	18,796	69	133
papers	citations	h-index	g-index
101	101	101	11112
181	181	181	11112
all docs	docs citations	times ranked	citing authors

#	Article	lF	Citations
1	Identification of DNA sequences required for activity of the cauliflower mosaic virus 35S promoter. Nature, 1985, 313, 810-812.	27.8	1,333
2	Plant Circadian Clocks Increase Photosynthesis, Growth, Survival, and Competitive Advantage. Science, 2005, 309, 630-633.	12.6	1,302
3	Brassinosteroids Rescue the Deficiency of CYP90, a Cytochrome P450, Controlling Cell Elongation and De-etiolation in Arabidopsis. Cell, 1996, 85, 171-182.	28.9	963
4	Perception of UV-B by the <i>Arabidopsis</i> UVR8 Protein. Science, 2011, 332, 103-106.	12.6	943
5	Interaction of COP1 and UVR8 regulates UV-B-induced photomorphogenesis and stress acclimation in Arabidopsis. EMBO Journal, 2009, 28, 591-601.	7.8	559
6	Genome-wide analysis of gene expression reveals function of the bZIP transcription factor HY5 in the UV-B response of Arabidopsis. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 1397-1402.	7.1	447
7	The ELF4 gene controls circadian rhythms and flowering time in Arabidopsis thaliana. Nature, 2002, 419, 74-77.	27.8	436
8	Constitutive Photomorphogenesis 1 and Multiple Photoreceptors Control Degradation of Phytochrome Interacting Factor 3, a Transcription Factor Required for Light Signaling in Arabidopsis. Plant Cell, 2004, 16, 1433-1445.	6.6	396
9	Experimental validation of a predicted feedback loop in the multiâ€oscillator clock of Arabidopsis thaliana. Molecular Systems Biology, 2006, 2, 59.	7.2	379
10	Streptomycin resistant and sensitive somatic hybrids of Nicotiana tabacum + Nicotiana knightiana: correlation of resistance to N. tabacum plastids. Theoretical and Applied Genetics, 1981, 59, 191-195.	3.6	360
11	Light Quality–Dependent Nuclear Import of the Plant Photoreceptors Phytochrome A and B. Plant Cell, 1999, 11, 1445-1456.	6.6	338
12	CONSTITUTIVELY PHOTOMORPHOGENIC1 Is Required for the UV-B Response in Arabidopsis. Plant Cell, 2006, 18, 1975-1990.	6.6	338
13	Organ-Specific and Light-Induced Expression of Plant Genes. Science, 1986, 232, 1106-1112.	12.6	324
14	Interaction of the Response Regulator ARR4 with Phytochrome B in Modulating Red Light Signaling. Science, 2001, 294, 1108-1111.	12.6	299
15	Nucleocytoplasmic Partitioning of the Plant Photoreceptors Phytochrome A, B, C, D, and E Is Regulated Differentially by Light and Exhibits a Diurnal Rhythm. Plant Cell, 2002, 14, 1541-1555.	6.6	285
16	PHYTOCHROMESCONTROLPHOTOMORPHOGENESIS BYDIFFERENTIALLYREGULATED, INTERACTINGSIGNALINGPATHWAYS INHIGHERPLANTS. Annual Review of Plant Biology, 2002, 53, 329-355.	18.7	278
17	Circadian Clock-Regulated Expression of Phytochrome and Cryptochrome Genes in Arabidopsis. Plant Physiology, 2001, 127, 1607-1616.	4.8	244
18	Transcription of the Arabidopsis CPD gene, encoding a steroidogenic cytochrome P450, is negatively controlled by brassinosteroids. Plant Journal, 1998, 14, 593-602.	5.7	221

#	Article	IF	CITATIONS
19	A short conserved sequence is involved in the light-inducibility of a gene encoding ribulose 1,5-bisphosphate carboxylase small subunit of pea. Nature, 1985, 315, 200-204.	27.8	204
20	Light Quality-Dependent Nuclear Import of the Plant Photoreceptors Phytochrome A and B. Plant Cell, 1999, 11, 1445.	6.6	197
