
Gabriele Cesare Sosso

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5342240/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The role of structural order in heterogeneous ice nucleation. Chemical Science, 2022, 13, 5014-5026.	7.4	10
2	How do interfaces alter the dynamics of supercooled water?. Nanoscale, 2022, 14, 4254-4262.	5.6	4
3	Lipid bilayers as potential ice nucleating agents. Physical Chemistry Chemical Physics, 2022, 24, 6476-6491.	2.8	3
4	Ice Recrystallization Inhibition by Amino Acids: The Curious Case of Alpha- and Beta-Alanine. Journal of Physical Chemistry Letters, 2022, 13, 2237-2244.	4.6	17
5	Minimalistic ice recrystallisation inhibitors based on phenylalanine. Chemical Communications, 2022, 58, 7658-7661.	4.1	9
6	The atomistic details of the ice recrystallisation inhibition activity of PVA. Nature Communications, 2021, 12, 1323.	12.8	62
7	Microscopic Kinetics Pathway of Salt Crystallization in Graphene Nanocapillaries. Physical Review Letters, 2021, 126, 136001.	7.8	22
8	A minimalistic cyclic ice-binding peptide from phage display. Nature Communications, 2021, 12, 2675.	12.8	26
9	The seven deadly sins: When computing crystal nucleation rates, the devil is in the details. Journal of Chemical Physics, 2021, 155, 040901.	3.0	29
10	Recovering local structure information from high-pressure total scattering experiments. Journal of Applied Crystallography, 2021, 54, 1546-1554.	4.5	5
11	Less may be more: an informed reflection on molecular descriptors for drug design and discovery. Molecular Systems Design and Engineering, 2020, 5, 317-329.	3.4	8
12	Atomistic simulations of thermal conductivity in GeTe nanowires. Journal Physics D: Applied Physics, 2020, 53, 054001.	2.8	20
13	Insights into the Emerging Networks of Voids in Simulated Supercooled Water. Journal of Physical Chemistry B, 2020, 124, 2180-2190.	2.6	14
14	Combining high-resolution scanning tunnelling microscopy and first-principles simulations to identify halogen bonding. Nature Communications, 2020, 11, 2103.	12.8	34
15	Enhancement of Macromolecular Ice Recrystallization Inhibition Activity by Exploiting Depletion Forces. ACS Macro Letters, 2019, 8, 1063-1067.	4.8	19
16	Promoting transparency and reproducibility in enhanced molecular simulations. Nature Methods, 2019, 16, 670-673.	19.0	655
17	Harnessing machine learning potentials to understand the functional properties of phase-change materials. MRS Bulletin, 2019, 44, 705-709.	3.5	24
18	Priming effects in the crystallization of the phase change compound GeTe from atomistic simulations. Faraday Discussions, 2019, 213, 287-301.	3.2	18

