
Narendra Tuteja

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5342368/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Marker-Free Rice (Oryza sativa L. cv. IR 64) Overexpressing PDH45 Gene Confers Salinity Tolerance by Maintaining Photosynthesis and Antioxidant Machinery. Antioxidants, 2022, 11, 770.	2.2	3
2	Azotobacter vinelandii helps to combat chromium stress in rice by maintaining antioxidant machinery. 3 Biotech, 2021, 11, 275.	1.1	8
3	Salicylic acid modulates ACS, NHX1, sos1 and HKT1;2 expression to regulate ethylene overproduction and Na ⁺ ions toxicity that leads to improved physiological status and enhanced salinity stress tolerance in tomato plants cv. Pusa Ruby. Plant Signaling and Behavior, 2021, 16, 1950888.	1.2	12
4	Rice lectin receptorâ€like kinase provides salinity tolerance by ion homeostasis. Biotechnology and Bioengineering, 2020, 117, 498-510.	1.7	23
5	Synergistic inoculation of Azotobacter vinelandii and Serendipita indica augmented rice growth. Symbiosis, 2020, 81, 139-148.	1.2	13
6	Transgenic approach in crop improvement. , 2020, , 329-350.		0
7	In planta transformation: A smart way of crop improvement. , 2020, , 351-362.		5
8	Concurrent overexpression of rice C-protein β and γ subunits provide enhanced tolerance to sheath blight disease and abiotic stress in rice. Planta, 2019, 250, 1505-1520.	1.6	15
9	Field performance of bacterial inoculants to alleviate water stress effects in wheat (Triticum) Tj ETQq1 1 0.7843	14 rgBT /0	Dverlgck 10 T
10	Cyanide produced with ethylene by ACS and its incomplete detoxification by β-CAS in mango inflorescence leads to malformation. Scientific Reports, 2019, 9, 18361.	1.6	6
11	Pea p68, a DEAD-box helicase, enhances salt tolerance in marker-free transgenic plants of soybean [Glycine max (L.) Merrill]. 3 Biotech, 2019, 9, 10.	1.1	9
12	Marker-free transgenic rice plant overexpressing pea LecRLK imparts salinity tolerance by inhibiting sodium accumulation. Plant Molecular Biology, 2019, 99, 265-281.	2.0	18
13	Role of Plant Helicases in Imparting Salinity Stress Tolerance to Plants. , 2019, , 39-52.		4
14	Stress-induced Oryza sativa RuvBL1a is DNA-independent ATPase and unwinds DNA duplex in 3′ to 5′ direction. Protoplasma, 2018, 255, 669-684.	1.0	12
15	Helicases and Their Importance in Abiotic Stresses. , 2018, , 119-141.		1
16	DNA Helicase-Mediated Abiotic Stress Tolerance in Plants. , 2018, , 103-115.		1
17	Prediction and validation of cis-regulatory elements in 5′ upstream regulatory regions of lectin receptor-like kinase gene family in rice. Protoplasma, 2017, 254, 669-684.	1.0	19
18	Function of heterotrimeric G-protein γ subunit RGG1 in providing salinity stress tolerance in rice by elevating detoxification of ROS. Planta, 2017, 245, 367-383.	1.6	51