21	Regulation of Transcript Levels of the Arabidopsis Cytochrome P450 Genes Involved in Brassinosteroid Biosynthesis. Plant Physiology, 2002, 130, 504-513.	4.8	190
22	Light perception and signalling in higher plants. Current Opinion in Plant Biology, 2003, 6, 446-452.	7.1	188
23	Signalling and gene regulation in response to ultraviolet light. Current Opinion in Plant Biology, 2005, 8, 477-482.	7.1	184
24	Multiple phytohormones influence distinct parameters of the plant circadian clock. Genes To Cells, 2006, 11, 1381-1392.	1.2	177
25	UV-B-Responsive Association of the <i>Arabidopsis</i> bZIP Transcription Factor ELONGATED HYPOCOTYL5 with Target Genes, Including Its Own Promoter Â. Plant Cell, 2014, 26, 4200-4213.	6.6	171
26	Chloroplast transfer in Nicotiana based on metabolic complementation between irradiated and iodoacetate treated protoplasts. Planta, 1981, 152, 341-345.	3.2	162
27	A red/far-red light-responsive bi-stable toggle switch to control gene expression in mammalian cells. Nucleic Acids Research, 2013, 41, e77-e77.	14.5	161
28	Targeting of bacterial chloramphenicol acetyltransferase to mitochondria in transgenic plants. Nature, 1987, 328, 340-342.	27.8	159
29	A circadian clock regulates transcription of the wheat <i>Cab-1</i> gene. Genes and Development, 1988, 2, 376-382.	5.9	158
30	Inter-kingdom conservation of mechanism of nonsense-mediated mRNA decay. EMBO Journal, 2008, 27, 1585-1595.	7.8	156
31	Natural Allelic Variation in the Temperature-Compensation Mechanisms of the Arabidopsis thaliana Circadian ClockSequence data from this article have been deposited with the EMBL/GenBank Data Libraries under accession nos. AY685131 and AY685132 Genetics, 2005, 170, 387-400.	2.9	153
32	Phytochrome-Specific Type 5 Phosphatase Controls Light Signal Flux by Enhancing Phytochrome Stability and Affinity for a Signal Transducer. Cell, 2005, 120, 395-406.	28.9	148
33	Nuclear Accumulation of the Phytochrome A Photoreceptor Requires FHY1. Current Biology, 2005, 15, 2125-2130.	3.9	140
34	Attenuation of brassinosteroid signaling enhances <i>FLC</i> expression and delays flowering. Development (Cambridge), 2007, 134, 2841-2850.	2.5	138
35	The circadian clock controls the expression pattern of the circadian input photoreceptor, phytochrome B. Proceedings of the National Academy of Sciences of the United States of America, 1999, 96, 14652-14657.	7.1	136
36	ELF4 Is Required for Oscillatory Properties of the Circadian Clock. Plant Physiology, 2007, 144, 391-401.	4.8	133

#	Article	IF	CITATIONS
37	Light-regulated and organ-specific expression of a wheat Cab gene in transgenic tobacco. Nature, 1985, 316, 750-752.	27.8	131
38	Gene regulation by phytochrome. Trends in Genetics, 1988, 4, 37-42.	6.7	129
39	Light-induced nuclear import of phytochrome-A:GFP fusion proteins is differentially regulated in transgenic tobacco and Arabidopsis. Plant Journal, 2000, 22, 125-133.	5.7	120
40	Ribosome-deficient plastids affect transcription of light-induced nuclear genes: genetic evidence for a plastid-derived signal. Molecular Genetics and Genomics, 1994, 242, 305-312.	2.4	118
41	Phosphorylation of Phytochrome B Inhibits Light-Induced Signaling via Accelerated Dark Reversion in <i>Arabidopsis</i> Â Â. Plant Cell, 2013, 25, 535-544.	6.6	116
