Tai-Shung Chung

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5341911/publications.pdf

Version: 2024-02-01

681 5 ci

53,904 citations 121 h-index 181 g-index

694 all docs 694
docs citations

694 times ranked 20845 citing authors

#	Article	IF	CITATIONS
1	Mixed matrix membranes (MMMs) comprising organic polymers with dispersed inorganic fillers for gas separation. Progress in Polymer Science, 2007, 32, 483-507.	24.7	1,570
2	Recent advances in membrane distillation processes: Membrane development, configuration design and application exploring. Journal of Membrane Science, 2015, 474, 39-56.	8.2	740
3	Morphology, drug distribution, and in vitro release profiles of biodegradable polymeric microspheres containing protein fabricated by double-emulsion solvent extraction/evaporation method. Biomaterials, 2001, 22, 231-241.	11.4	622
4	Forward osmosis processes: Yesterday, today and tomorrow. Desalination, 2012, 287, 78-81.	8.2	528
5	Recent membrane development for pervaporation processes. Progress in Polymer Science, 2016, 57, 1-31.	24.7	440
6	Nanometric Graphene Oxide Framework Membranes with Enhanced Heavy Metal Removal via Nanofiltration. Environmental Science & Eamp; Technology, 2015, 49, 10235-10242.	10.0	414
7	Treatment of highly concentrated wastewater containing multiple synthetic dyes by a combined process of coagulation/flocculation and nanofiltration. Journal of Membrane Science, 2014, 469, 306-315.	8.2	407
8	Draw solutions for forward osmosis processes: Developments, challenges, and prospects for the future. Journal of Membrane Science, 2013, 442, 225-237.	8.2	400
9	Evolution of polymeric hollow fibers as sustainable technologies: Past, present, and future. Progress in Polymer Science, 2012, 37, 1401-1424.	24.7	375
10	Preparation and Characterization of Fast Response Macroporous Poly(N-isopropylacrylamide) Hydrogels. Langmuir, 2001, 17, 6094-6099.	3 . 5	368
11	Polyimides membranes for pervaporation and biofuels separation. Progress in Polymer Science, 2009, 34, 1135-1160.	24.7	367
12	Molecular elucidation of morphology and mechanical properties of PVDF hollow fiber membranes from aspects of phase inversion, crystallization and rheology. Journal of Membrane Science, 2009, 340, 192-205.	8.2	339
13	The effects of polymer chain rigidification, zeolite pore size and pore blockage on polyethersulfone (PES)-zeolite A mixed matrix membranes. Journal of Membrane Science, 2005, 260, 45-55.	8.2	332
14	Thin film composite forward osmosis membranes based on polydopamine modified polysulfone substrates with enhancements in both water flux and salt rejection. Chemical Engineering Science, 2012, 80, 219-231.	3.8	325
15	Well-constructed cellulose acetate membranes for forward osmosis: Minimized internal concentration polarization with an ultra-thin selective layer. Journal of Membrane Science, 2010, 360, 522-535.	8.2	324
16	Polymeric membranes for the hydrogen economy: Contemporary approaches and prospects for the future. Journal of Membrane Science, 2009, 327, 18-31.	8.2	313
17	Effects of novel silane modification of zeolite surface on polymer chain rigidification and partial pore blockage in polyethersulfone (PES)–zeolite A mixed matrix membranes. Journal of Membrane Science, 2006, 275, 17-28.	8.2	312
18	Emerging forward osmosis (FO) technologies and challenges ahead for clean water and clean energy applications. Current Opinion in Chemical Engineering, $2012,1,246-257.$	7.8	303