Narendra Tuteja

#	Article	IF	CITATIONS
19	Emergence of plant and rhizospheric microbiota as stable interactomes. Protoplasma, 2017, 254, 617-626.	1.0	34
20	Overexpression of PDH45 or SUV3 helicases in rice leads to delayed leaf senescence-associated events. Protoplasma, 2017, 254, 1103-1113.	1.0	8
21	Simultaneous Expression of PDH45 with EPSPS Gene Improves Salinity and Herbicide Tolerance in Transgenic Tobacco Plants. Frontiers in Plant Science, 2017, 8, 364.	1.7	10
22	Piriformospora indica: Potential and Significance in Plant Stress Tolerance. Frontiers in Microbiology, 2016, 7, 332.	1.5	272
23	The CRISPR/Cas Genome-Editing Tool: Application in Improvement of Crops. Frontiers in Plant Science, 2016, 7, 506.	1.7	196
24	PDH45 transgenic rice maintain cell viability through lower accumulation of Na+, ROS and calcium homeostasis in roots under salinity stress. Journal of Plant Physiology, 2016, 191, 1-11.	1.6	46
25	Ectopic expression of phloem motor protein pea forisome PsSEO-F1 enhances salinity stress tolerance in tobacco. Plant Cell Reports, 2016, 35, 1021-1041.	2.8	13
26	Assessing zygosity in progeny of transgenic plants: current methods and perspectives. Journal of Biological Methods, 2016, 3, e46.	1.0	32
27	Emerging Importance of Helicases in Plant Stress Tolerance: Characterization of Oryza sativa Repair Helicase XPB2 Promoter and Its Functional Validation in Tobacco under Multiple Stresses. Frontiers in Plant Science, 2015, 6, 1094.	1.7	22
28	Stress-induced Oryza sativa BAT1 dual helicase exhibits unique bipolar translocation. Protoplasma, 2015, 252, 1563-1574.	1.0	13
29	Pea lectin receptor-like kinase functions in salinity adaptation without yield penalty, by alleviating osmotic and ionic stresses and upregulating stress-responsive genes. Plant Molecular Biology, 2015, 88, 193-206.	2.0	58
30	Salt tolerant SUV3 overexpressing transgenic rice plants conserve physicochemical properties and microbial communities of rhizosphere. Chemosphere, 2015, 119, 1040-1047.	4.2	15
31	OsBAT1 Augments Salinity Stress Tolerance by Enhancing Detoxification of ROS and Expression of Stress-Responsive Genes in Transgenic Rice. Plant Molecular Biology Reporter, 2015, 33, 1192-1209.	1.0	12
32	Pea p68 Imparts Salinity Stress Tolerance in Rice by Scavenging of ROS-Mediated H2O2 and Interacts with Argonaute. Plant Molecular Biology Reporter, 2015, 33, 221-238.	1.0	21
33	OsSUV3 functions in cadmium and zinc stress tolerance in rice (Oryza sativaL. cv IR64). Plant Signaling and Behavior, 2014, 9, e27389.	1.2	8
34	Isolation and functional characterization of the promoter of a DEAD-box helicase <i>Psp68</i> using <i>Agrobacterium-</i> mediated transient assay. Plant Signaling and Behavior, 2014, 9, e28992.	1.2	16
35	Genetic engineering of crops: a ray of hope for enhanced food security. Plant Signaling and Behavior, 2014, 9, e28545.	1.2	19
36	A novel <i>Azotobacter vinellandii</i> (SRI <i>Az</i> 3) functions in salinity stress tolerance in rice. Plant Signaling and Behavior, 2014, 9, e29377.	1.2	41