42	Characterization of proteins that interact with the GTP-bound form of the regulatory GTPase Ran in Arabidopsis. Plant Journal, 1997, 11, 93-103.	5.7	115
43	Genetic Analyses of Interactions among Gibberellin, Abscisic Acid, and Brassinosteroids in the Control of Flowering Time in Arabidopsis thaliana. PLoS ONE, 2010, 5, e14012.	2.5	110
44	Title is missing!. Photosynthesis Research, 1997, 54, 55-62.	2.9	109
45	Functional interaction of the circadian clock and UV RESISTANCE LOCUS 8â€controlled UVâ€B signaling pathways in <i>Arabidopsis thaliana</i>	5.7	109
46	EFFECT OF RADIATION DOSAGE ON EFFICIENCY OF CHLOROPLAST TRANSFER BY PROTOPLAST FUSION IN NICOTIANA. Genetics, 1982, 100, 487-495.	2.9	109
47	Phytohormones Participate in an S6 Kinase Signal Transduction Pathway in Arabidopsis. Plant Physiology, 2004, 134, 1527-1535.	4.8	106
48	Red Light-Regulated Reversible Nuclear Localization of Proteins in Mammalian Cells and Zebrafish. ACS Synthetic Biology, 2015, 4, 951-958.	3.8	105
49	Cytoplast-protoplast fusion for interspecific chloroplast transfer in Nicotiana. Molecular Genetics and Genomics, 1982, 185, 211-215.	2.4	100
50	Integrating <i>ELF4 </i> into the circadian system through combined structural and functional studies. HFSP Journal, 2009, 3, 350-366.	2.5	99
51	Quantitative analysis of regulatory flexibility under changing environmental conditions. Molecular Systems Biology, 2010, 6, 424.	7.2	99
52	Phytochrome Phosphorylation Modulates Light Signaling by Influencing the Protein–Protein Interaction[W]. Plant Cell, 2004, 16, 2629-2640.	6.6	98
53	A 61 bp enhancer element of the tobacco \hat{l}^2 -1,3-glucanase B gene interacts with one or more regulated nuclear proteins. Plant Molecular Biology, 1993, 21, 121-131.	3.9	95
54	A Reduced-Function Allele Reveals That <i>EARLY FLOWERING3</i> Repressive Action on the Circadian Clock Is Modulated by Phytochrome Signals in <i>Arabidopsis</i> Â Â. Plant Cell, 2011, 23, 3230-3246.	6.6	95

#	Article	IF	CITATIONS
55	Extensive rearrangements in the mitochondrial DNA in somatic hybrids of Nicotiana tabacum and Nicotiana knightiana. Molecular Genetics and Genomics, 1981, 183, 437-439.	2.4	93
56	Plant RanGAPs are localized at the nuclear envelope in interphase and associated with microtubules in mitotic cells. Plant Journal, 2002, 30, 699-709.	5.7	93
57	Forward Genetic Analysis of the Circadian Clock Separates the Multiple Functions of ZEITLUPE. Plant Physiology, 2006, 140, 933-945.	4.8	90
58	UV-B-induced Differential Transcription of psbAGenes Encoding the D1 Protein of Photosystem II in the Cyanobacterium Synechocystis 6803. Journal of Biological Chemistry, 1998, 273, 17439-17444.	3.4	89
59	Light-induced expression of fatty acid desaturase genes. Proceedings of the National Academy of Sciences of the United States of America, 1998, 95, 4209-4214.	7.1	89
60	Transgenic Plants of Brassica napus L Nature Biotechnology, 1987, 5, 815-817.	17.5	86
61	An Integrative Model for Phytochrome B Mediated Photomorphogenesis: From Protein Dynamics to Physiology. PLoS ONE, 2010, 5, e10721.	2.5	84
62	Diurnal Regulation of the Brassinosteroid-Biosynthetic CPD Gene in Arabidopsis. Plant Physiology, 2006, 141, 299-309.	4.8	83
63	Molecular mechanisms for mediating lightâ€dependent nucleo/cytoplasmic partitioning of phytochrome photoreceptors. New Phytologist, 2015, 206, 965-971.	7.3	83
