Hiroshi Nakazawa

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/53421/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Recent Developments in the Coordination Chemistry of Multidentate Ligands Featuring a Boron Moiety. Chemistry - an Asian Journal, 2013, 8, 1720-1734.	3.3	130
2	Catalytic C–C bond cleavage and C–Si bond formation in the reaction of RCN with Et3SiH promoted by an iron complex. Chemical Communications, 2005, , 4004.	4.1	121
3	Catalytic Hydrosilylation of Alkenes by Iron Complexes Containing Terpyridine Derivatives as Ancillary Ligands. Organometallics, 2012, 31, 3825-3828.	2.3	121
4	Câ^'C Bond Cleavage of Acetonitrile by a Carbonyl Iron Complex with a Silyl Ligand. Organometallics, 2004, 23, 117-126.	2.3	120
5	Iron-Complex-Catalyzed Cĩ£¿C Bond Cleavage of Organonitriles: Catalytic Metathesis Reaction between Hĩ£¿Si and Rĩ£¿CN Bonds to Afford Rĩ£¿H and Siĩ£¿CN Bonds. Chemistry - an Asian Journal, 2007, 2, 882-888.	3.3	106
6	Selective Dehydrogenative Silylation–Hydrogenation Reaction of Divinyldisiloxane with Hydrosilane Catalyzed by an Iron Complex. Journal of the American Chemical Society, 2012, 134, 804-807.	13.7	69
7	Ironâ€Catalyzed Dehydrogenative Coupling of Tertiary Silanes. Angewandte Chemie - International Edition, 2009, 48, 3313-3316.	13.8	64
8	Synthesis of a Rhodium Complex Featuring the Rh–H–B Linkage via a Hydride Migration from Rhodium to Borane: Study on the Electronic Deviation Induced by the Presence of the Boron Moiety. Organometallics, 2012, 31, 7476-7484.	2.3	56
9	Palladium–Borane Cooperation: Evidence for an Anionic Pathway and Its Application to Catalytic Hydroâ€∤Deuteroâ€dechlorination. Angewandte Chemie - International Edition, 2019, 58, 18783-18787.	13.8	48
10	Synthesis of iridium complexes bearing {o-(Ph2P)C6H4}3E type (E = Si, Ge, and Sn) ligand and evaluation of electron donating ability of group 14 elements E. Dalton Transactions, 2012, 41, 8290.	3.3	46
11	Facile synthesis of rhodium and iridium complexes bearing a [PEP]-type ligand (E = Ge or Sn) via E–C bond cleavage. Dalton Transactions, 2012, 41, 11386.	3.3	46
12	Evaluation of the If -Donation from Group 11 Metals (Cu, Ag, Au) to Silane, Germane, and Stannane Based on the Experimental/Theoretical Systematic Approach. Organometallics, 2015, 34, 1440-1448.	2.3	46
13	Synthesis of Rhodaboratranes Bearing Phosphine-Tethered Boranes: Evaluation of the Metal–Boron Interaction. Organometallics, 2012, 31, 3155-3162.	2.3	45
14	Synthesis of vinylphosphines and unsymmetric diphosphines: iron-catalyzed selective hydrophosphination reaction of alkynes and vinylphosphines with secondary phosphines. Chemical Communications, 2016, 52, 3163-3166.	4.1	42
15	Selective Double Hydroboration and Dihydroborylsilylation of Organonitriles by an Iron–indium Cooperative Catalytic System. Inorganic Chemistry, 2017, 56, 13709-13714.	4.0	42
16	Synthesis and Reactivity of Rhodium Complexes Bearing [E(<i>o</i> -C ₆ H ₄ PPh ₂) ₃]-Type Tetradentate Ligands (E) Tj E	ТQq000	rg &o /Overlo
17	Highly Efficient Olefin Hydrosilylation Catalyzed by Iron Complexes with Iminobipyridine Ligand. Bulletin of the Chemical Society of Japan, 2016, 89, 394-404.	3.2	37

Synthesis of Iridaboratranes Bearing Phosphine-Tethered Borane: Reversible CO/PR3 (R = Me, OMe, OEt)18Substitution Reactions Induced by a Ïf-Electron-Acceptor Borane Ligand. Organometallics, 2012, 31,2.3364251-4258.

