List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5342067/publications.pdf Version: 2024-02-01

ALEÅ: Å VANÄNK

#	Article	IF	CITATIONS
1	Chemical stabilization of metals and arsenic in contaminated soils using oxides – A review. Environmental Pollution, 2013, 172, 9-22.	7.5	487
2	Contrasting lead speciation in forest and tilled soils heavily polluted by lead metallurgy. Chemosphere, 2005, 58, 1449-1459.	8.2	149
3	Mobility of lead, zinc and cadmium in alluvial soils heavily polluted by smelting industry. Plant, Soil and Environment, 2005, 51, 316-321.	2.2	95
4	Geochemical position of Pb, Zn and Cd in soils near the Olkusz mine/smelter, South Poland: effects of land use, type of contamination and distance from pollution source. Environmental Monitoring and Assessment, 2012, 184, 2517-2536.	2.7	92
5	Cadmium isotope fractionation within the soil profile complicates source identification in relation to Pb–Zn mining and smelting processes. Chemical Geology, 2015, 405, 1-9.	3.3	76
6	Isotopic Tracing of Thallium Contamination in Soils Affected by Emissions from Coal-Fired Power Plants. Environmental Science & Technology, 2016, 50, 9864-9871.	10.0	74
7	Evaluating the potential of three Fe- and Mn-(nano)oxides for the stabilization of Cd, Cu and Pb in contaminated soils. Journal of Environmental Management, 2014, 146, 226-234.	7.8	70
8	Effect of illite and birnessite on thallium retention and bioavailability in contaminated soils. Journal of Hazardous Materials, 2011, 191, 170-176.	12.4	66
9	Thallium isotopes in metallurgical wastes/contaminated soils: A novel tool to trace metal source and behavior. Journal of Hazardous Materials, 2018, 343, 78-85.	12.4	63
10	Lithogenic thallium behavior in soils with different land use. Journal of Geochemical Exploration, 2009, 102, 7-12.	3.2	62
11	Antimony mobility in lead smelter-polluted soils. Geoderma, 2010, 155, 409-418.	5.1	60
12	Geochemical position of thallium in soils from a smelter-impacted area. Journal of Geochemical Exploration, 2013, 124, 176-182.	3.2	60
13	Thallium uptake by white mustard (Sinapis alba L.) grown on moderately contaminated soils—Agro-environmental implications. Journal of Hazardous Materials, 2010, 182, 303-308.	12.4	52
14	Potential and drawbacks of EDDS-enhanced phytoextraction of copper from contaminated soils. Environmental Pollution, 2010, 158, 2428-2438.	7.5	49
15	Soil contamination near the Kabwe Pb-Zn smelter in Zambia: Environmental impacts and remediation measures proposal. Journal of Geochemical Exploration, 2019, 197, 159-173.	3.2	48
16	Retention of copper originating from different fungicides in contrasting soil types. Journal of Hazardous Materials, 2009, 166, 1395-1402.	12.4	47
17	Thallium dynamics in contrasting light sandy soils—Soil vulnerability assessment to anthropogenic contamination. Journal of Hazardous Materials, 2010, 173, 717-723.	12.4	46
18	The structure of bacterial communities along two vertical profiles of a deep colluvial soil. Soil Biology and Biochemistry, 2016, 101, 65-73.	8.8	46