#	Article	IF	Citations
19	Exploration of polyelectrolytes as draw solutes in forward osmosis processes. Water Research, 2012, 46, 1318-1326.	11.3	292
20	Poly-/metal-benzimidazole nano-composite membranes for hydrogen purification. Energy and Environmental Science, 2011, 4, 4171.	30.8	290
21	The role of sulphonated polymer and macrovoid-free structure in the support layer for thin-film composite (TFC) forward osmosis (FO) membranes. Journal of Membrane Science, 2011, 383, 214-223.	8.2	281
22	Highly Water-Soluble Magnetic Nanoparticles as Novel Draw Solutes in Forward Osmosis for Water Reuse. Industrial & Draw; Engineering Chemistry Research, 2010, 49, 5869-5876.	3.7	266
23	Cellulose acetate nanofiltration hollow fiber membranes for forward osmosis processes. Journal of Membrane Science, 2010, 355, 36-44.	8.2	258
24	Double-Skinned Forward Osmosis Membranes for Reducing Internal Concentration Polarization within the Porous Sublayer. Industrial & Engineering Chemistry Research, 2010, 49, 4824-4831.	3.7	256
25	Effect of preparation conditions on morphology and release profiles of biodegradable polymeric microspheres containing protein fabricated by double-emulsion method. Chemical Engineering Science, 2000, 55, 2223-2236.	3.8	254
26	Hydrophobic PVDF hollow fiber membranes with narrow pore size distribution and ultra-thin skin for the fresh water production through membrane distillation. Chemical Engineering Science, 2008, 63, 2587-2594.	3.8	250
27	Sustainable water recovery from oily wastewater via forward osmosis-membrane distillation (FO-MD). Water Research, 2014, 52, 112-121.	11.3	247
28	Natural gas purification and olefin/paraffin separation using thermal cross-linkable co-polyimide/ZIF-8 mixed matrix membranes. Journal of Membrane Science, 2013, 444, 173-183.	8.2	245
29	Effect of preparation temperature on the characteristics and release profiles of PLGA microspheres containing protein fabricated by double-emulsion solvent extraction/evaporation method. Journal of Controlled Release, 2000, 69, 81-96.	9.9	244
30	High-Performance Thermally Self-Cross-Linked Polymer of Intrinsic Microporosity (PIM-1) Membranes for Energy Development. Macromolecules, 2012, 45, 1427-1437.	4.8	241
31	Poly(amidoamine) dendrimer (PAMAM) grafted on thin film composite (TFC) nanofiltration (NF) hollow fiber membranes for heavy metal removal. Journal of Membrane Science, 2015, 487, 117-126.	8.2	233
32	Layer-by-layer construction of graphene oxide (GO) framework composite membranes for highly efficient heavy metal removal. Journal of Membrane Science, 2016, 515, 230-237.	8.2	233
33	Chelating polymer modified P84 nanofiltration (NF) hollow fiber membranes for high efficient heavy metal removal. Water Research, 2014, 63, 252-261.	11.3	231
34	Emerging thin-film nanocomposite (TFN) membranes for reverse osmosis: A review. Water Research, 2020, 173, 115557.	11.3	230
35	Advanced Porous Materials in Mixed Matrix Membranes. Advanced Materials, 2018, 30, e1802401.	21.0	229
36	Polybenzimidazole (PBI) nanofiltration hollow fiber membranes applied in forward osmosis process. Journal of Membrane Science, 2007, 300, 6-12.	8.2	226

#	Article	IF	CITATIONS
37	Polyelectrolyte-Promoted Forward Osmosis–Membrane Distillation (FO–MD) Hybrid Process for Dye Wastewater Treatment. Environmental Science & Envir	10.0	224
38	Dual-layer polybenzimidazole/polyethersulfone (PBI/PES) nanofiltration (NF) hollow fiber membranes for heavy metals removal from wastewater. Journal of Membrane Science, 2014, 456, 117-127.	8.2	222
39	Thin-Film Composite Membranes and Formation Mechanism of Thin-Film Layers on Hydrophilic Cellulose Acetate Propionate Substrates for Forward Osmosis Processes. Industrial & Engineering Chemistry Research, 2012, 51, 10039-10050.	3.7	220
40	Applications of carbon quantum dots (CQDs) in membrane technologies: A review. Water Research, 2018, 147, 43-49.	11.3	220
41	Gas transport properties of 6FDA-durene/1,4-phenylenediamine (pPDA) copolyimides. Journal of Polymer Science, Part B: Polymer Physics, 2000, 38, 2703-2713.	2.1	219
42	A review of polymeric composite membranes for gas separation and energy production. Progress in Polymer Science, 2019, 97, 101141.	24.7	219
43	Developing thinâ€filmâ€composite forward osmosis membranes on the PES/SPSf substrate through interfacial polymerization. AICHE Journal, 2012, 58, 770-781.	3.6	213
44	Gas permeability, diffusivity, solubility, and aging characteristics of 6FDA-durene polyimide membranes. Journal of Membrane Science, 2001, 186, 183-193.	8.2	212
45	Thin-film composite forward osmosis membranes with novel hydrophilic supports for desalination. Journal of Membrane Science, 2012, 423-424, 543-555.	8.2	212
46	Hyperbranched Polyethyleneimine Induced Cross-Linking of Polyamideâ [^] imide Nanofiltration Hollow Fiber Membranes for Effective Removal of Ciprofloxacin. Environmental Science & Environmental Scienc	10.0	210
47	High Performance Thin-Film Composite Forward Osmosis Hollow Fiber Membranes with Macrovoid-Free and Highly Porous Structure for Sustainable Water Production. Environmental Science & Echnology, 2012, 46, 7358-7365.	10.0	210
48	The recent developments of thermotropic liquid crystalline polymers. Polymer Engineering and Science, 1986, 26, 901-919.	3.1	207
49	Membrane distillation with hydrophobic macrovoid-free PVDF–PTFE hollow fiber membranes. Separation and Purification Technology, 2009, 66, 229-236.	7.9	206
50	Design of omniphobic interfaces for membrane distillation – A review. Water Research, 2019, 162, 64-77.	11.3	204
51	Dual-Layer Hollow Fibers with Enhanced Flux As Novel Forward Osmosis Membranes for Water Production. Environmental Science & Eachnology, 2009, 43, 2800-2805.	10.0	203
52	Integrated forward osmosis–membrane distillation (FO–MD) hybrid system for the concentration of protein solutions. Chemical Engineering Science, 2011, 66, 2421-2430.	3.8	201
53	Positively charged nanofiltration (NF) membranes via UV grafting on sulfonated polyphenylenesulfone (sPPSU) for effective removal of textile dyes from wastewater. Journal of Membrane Science, 2012, 417-418, 52-60.	8.2	200
54	The effects of flow angle and shear rate within the spinneret on the separation performance of poly(ethersulfone) (PES) ultrafiltration hollow fiber membranes. Journal of Membrane Science, 2004, 240, 67-79.	8.2	199