64	Nuclear and cytosolic events of light-induced, phytochrome-regulated signaling in higher plants. EMBO Journal, 2000, 19, 157-163.	7.8	81
65	Evidence for a role of beta-1,3-glucanase in dicot seed germination. Plant Journal, 1994, 5, 273-278.	5.7	79
66	Phytochrome-controlled expression of a wheat Cab gene in transgenic tobacco seedlings. EMBO Journal, 1986, 5, 1119-1124.	7.8	77
67	A DELLA in Disguise: SPATULA Restrains the Growth of the Developing <i>Arabidopsis</i> Seedling Â. Plant Cell, 2011, 23, 1337-1351.	6.6	77
68	Interaction with plant transcription factors can mediate nuclear import of phytochrome B. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 5892-5897.	7.1	76
69	Conditional Circadian Regulation of <i>PHYTOCHROME A</i> Gene Expression. Plant Physiology, 2001, 127, 1808-1818.	4.8	75
70	Photocontrol of subcellular partitioning of phytochrome-B:GFP fusion protein in tobacco seedlings. Plant Journal, 2000, 22, 135-145.	5.7	74
71	Developmental, hormonal, and pathogenesis-related regulation of the tobacco class I \hat{I}^2 -1,3-glucanase B promoter. Plant Molecular Biology, 1994, 25, 299-311.	3.9	73
72	Distinct regulation of CAB and PHYB gene expression by similar circadian clocks. Plant Journal, 2002, 32, 529-537.	5.7	72

#	Article	IF	CITATIONS
73	Missense Mutation in the PAS2 Domain of Phytochrome A Impairs Subnuclear Localization and a Subset of Responses. Plant Cell, 2002, 14, 1591-1603.	6.6	69
74	Natural variation reveals that intracellular distribution of ELF3 protein is associated with function in the circadian clock. ELife, 2014, 3 , .	6.0	69
75	SUMOylation of phytochrome-B negatively regulates light-induced signaling in <i>Arabidopsis thaliana</i> . Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 11108-11113.	7.1	69
76	Synthesis of phycocyanobilin in mammalian cells. Chemical Communications, 2013, 49, 8970.	4.1	67
77	A plant in vitro system for the nuclear import of proteins. Plant Journal, 1996, 10, 1177-1186.	5.7	66
78	A Heat-Sensitive Arabidopsis thaliana Kinase Substitutes for Human p70 s6k Function In Vivo. Molecular and Cellular Biology, 1998, 18, 2038-2044.	2.3	66
79	A 268 bp upstream sequence mediates the circadian clock-regulated transcription of the wheat Cab-1 gene in transgenic plants. Plant Molecular Biology, 1990, 15, 921-932.	3.9	65
80	Nucleo-cytoplasmic partitioning of the plant photoreceptors phytochromes. Seminars in Cell and Developmental Biology, 2000, 11, 505-510.	5.0	65
81	Multiple cis Regulatory Elements for Maximal Expression of the Cauliflower Mosaic Virus 35S Promoter in Transgenic Plants. Plant Cell, 1989, 1, 141.	6.6	64
82	Phenotype of the fission yeast cell cycle regulatory mutant pim1-46 is suppressed by a tobacco cDNA encoding a small, Ran-like GTP-binding protein. Plant Journal, 1994, 6, 555-565.	5.7	64
83	Functional cross-talk between two-component and phytochrome B signal transduction in Arabidopsis. Journal of Experimental Botany, 2007, 58, 2595-2607.	4.8	64
84	Plant cells do not properly recognize animal gene polyadenylation signals. Plant Molecular Biology, 1987, 8, 23-35.	3.9	62
85	The Serine-Rich N-Terminal Domain of Oat Phytochrome A Helps Regulate Light Responses and Subnuclear Localization of the Photoreceptor. Plant Physiology, 2002, 129, 1127-1137.	4.8	62