Narendra Tuteja

#	Article	IF	CITATIONS
37	Response of <i>PiCypA</i> tobacco T2 transgenic matured plant to potential tolerance to salinity stress. Plant Signaling and Behavior, 2014, 9, e27538.	1.2	6
38	Rice SUV3 is a bidirectional helicase that binds both DNA and RNA. BMC Plant Biology, 2014, 14, 283.	1.6	10
39	Phenotypic and molecular characterisation of efficient nitrogen-fixing Azotobacter strains from rice fields for crop improvement. Protoplasma, 2014, 251, 511-523.	1.0	80
40	OsSUV3 transgenic rice maintains higher endogenous levels of plant hormones that mitigates adverse effects of salinity and sustains crop productivity. Rice, 2014, 7, 17.	1.7	35
41	Pisum sativum p68 DEAD-box protein is ATP-dependent RNA helicase and unique bipolar DNA helicase. Plant Molecular Biology, 2014, 85, 639-651.	2.0	23
42	Biofertilizers function as key player in sustainable agriculture by improving soil fertility, plant tolerance and crop productivity. Microbial Cell Factories, 2014, 13, 66.	1.9	747
43	Pea p68, a DEAD-Box Helicase, Provides Salinity Stress Tolerance in Transgenic Tobacco by Reducing Oxidative Stress and Improving Photosynthesis Machinery. PLoS ONE, 2014, 9, e98287.	1.1	65
44	<scp>O</scp> s <scp>SUV</scp> 3 dual helicase functions in salinity stress tolerance by maintaining photosynthesis and antioxidant machinery in rice (<i><scp>O</scp>ryza sativa</i> ÂL. cv.) Tj ETQq0 0 0 rgBT /()verba s k 1() Tf £90 457 To
45	A DESD-box helicase functions in salinity stress tolerance by improving photosynthesis and antioxidant machinery in rice (Oryza sativa L. cv. PB1). Plant Molecular Biology, 2013, 82, 1-22.	2.0	79
46	Structure of RNA-interacting Cyclophilin A-like protein from Piriformospora indica that provides salinity-stress tolerance in plants. Scientific Reports, 2013, 3, 3001.	1.6	33
47	<i>Piriformospora indica</i> Ârescues growth diminution of rice seedlings during high salt stress. Plant Signaling and Behavior, 2013, 8, e26891.	1.2	130
48	Pea DNA helicase 45 promotes salinity stress tolerance in IR64 rice with improved yield. Plant Signaling and Behavior, 2012, 7, 1042-1046.	1.2	40
49	Development of Agrobacterium-mediated transformation technology for mature seed-derived callus tissues of indica rice cultivar IR64. GM Crops and Food, 2012, 3, 123-128.	2.0	49
50	Over-expression of a DEAD-box helicase, PDH45, confers both seedling and reproductive stage salinity tolerance to rice (Oryza sativa L.). Molecular Breeding, 2012, 30, 345-354.	1.0	61
51	Genome-wide analysis of helicase gene family from rice and Arabidopsis: a comparison with yeast and human. Plant Molecular Biology, 2010, 73, 449-465.	2.0	86
52	Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiology and Biochemistry, 2010, 48, 909-930.	2.8	8,238
53	Antioxidant enzyme activities in maize plants colonized with Piriformospora indica. Microbiology (United Kingdom), 2009, 155, 780-790.	0.7	214
54	Abscisic Acid and Abiotic Stress Signaling. Plant Signaling and Behavior, 2007, 2, 135-138.	1.2	715

NARENDRA TUTEJA

#	Article	IF	CITATIONS
55	Mechanisms of High Salinity Tolerance in Plants. Methods in Enzymology, 2007, 428, 419-438.	0.4	585
56	Helicases as molecular motors: An insight. Physica A: Statistical Mechanics and Its Applications, 2006, 372, 70-83.	1.2	24
57	Stress responsive DEAD-box helicases: A new pathway to engineer plant stress tolerance. Journal of Photochemistry and Photobiology B: Biology, 2006, 84, 150-160.	1.7	126
58	Pea DNA helicase 45 overexpression in tobacco confers high salinity tolerance without affecting yield. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 509-514.	3.3	216
59	Cold, salinity and drought stresses: An overview. Archives of Biochemistry and Biophysics, 2005, 444, 139-158.	1.4	2,295
60	Prokaryotic and eukaryotic DNA helicases. Essential molecular motor proteins for cellular machinery. FEBS Journal, 2004, 271, 1835-1848.	0.2	139
61	Plant DNA helicases: the long unwinding road. Journal of Experimental Botany, 2003, 54, 2201-2214.	2.4	49
62	A DNA helicase from Pisum sativum is homologous to translation initiation factor and stimulates topoisomerase I activity. Plant Journal, 2000, 24, 219-229.	2.8	82