#	Article	IF	CITATIONS
19	Changes in Mercury Deposition in a Mining and Smelting Region as Recorded in Tree Rings. Water, Air, and Soil Pollution, 2011, 216, 73-82.	2.4	45
20	Surprisingly contrasting metal distribution and fractionation patterns in copper smelter-affected tropical soils in forested and grassland areas (Mufulira, Zambian Copperbelt). Science of the Total Environment, 2014, 473-474, 117-124.	8.0	45
21	Oral bioaccessibility of metal(loid)s in dust materials from mining areas of northern Namibia. Environment International, 2019, 124, 205-215.	10.0	44
22	Thallium contamination of desert soil in Namibia: Chemical, mineralogical and isotopic insights. Environmental Pollution, 2018, 239, 272-280.	7.5	41
23	Variability of the copper isotopic composition in soil and grass affected by mining and smelting in Tsumeb, Namibia. Chemical Geology, 2018, 493, 121-135.	3.3	40
24	Combined Chemical and Mineralogical Evidence for Heavy Metal Binding in Mining- and Smelting-Affected Alluvial Soils. Pedosphere, 2008, 18, 464-478.	4.0	39
25	Thallium contamination of soils/vegetation as affected by sphalerite weathering: A model rhizospheric experiment. Journal of Hazardous Materials, 2015, 283, 148-156.	12.4	39
26	Tracing the metal dynamics in semi-arid soils near mine tailings using stable Cu and Pb isotopes. Chemical Geology, 2019, 515, 61-76.	3.3	39
27	Characterization of Fe-Mn concentric nodules from Luvisol irrigated by mine water in a semi-arid agricultural area. Geoderma, 2017, 299, 32-42.	5.1	37
28	Effect of low-molecular-weight organic acids on the leaching of thallium and accompanying cations from soil – A model rhizosphere solution approach. Journal of Geochemical Exploration, 2012, 112, 212-217.	3.2	36
29	Colluvial soils as a soil organic carbon pool in different soil regions. Geoderma, 2015, 253-254, 122-134.	5.1	35
30	The effect of beverage preparation method on aluminium content in coffee infusions. Journal of Inorganic Biochemistry, 2009, 103, 1480-1485.	3.5	34
31	Interactions of EDDS with Fe- and Al-(hydr)oxides. Chemosphere, 2009, 77, 87-93.	8.2	34
32	Contamination of soil and grass in the Tsumeb smelter area, Namibia: Modeling of contaminants dispersion and ground geochemical verification. Applied Geochemistry, 2016, 64, 75-91.	3.0	33
33	Slag dusts from Kabwe (Zambia): Contaminant mineralogy and oral bioaccessibility. Chemosphere, 2020, 260, 127642.	8.2	33
34	Tebuconazole Sorption in Contrasting Soil Types. Soil and Sediment Contamination, 2013, 22, 404-414.	1.9	32
35	Assessment of the BCR sequential extraction procedure for thallium fractionation using synthetic mineral mixtures. Journal of Hazardous Materials, 2010, 176, 913-918.	12.4	31
36	Copper isotopic record in soils and tree rings near a copper smelter, Copperbelt, Zambia. Science of the Total Environment, 2018, 621, 9-17.	8.0	31

#	Article	IF	CITATIONS
37	Brewers draff as a new low-cost sorbent for chromium (VI): Comparison with other biosorbents. Journal of Colloid and Interface Science, 2013, 396, 227-233.	9.4	29
38	Bioaccumulation of thallium in a neutral soil as affected by solid-phase association. Journal of Geochemical Exploration, 2015, 159, 208-212.	3.2	29
39	Composition and fate of mine- and smelter-derived particles in soils of humid subtropical and hot semi-arid areas. Science of the Total Environment, 2016, 563-564, 329-339.	8.0	29
40	Distribution of thallium and accompanying metals in tree rings of Scots pine (Pinus sylvestris L.) from a smelter-affected area. Journal of Geochemical Exploration, 2011, 108, 73-80.	3.2	28
41	Geochemistry and mineralogy of vanadium in mine tailings at Berg Aukas, northeastern Namibia. Journal of African Earth Sciences, 2014, 96, 180-189.	2.0	27
42	Thallium stable isotope fractionation in white mustard: Implications for metal transfers and incorporation in plants. Journal of Hazardous Materials, 2019, 369, 521-527.	12.4	27
43	Sorption of tebuconazole onto selected soil minerals and humic acids. Journal of Environmental Science and Health - Part B Pesticides, Food Contaminants, and Agricultural Wastes, 2012, 47, 336-342.	1.5	25
44	Phase-dependent phytoavailability of thallium – A synthetic soil experiment. Journal of Hazardous Materials, 2013, 250-251, 265-271.	12.4	24
45	Thallium stable isotope ratios in naturally Tl-rich soils. Geoderma, 2020, 364, 114183.	5.1	23
46	Thallium isotopic fractionation in soil: the key controls. Environmental Pollution, 2020, 265, 114822.	7.5	21
47	Influence of Elevation Data Resolution on Spatial Prediction of Colluvial Soils in a Luvisol Region. PLoS ONE, 2016, 11, e0165699.	2.5	21
48	Mercury in soil profiles from metal mining and smelting areas in Namibia and Zambia: distribution and potential sources. Journal of Soils and Sediments, 2015, 15, 648-658.	3.0	20
49	Trace Elements and the Lead Isotopic Record in Marula (Sclerocarya birrea) Tree Rings and Soils Near the Tsumeb Smelter, Namibia. Water, Air, and Soil Pollution, 2015, 226, 1.	2.4	19
50	Geochemistry of mine tailings and behavior of arsenic at Kombat, northeastern Namibia. Environmental Monitoring and Assessment, 2014, 186, 4891-4903.	2.7	18
51	Geochemistry and potential environmental impact of the mine tailings at Rosh Pinah, southern Namibia. Journal of African Earth Sciences, 2015, 105, 17-28.	2.0	17
52	50 years of different landscape management influencing retention of metals in soils. Journal of Geochemical Exploration, 2012, 115, 59-68.	3.2	15
53	Environmental stability of the processing waste from sulfide mining districts of Namibia — A model rhizosphere solution approach. Journal of Geochemical Exploration, 2014, 144, 421-426.	3.2	15
54	Harmonization of a large-scale national soil database with the World Reference Base for Soil Resources 2014. Geoderma, 2021, 384, 114819.	5.1	14