86	Thermal Reversion of Plant Phytochromes. Molecular Plant, 2020, 13, 386-397.	8.3	61
87	Herpesvirus-Like DNA Sequence in Angiosarcoma in a Patient without HIV Infection. New England Journal of Medicine, 1996, 334, 540-541.	27.0	60
88	Characterisation of BRH1, a brassinosteroid-responsive RING-H2 gene from Arabidopsis thaliana. Planta, 2002, 215, 127-133.	3.2	60
89	Transfer of cytoplasmic male sterility by selection for streptomycin resistance after protoplast fusion in Nicotiana. Molecular Genetics and Genomics, 1983, 189, 365-369.	2.4	57
90	Light-regulated nucleo-cytoplasmic partitioning of phytochromes. Journal of Experimental Botany, 2007, 58, 3113-3124.	4.8	57

#	Article	IF	Citations
91	Identification of a novel cis-regulatory element for UV-B-induced transcription in Arabidopsis. Plant Journal, 2008, 54, 402-414.	5.7	51
92	<scp>ELONGATED HYPOCOTYL</scp> 5 mediates blue light signalling to the Arabidopsis circadian clock. Plant Journal, 2018, 96, 1242-1254.	5.7	51
93	Transient cycloheximide resistance in a tobacco cell line. Molecular Genetics and Genomics, 1976, 149, 267-271.	2.4	50
94	HHV8 DNA in angiolymphoid hyperplasia of the skin. Lancet, The, 1996, 347, 1837.	13.7	49
95	Analysis of gene expression in transgenic plants. , 1988, , 275-303.		46
96	Diurnal Fluctuations in the Content and Functional Properties of the Light Harvesting Chlorophyll a/b Complex in Thylakoid Membranes. Plant Physiology, 1991, 95, 997-1003.	4.8	45
97	Plant responses to genotoxic stress are linked to an ABA/salinity signaling pathway. Plant Journal, 1999, 17, 73-82.	5.7	45
98	Environmental Memory from a Circadian Oscillator: The <i>Arabidopsis thaliana</i> Clock Differentially Integrates Perception of Photic <i>vs.</i> Thermal Entrainment. Genetics, 2011, 189, 655-664.	2.9	45
99	Kaposi's sarcoma–associated herpesvirus/human herpesvirus-8: A new virus in human pathology. Journal of the American Academy of Dermatology, 1997, 37, 107-113.	1.2	44
100	New insights of red lightâ€induced development. Plant, Cell and Environment, 2017, 40, 2457-2468.	5.7	44
101	The developmental and tissue-specific expression of tobacco phytochrome-A genes. Plant Journal, 1994, 6, 283-293.	5.7	43
102	Molecular characterization of tobacco cDNAs encoding two small GTP-binding proteins. Plant Molecular Biology, 1992, 19, 847-857.	3.9	39
103	Characterization of Membrane-Bound Small GTP-Binding Proteins from Nicotiana tabacum. Plant Physiology, 1995, 108, 59-67.	4.8	39
104	Functional Analysis of Amino-Terminal Domains of the Photoreceptor Phytochrome B \hat{A} \hat{A} . Plant Physiology, 2010, 153, 1834-1845.	4.8	39
105	The Tissue-Specific Expression of a Tobacco Phytochrome B Gene. Plant Physiology, 1996, 110, 1081-1088.	4.8	38
106	A switchable light-input, light-output system modelled and constructed in yeast. Journal of Biological Engineering, 2009, 3, 15.	4.7	38
107	Transcription of Arabidopsis and wheat Cab genes in single tobacco transgenic seedlings exhibits independent rhythms in a developmentally regulated fashion. Plant Journal, 1998, 13, 563-569.	5.7	36
108	Functional Characterization of Phytochrome Interacting Factor 3 for the Arabidopsis thaliana Circadian Clockwork. Plant and Cell Physiology, 2005, 46, 1591-1602.	3.1	36