Hiroshi Nakazawa

#	Article	IF	CITATIONS
19	Hydrosilylation of Olefins Catalyzed by Iron Complexes Bearing Ketimine-Type Iminobipyridine Ligands. Organometallics, 2017, 36, 1727-1735.	2.3	36
20	Synthesis of Fe–H/Si–H and Fe–H/Ge–H Bifunctional Complexes and Their Catalytic Hydrogenation Reactions toward Nonpolar Unsaturated Organic Molecules. Organometallics, 2014, 33, 1532-1535.	2.3	35
21	Si–C bond cleavage by hydride complexes of rhodium and iridium: comparison of Si–C(sp2) and Si–C(sp3) activation. Dalton Transactions, 2013, 42, 4663.	3.3	34
22	Transition-Metal-Mediated Germanium–Fluorine Activation: Inverse Electron Flow in σ-Bond Metathesis. Organometallics, 2016, 35, 713-719.	2.3	34
23	Selective Double Hydrosilylation of Nitriles Catalyzed by an Iron Complex Containing Indium Trihalide. ChemCatChem, 2016, 8, 3323-3325.	3.7	32
24	Saturated Heavier Group 14 Compounds as â€Electronâ€Acceptor (Zâ€Type) Ligands. Chemical Record, 2017, 17 268-286.	' 5.8	32
25	Syntheses and Ligand Exchange Reaction of Iron(IV) Complexes with Two Different Group 14 Element Ligands, Cp(CO)FeH(EEt ₃)(E′Et ₃) (E, E′ = Si, Ge, Sn). Organometallics, 2009, 28, 3601-3603.	2.3	30
26	Dehydrogenative Coupling of Thiol with Hydrosilane Catalyzed by an Iron Complex. Organometallics, 2011, 30, 3461-3463.	2.3	30
27	Transitionâ€Metalâ€Mediated Cleavage of Fluoroâ€Silanes under Mild Conditions. Chemistry - A European Journal, 2016, 22, 2370-2375.	3.3	30
28	Desulfurization and H-Migration of Secondary Thioamides Catalyzed by an Iron Complex to Yield Imines and Their Reaction Mechanism. Organometallics, 2013, 32, 2889-2892.	2.3	27
29	Coordination of a Triphosphine–Silane to Gold: Formation of a Trigonal Pyramidal Complex Featuring Au ⁺ →Si Interaction. Organometallics, 2015, 34, 1449-1453.	2.3	26
30	O–CN Bond Cleavage of Cyanates by a Transition-Metal Complex. Organometallics, 2012, 31, 787-790.	2.3	25
31	Rhodium-catalysed tandem dehydrogenative coupling–Michael addition: direct synthesis of phthalides from benzoic acids and alkenes. RSC Advances, 2016, 6, 40626-40630.	3.6	25
32	Synthesis, Geometry, and Bonding Nature of Heptacoordinate Compounds of Silicon and Germanium Featuring Three Phosphine Donors. Organometallics, 2014, 33, 6557-6567.	2.3	24
33	Synthesis and Characterization of Some Zirconium and Hafnium Complexes with a Phosphide-Pendant Cyclopentadienyl Ligand. Organometallics, 2003, 22, 1096-1105.	2.3	20
34	Chemoselective Hydrosilylation of Olefin/Ketone Catalyzed by Iminobipyridine Fe and Co complexes. ChemCatChem, 2020, 12, 736-739.	3.7	18
35	Iridiumâ€Catalyzed Aerobic Coupling of Salicylaldehydes with Alkynes: A Remarkable Switch of Oxacyclic Product. Chemistry - A European Journal, 2018, 24, 7852-7855.	3.3	15
36	Can One σ*-Antibonding Orbital Interact with Six Electrons of Lewis Bases? Analysis of a Multiply Interacting σ* Orbital. Organometallics, 2014, 33, 5960-5963.	2.3	14