#	Article	IF	CITATIONS
19	Ice is born in low-mobility regions of supercooled liquid water. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 2009-2014.	7.1	79
20	Understanding the thermal properties of amorphous solids using machine-learning-based interatomic potentials. Molecular Simulation, 2018, 44, 866-880.	2.0	69
21	High and low density patches in simulated liquid water. Journal of Chemical Physics, 2018, 149, 204507.	3.0	33
22	Heterogeneous seeded molecular dynamics as a tool to probe the ice nucleating ability of crystalline surfaces. Journal of Chemical Physics, 2018, 149, 072327.	3.0	20
23	Unravelling the origins of ice nucleation on organic crystals. Chemical Science, 2018, 9, 8077-8088.	7.4	43
24	Analyzing and Driving Cluster Formation in Atomistic Simulations. Journal of Chemical Theory and Computation, 2017, 13, 1317-1327.	5.3	82
25	Is High-Density Amorphous Ice Simply a "Derailed―State along the Ice I to Ice IV Pathway?. Journal of Physical Chemistry Letters, 2017, 8, 1645-1650.	4.6	38
26	On the Role of Nonspherical Cavities in Short Length-Scale Density Fluctuations in Water. Journal of Physical Chemistry A, 2017, 121, 370-380.	2.5	24
27	Communication: Truncated non-bonded potentials can yield unphysical behavior in molecular dynamics simulations of interfaces. Journal of Chemical Physics, 2017, 147, 121102.	3.0	13
28	Atomistic Simulations of the Crystallization and Aging of GeTe Nanowires. Journal of Physical Chemistry C, 2017, 121, 23827-23838.	3.1	42
29	Grüneisen parameters and thermal conductivity in the phase change compound GeTe. Journal of Computational Electronics, 2017, 16, 997-1002.	2.5	13
30	Pre-critical fluctuations and what they disclose about heterogeneous crystal nucleation. Nature Communications, 2017, 8, 2257.	12.8	55
31	Ice formation on kaolinite: Insights from molecular dynamics simulations. Journal of Chemical Physics, 2016, 145, 211927.	3.0	53
32	Crystal Nucleation in Liquids: Open Questions and Future Challenges in Molecular Dynamics Simulations. Chemical Reviews, 2016, 116, 7078-7116.	47.7	635
33	Microscopic Mechanism and Kinetics of Ice Formation at Complex Interfaces: Zooming in on Kaolinite. Journal of Physical Chemistry Letters, 2016, 7, 2350-2355.	4.6	77
34	Electron-phonon interaction and thermal boundary resistance at the crystal-amorphous interface of the phase change compound GeTe. Journal of Applied Physics, 2015, 117, .	2.5	41
35	Heterogeneous Crystallization of the Phase Change Material GeTe via Atomistic Simulations. Journal of Physical Chemistry C, 2015, 119, 6428-6434.	3.1	28
36	Functional Properties of Phase Change Materials from Atomistic Simulations. Springer Series in Materials Science, 2015, , 415-440.	0.6	1

#	Article	IF	CITATIONS
37	Electron–phonon interaction and thermal boundary resistance at the interfaces of Ge ₂ Sb ₂ Te ₅ with metals and dielectrics. Journal of Physics Condensed Matter, 2015, 27, 175009.	1.8	8
38	The Many Faces of Heterogeneous Ice Nucleation: Interplay Between Surface Morphology and Hydrophobicity. Journal of the American Chemical Society, 2015, 137, 13658-13669.	13.7	182
39	Dynamical Heterogeneity in the Supercooled Liquid State of the Phase Change Material GeTe. Journal of Physical Chemistry B, 2014, 118, 13621-13628.	2.6	57
40	The role of the umbrella inversion mode in proton diffusion. Chemical Physics Letters, 2014, 599, 133-138.	2.6	31
41	Density functional simulations of hexagonal Ge2Sb2Te5at high pressure. Physical Review B, 2013, 87, .	3.2	5
42	Fast Crystallization of the Phase Change Compound GeTe by Large-Scale Molecular Dynamics Simulations. Journal of Physical Chemistry Letters, 2013, 4, 4241-4246.	4.6	133
43	Thermal transport in phase-change materials from atomistic simulations. Physical Review B, 2012, 86, .	3.2	75
44	Neural network interatomic potential for the phase change material GeTe. Physical Review B, 2012, 85, .	3.2	198
45	Breakdown of Stokes–Einstein relation in the supercooled liquid state of phase change materials. Physica Status Solidi (B): Basic Research 2012, 249, 1880-1885. Raman spectra of cubic and amorphous Ce <mmi:math< td=""><td>1.5</td><td>75</td></mmi:math<>	1.5	75
46	xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"> <mml:mrow><mml:msub><mml:mrow /><mml:mrow><mml:mn>2</mml:mn></mml:mrow></mml:mrow </mml:msub></mml:mrow> Sb <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:msub><mml:mrow< td=""><td>3.2</td><td>106</td></mml:mrow<></mml:msub></mml:mrow></mml:math 	3.2	106
47	display= inline >/>Vibrational properties of hexagonal Ge ₂ Sb ₂ Te ₅ from first principles Journal of Physics Condensed Matter, 2009, 21, 245401	1.8	55