#	Article	IF	CITATIONS
109	Arabidopsis thaliana Circadian Clock Is Regulated by the Small GTPase LIP1. Current Biology, 2007, 17, 1456-1464.	3.9	36
110	Differential UVR8 Signal across the Stem Controls UV-B–Induced Inflorescence Phototropism. Plant Cell, 2019, 31, 2070-2088.	6.6	35
111	Highâ€level expression and phosphorylation of phytochrome B modulates flowering time in Arabidopsis. Plant Journal, 2015, 83, 794-805.	5.7	33
112	Altered Dark- and Photoconversion of Phytochrome B Mediate Extreme Light Sensitivity and Loss of Photoreversibility of the phy8-401 Mutant. PLoS ONE, 2011, 6, e27250.	2.5	33
113	Interspecific protoplast fusion to rescue a cytoplasmic lincomycin resistance mutation into fertile Nicotiana plumbaginifolia plants. Molecular Genetics and Genomics, 1984, 198, 7-11.	2.4	32
114	The circadian oscillator is regulated by a very low fluence response of phytochrome in wheat Proceedings of the National Academy of Sciences of the United States of America, 1993, 90, 6290-6294.	7.1	32
115	Expression of tobacco genes for light-harvesting chlorophyll a/b binding proteins of photosystem II is controlled by two circadian oscillators in a developmentally regulated fashion Proceedings of the National Academy of Sciences of the United States of America, 1995, 92, 2174-2178.	7.1	32
116	UV-B radiation induced exchange of the D1 reaction centre subunits produced from the psbA2 and psbA3 genes in the cyanobacterium Synechocystis sp. PCC 6803. FEBS Journal, 2000, 267, 2640-2648.	0.2	31
117	Short- and long-term redox regulation of photosynthetic light energy distribution and photosystem stoichiometry by acetate metabolism in the green alga, Chlamydobotrys stellata. Photosynthesis Research, 2000, 65, 231-247.	2.9	31
118	Light Triggers the miRNA-Biogenetic Inconsistency for De-etiolated Seedling Survivability in Arabidopsis thaliana. Molecular Plant, 2020, 13, 431-445.	8.3	30
119	A light sensitive recipient for the effective transfer of chloroplast and mitochondrial traits by protoplast fusion in Nicotiana. Theoretical and Applied Genetics, 1985, 70, 590-594.	3.6	29
120	Nuclear import of proteins: putative import factors and development of in vitro import systems in higher plants. Trends in Plant Science, 1997, 2, 458-464.	8.8	29
121	A cellâ€free system for lightâ€dependent nuclear import of phytochrome. Plant Journal, 2009, 57, 680-689.	5.7	28
122	Sequence of thepsbAgene from wild type and triazin-resistantNicotiana plumbaginifolia. Nucleic Acids Research, 1988, 16, 8176-8176.	14.5	26
123	Expression of the UVR8 photoreceptor in different tissues reveals tissueâ€autonomous features of UVâ€B signalling. Plant, Cell and Environment, 2017, 40, 1104-1114.	5.7	26
124	Tobacco phytochromes: genes, structure and expression. Plant, Cell and Environment, 1997, 20, 678-684.	5.7	25
125	Comparative functional analysis of fullâ€length and Nâ€terminal fragments of phytochrome C, D and E in red lightâ€induced signaling. New Phytologist, 2013, 200, 86-96.	7. 3	25
126	Cis -acting elements for selective expression of two photosynthetic genes in transgenic plants. Philosophical Transactions of the Royal Society of London Series B, Biological Sciences, 1986, 314, 493-500.	2.3	24