Hiroshi Nakazawa

#	Article	IF	CITATIONS
37	Iridium Hydride Mediated Stannane–Fluorine and â^'Chlorine σ-Bond Activation: Reversible Switching between X-Type Stannyl and Z-Type Stannane Ligands. Organometallics, 2017, 36, 2096-2106.	2.3	14
38	Selective Double Addition Reaction of an E‒H Bond (E = Si, B) to a C≡N Triple Bond of Organonitriles. Molecules, 2018, 23, 2769.	3.8	14
39	Hydrosilylation of Ketones Catalyzed by Iron Iminobipyridine Complexes and Accelerated by Lewis Bases. ChemPlusChem, 2019, 84, 1094-1102.	2.8	13
40	Yonemitsu-type condensations catalysed by proline and Eu(OTf)3. RSC Advances, 2014, 4, 47992-47999.	3.6	11
41	Palladium–Borane Cooperation: Evidence for an Anionic Pathway and Its Application to Catalytic Hydroâ€∤Deuteroâ€dechlorination. Angewandte Chemie, 2019, 131, 18959-18963.	2.0	11
42	Synthesis, Characterization, and Crystal Structure of Germyl(phosphine)iron Complexes, Cp(CO)Fe(PPh ₃)(GeR ₃) (R = Et, ^{<i>n</i>} Bu, Ph), Prepared from Cp(CO)Fe(PPh ₃)(Me) and HGeR ₃ . Phosphorus, Sulfur and Silicon and the Related Elements, 2010, 185, 1054-1060.	1.6	10
43	Synthesis, Structure, and Reactivity of Ruthenium(0) Indane Complexes <i>fac</i> â€[Ru(NCMe) ₃ (CO) ₂ (InX ₃)] (X = Cl, Br). European Journal of Inorganic Chemistry, 2015, 2015, 2033-2036.	2.0	10
44	Hydrosilylation of Diene Derivatives Catalyzed by Fe-Iminobipyridine Complexes Aiming at Syntheses of Organosilane Compounds Containing a Terminal Olefin Portion. Bulletin of the Chemical Society of Japan, 2019, 92, 105-114.	3.2	10
45	Synthesis and characterization of [Fe(NCCH ₃) ₆][cis-Fe(InX ₃) ₂ (CO) ₄] (X = Cl,) Tj	ETBQq11	0. 7 84314 rgi
46	Si–CN Bond Cleavage of Silyl Cyanides by an Iron Catalyst. A New Route of Silyl Cyanide Formation. Bulletin of the Chemical Society of Japan, 2014, 87, 59-68.	3.2	8
47	Tetrahedral cage complex with planar vertices: selective synthesis of Pt ₄ L ₆ cage complexes involving hydrogen bonds driven by halide binding. Chemical Communications, 2016, 52, 7205-7208.	4.1	7
48	Regioselective Hydrosilylation of Olefins Catalyzed by Co-Iminobipyridine Complexes: The Role of Cyclohexyl Substituent on the Imino Nitrogen. Bulletin of the Chemical Society of Japan, 2020, 93, 1086-1094.	3.2	6
49	Catalytic hydrosilylation of olefins and ketones by base metal complexes bearing a 2,2′:6′,2″-terpyridine ancillary ligand. Inorganica Chimica Acta, 2021, 523, 120403.	2.4	6
50	Transition Metal Complexes Containing Phosphenium and Phosphite Ligands: Formation and Theoretical Approach. Phosphorus, Sulfur and Silicon and the Related Elements, 2008, 183, 499-503.	1.6	5
51	Synthesis of Silyl–Molybdenum Complexes Connected by a 1,1′â€Metallocenylene Unit and Their Electrochemical Properties. European Journal of Inorganic Chemistry, 2011, 2011, 5496-5501.	2.0	5
52	Crystal structure and metal atom dynamics of the dimethyl stannane complex {o-(Ph2P)C6H4}2Sn(CH3)2. Journal of Molecular Structure, 2013, 1054-1055, 321-325.	3.6	5
53	Base Metalâ€ŧerpyridine Complex Immobilized on Stationary Phase Aimed as Reusable Hydrosilylation Catalyst. Chemistry - an Asian Journal, 2021, 16, 3695-3701	3.3	5
54	R/X exchange reactions in cis-[M(R) ₂ {P(X)(NMeCH ₂) ₂ } ₂] (M = Pd, Pt), via a phosphenium intermediate. Dalton Transactions, 2016, 45, 19216-19220.	3.3	3

HIROSHI NAKAZAWA

#	Article	IF	CITATIONS
55	Fac-mer Isomerization of Mo(CO)3(Phosphite)3 Caused by Interaction Between Phosphite Oxygen and Silane Silicon. Phosphorus, Sulfur and Silicon and the Related Elements, 2011, 186, 660-663.	1.6	2
56	Transformation of RN=CHPh to R(R′ ₃ Si)NCH ₂ Ph in the Catalytic Desulfurization of Secondary Thioamide with R′ ₃ SiH Promoted by an Iron Complex. Heteroatom Chemistry, 2014, 25, 607-611.	0.7	2
57	Heptacoordinate Structures of Organotin Halides with Three Phosphine Donors: Halogenâ€6ubstituent Effect on Geometry. European Journal of Inorganic Chemistry, 2019, 2019, 3045-3052.	2.0	2
58	Reactivity of Hydridomolybdenum Complex Having Diamino-Substituted Phosphite Ligand with Me ₃ SiOSO ₂ CF ₃ . Phosphorus, Sulfur and Silicon and the Related Elements, 2009, 184, 1454-1461.	1.6	1
59	Dehydrogenative Sn–E (EÂ=ÂS, Se) bond formation catalyzed by an iron complex. Heteroatom Chemistry, 2018, 29, .	0.7	1
60	Development of New Catalytic Reactions Promoted by Iron Complexes. Bulletin of Japan Society of Coordination Chemistry, 2017, 69, 12-20.	0.2	0
61	Innentitelbild: Palladium–Borane Cooperation: Evidence for an Anionic Pathway and Its Application to Catalytic Hydroâ€/Deuteroâ€dechlorination (Angew. Chem. 52/2019). Angewandte Chemie, 2019, 131, 18894-18894.	2.0	0
62	Iron-Indium Complex Catalyzing Selective Double Hydrosilylation, Double Hydroborylation, and Dihydroborylsilylation of a C≡N Bond in Organonitriles. Yuki Gosei Kagaku Kyokaishi/Journal of Synthetic Organic Chemistry, 2019, 77, 220-226.	0.1	0