#	Article	IF	CITATIONS
55	Depicting the historical pollution in a Pb–Zn mining/smelting site in Kabwe (Zambia) using tree rings. Journal of African Earth Sciences, 2021, 181, 104246.	2.0	14
56	Evaluation of thallium isotopic fractionation during the metallurgical processing of sulfides: An update. Journal of Hazardous Materials, 2022, 424, 127325.	12.4	13
57	Cobalt-bearing copper slags from Luanshya (Zambian Copperbelt): Mineralogy, geochemistry, and potential recovery of critical metals. Journal of Geochemical Exploration, 2022, 237, 106987.	3.2	12
58	Incubation of air-pollution-control residues from secondary Pb smelter in deciduous and coniferous organic soil horizons: Leachability of lead, cadmium and zinc. Journal of Hazardous Materials, 2012, 209-210, 40-47.	12.4	11
59	Mobility of Mn and other trace elements in Mn-rich mine tailings and adjacent creek at Kanye, southeast Botswana. Journal of Geochemical Exploration, 2021, 220, 106658.	3.2	11
60	The influence of copper on tebuconazole sorption onto soils, humic substances, and ferrihydrite. Environmental Science and Pollution Research, 2013, 20, 4205-4215.	5.3	10
61	Geochemistry and pH control of seepage from Ni-Cu rich mine tailings at Selebi Phikwe, Botswana. Environmental Monitoring and Assessment, 2018, 190, 482.	2.7	10
62	Thallium and lead variations in a contaminated peatland: A combined isotopic study from a mining/smelting area. Environmental Pollution, 2021, 290, 117973.	7.5	10
63	The impact of wetland on neutral mine drainage from mining wastes at Luanshya in the Zambian Copperbelt in the framework of climate change. Environmental Science and Pollution Research, 2018, 25, 28961-28972.	5.3	9
64	Evolution of Bioavailable Copper and Major Soil Cations in Contaminated Soils Treated with Ethylenediaminedisuccinate: A Two-Year Experiment. Bulletin of Environmental Contamination and Toxicology, 2011, 86, 525-530.	2.7	8
65	Influence of former lynchets on soil cover structure and soil organic carbon storage in agricultural land, Central Czechia. Soil Use and Management, 2018, 34, 60-71.	4.9	8
66	Understanding stable Tl isotopes in industrial processes and the environment: A review. Journal of Environmental Management, 2022, 315, 115151.	7.8	8
67	Vanadium-rich slags from the historical processing of Zn–Pb–V ores at Berg Aukas (Namibia): Mineralogy and environmental stability. Applied Geochemistry, 2020, 114, 104473.	3.0	7
68	Higher Tl bioaccessibility in white mustard (hyper-accumulator) grown under the soil than hydroponic conditions: A key factor for the phytoextraction use. Journal of Environmental Management, 2020, 255, 109880.	7.8	7
69	Harmonisation of a large-scale historical database with the actual Czech soil classification system. Soil and Water Research, 2020, 15, 101-115.	1.7	7
70	The potential wildfire effects on mercury remobilization from topsoils and biomass in a smelter-polluted semi-arid area. Chemosphere, 2020, 247, 125972.	8.2	7
71	Arsenic fractionation and mobility in sulfidic wetland soils during experimental drying. Chemosphere, 2021, 277, 130306.	8.2	7
72	Thallium uptake/tolerance in a model (hyper)accumulating plant: Effect of extreme contaminant loads. Soil and Water Research, 2021, 16, 129-135.	1.7	5

#	Article	IF	CITATIONS
73	Effect of peat organic matter on sulfide weathering and thallium reactivity: Implications for organic environments. Chemosphere, 2022, 299, 134380.	8.2	5
74	Lead migration in smelter-impacted deciduous and coniferous organic soil horizons based on a long-term in-situ implantation and laboratory column experiments. Applied Geochemistry, 2014, 48, 168-175.	3.0	4
75	Effect of Historical Zinc Processing on Soil: A Case Study in Southern Poland. , 0, , .		2
76	Revealing the Distribution and Bioavailability of Zn, Pb, and Cd in Soil at an Abandoned Zn Processing Site: The Role of Spectrometry Techniques. Acta Physica Polonica A, 2018, 134, 438-441.	0.5	1
77	Biosorption of Cr(VI) from natural groundwater and the effect of DOC-rich treated water on Cr dissolving from contaminated soil. Soil and Water Research, 2015, 10, 236-243.	1.7	0