#	Article	IF	CITATIONS
127	Sequence of a Tobacco (Nicotiana tabacum) Gene Coding for Type A Phytochrome. Plant Physiology, 1993, 101, 1407-1408.	4.8	24
128	Differential phosphorylation of the Nâ€terminal extension regulates phytochrome B signaling. New Phytologist, 2020, 225, 1635-1650.	7.3	24
129	Characterization of two Myb-like transcription factors binding to CAB promoters in wheat and barley. Plant Molecular Biology, 2003, 52, 447-462.	3.9	22
130	Phytochrome controlled signalling cascades in higher plants. Physiologia Plantarum, 2003, 117, 305-313.	5.2	22
131	A Short Amino-Terminal Part of Arabidopsis Phytochrome A Induces Constitutive Photomorphogenic Response. Molecular Plant, 2012, 5, 629-641.	8.3	22
132	The molecular biology of photoregulated genes. , 1994, , 559-599.		21
133	Molecular characterization and expression of a tobacco histone H1 cDNA. Plant Molecular Biology, 1995, 27, 597-605.	3.9	21
134	Expression of the eRF1 translation termination factor is controlled by an autoregulatory circuit involving readthrough and nonsense-mediated decay in plants. Nucleic Acids Research, 2017, 45, gkw1303.	14.5	21
135	A New Gene for Auxin Synthesis. Cell, 2008, 133, 31-32.	28.9	20
136	Light-Regulated Nuclear Import and Degradation of Arabidopsis Phytochrome-A N-Terminal Fragments. Plant and Cell Physiology, 2011, 52, 361-372.	3.1	20
137	Characterization of photomorphogenic responses and signaling cascades controlled by phytochromeâ€A expressed in different tissues. New Phytologist, 2016, 211, 584-598.	7.3	20
138	Control of nuclear import and phytochromes. Current Opinion in Plant Biology, 2000, 3, 450-454.	7.1	19
139	A Deep Learning-Based Approach for High-Throughput Hypocotyl Phenotyping. Plant Physiology, 2019, 181, 1415-1424.	4.8	18
140	Transcription of tobacco phytochrome-A genes initiates at multiple start sites and requires multiple cis-acting regulatory elements. Plant Molecular Biology, 1995, 29, 983-993.	3.9	17
141	Human herpesvirus 8 DNA sequences in angiosarcoma of the face. British Journal of Dermatology, 1997, 137, 467-468.	1.5	17
142	UV-B induced differential transcription of psbD genes encoding the D2 protein of Photosystem II in the cyanobacterium Synechocystis 6803. Photosynthesis Research, 2000, 64, 257-266.	2.9	16
143	PROPERTIES OF EXPRESSION OF THE 35S PROMOTER FROM CaMV IN TRANSGENIC TOBACCO PLANTS. , 1985, , 227-235.		16
144	Herpesvirus-Like Nucleic Acid Sequences in Patients with Eastern European Sporadic Kaposi's Sarcoma. Journal of Investigative Dermatology, 1996, 106, 381.	0.7	15

#	Article	IF	Citations
145	SUMOylation of PHYTOCHROME INTERACTING FACTOR 3 promotes photomorphogenesis in <i>Arabidopsis thaliana</i> . New Phytologist, 2021, 229, 2050-2061.	7.3	15
146	CELL CULTURE MUTANTS AND THEIR USES. , 1982, , 221-237.		14
147	The alpha-subunit of a heterotrimeric G-protein from tobacco, NtGP[IMAGE]1, functions in K+ channel regulation in mesophyll cells. Journal of Experimental Botany, 1999, 50, 53-61.	4.8	13
148	Missense Mutation in the Amino Terminus of Phytochrome A Disrupts the Nuclear Import of the Photoreceptor \hat{A} \hat{A} . Plant Physiology, 2012, 158, 107-118.	4.8	11
149	Analysis of the Function of the Photoreceptors Phytochrome B and Phytochrome D in Nicotiana plumbaginifolia and Arabidopsis thaliana. Plant and Cell Physiology, 2005, 46, 790-796.	3.1	10
150	The Rubisco small subunit gene as a paradigm for studies on differential gene expression during plant development. Philosophical Transactions of the Royal Society of London Series B, Biological Sciences, 1986, 313, 409-417.	2.3	9
151	The Circadian Clock-Associated Small GTPase LIGHT INSENSITIVE PERIOD1 Suppresses Light-Controlled Endoreplication and Affects Tolerance to Salt Stress in Arabidopsis Â. Plant Physiology, 2012, 161, 278-290.	4.8	8
152	COP1 Contributes to UVB-Induced Signaling in Human Keratinocytes. Journal of Investigative Dermatology, 2010, 130, 541-545.	0.7	6
153	Phytochromes, pif3 and light signalling go nuclear. Trends in Plant Science, 1999, 4, 125-126.	8.8	5
154	SUMOylation of different targets fineâ€ŧunes phytochrome signaling. New Phytologist, 2021, 232, 1201-1211.	7.3	5
155	Light-Regulated Gene Expression in Yeast. Methods in Molecular Biology, 2012, 813, 187-193.	0.9	4
156	The Beta Subunit of a Plant Mitochondrial ATP Synthase has a Presequence Involved in Mitochondrial Targeting. , 1987, , 127-134.		4
157	5-Bromodeoxyuridine-resistant tobacco cells incorporating the analogue into DNA. Plant Science Letters, 1978, 12, 333-341.	1.8	3
158	Mössbauer and XRD study of pulse plated Fe–P and Fe–Ni thin layers. Hyperfine Interactions, 2007, 165, 195-201.	0.5	3
159	UVB-dependent changes in the expression of fast-responding early genes is modulated by huCOP1 in keratinocytes. Journal of Photochemistry and Photobiology B: Biology, 2014, 140, 215-222.	3.8	3
160	PHYSIOLOGICAL BASIS OF PHOTOMORPHOGENESIS. , 2006, , 13-23.		3
161	GENETIC BASIS AND MOLECULAR MECHANISMS OF SIGNAL TRANSDUCTION FOR PHOTOMORPHOGENESIS. , 2006, , 33-39.		3
162	INTRACELLULAR LOCALIZATION OF PHYTOCHROMES. , 0, , 155-170.		3

#	ARTICLE	lF	CITATIONS
163	Light-Activated Intracellular Movement of Phytochrome. , 2005, , 197-210.		2
164	Intramolecular uncoupling of chromophore photoconversion from structural signaling determinants drive mutant phytochrome B photoreceptor to far-red light perception. Plant Signaling and Behavior, 2012, 7, 904-906.	2.4	2
165	UV-B Induced Differential Transcription of psbD Genes Encoding the D2 Protein of Photosystem II in the Cyano-Bacterium Synechocystis sp. PCC 6803. , 1998, , 2341-2344.		2
166	Phytochromes., 0,, 3-16.		1
167	Regulation of Nuclear Import and Export of Proteins in Plants and Its Role in Light Signal Transduction. , 2005, , 100-117.		1
168	Signal Transduction in Photomorphogenesis: Intracellular Partitioning of Factors and Photoreceptors., 2001,, 19-24.		1
169	Plant molecular biology at the Institute of Plant Physiology in Szeged. Plant Molecular Biology Reporter, 1989, 7, 297-301.	1.8	0
170	Phytochrome and COP1 Regulates Abundance of Phytochrome Interacting Factor 3., 2005, , 261-268.		0
171	Deconvoluting the interactions of phytochrome isoforms in regulating growth and development. Plant, Cell and Environment, 2014, 37, 2649-2651.	5.7	0
172	UV-B Induced Differential Transcription of psbA Genes Encoding the D1 Protein of Photosystem II in the Cyano-Bacterium Synechocystis 6803., 1998,, 2337-2340.		0
173	Editorial: Plant Phytochromes: From Structure to Signaling and Beyond. Frontiers in Plant Science, 2021, 12, 811379.	3.6	0
174	HISTORICAL OVERVIEW OF MOLECULAR BIOLOGY AND GENETICS IN PHOTOMORPHOGENESIS., 2006, , 25-32.		0