#	Article	IF	CITATIONS
55	Novel thin-film composite nanofiltration hollow fiber membranes with double repulsion for effective removal of emerging organic matters from water. Journal of Membrane Science, 2012, 401-402, 152-162.	8.2	199
56	Novel forward osmosis process to effectively remove heavy metal ions. Journal of Membrane Science, 2014, 467, 188-194.	8.2	192
57	A sulfonated polyphenylenesulfone (sPPSU) as the supporting substrate in thin film composite (TFC) membranes with enhanced performance for forward osmosis (FO). Chemical Engineering Journal, 2013, 220, 15-23.	12.7	190
58	Precise Molecular Sieving Architectures with Janus Pathways for Both Polar and Nonpolar Molecules. Advanced Materials, 2018, 30, 1705933.	21.0	190
59	High performance membranes based on ionic liquid polymers for CO2 separation from the flue gas. Green Chemistry, 2012, 14, 1052.	9.0	189
60	High performance thin film composite pressure retarded osmosis (PRO) membranes for renewable salinity-gradient energy generation. Journal of Membrane Science, 2013, 440, 108-121.	8.2	189
61	Characterization of permeability and sorption in Matrimid/C60 mixed matrix membranes. Journal of Membrane Science, 2003, 211, 91-99.	8.2	185
62	Hydrophilic Superparamagnetic Nanoparticles: Synthesis, Characterization, and Performance in Forward Osmosis Processes. Industrial & Engineering Chemistry Research, 2011, 50, 382-388.	3.7	182
63	Polyethyleneimine (PEI) cross-linked P84 nanofiltration (NF) hollow fiber membranes for Pb2+ removal. Journal of Membrane Science, 2014, 452, 300-310.	8.2	182
64	UiO-66 incorporated thin-film nanocomposite membranes for efficient selenium and arsenic removal. Journal of Membrane Science, 2017, 541, 262-270.	8.2	182
65	Desalination process using super hydrophilic nanoparticles via forward osmosis integrated with ultrafiltration regeneration. Desalination, 2011, 278, 194-202.	8.2	178
66	Pebax/POSS mixed matrix membranes for ethanol recovery from aqueous solutions via pervaporation. Journal of Membrane Science, 2011, 379, 174-183.	8.2	178
67	Room temperature ionic liquid/ZIF-8 mixed-matrix membranes for natural gas sweetening and post-combustion CO2 capture. Journal of Membrane Science, 2013, 436, 221-231.	8.2	174
68	Morphological architecture of dual-layer hollow fiber for membrane distillation with higher desalination performance. Water Research, 2011, 45, 5489-5500.	11.3	171
69	Progress in pressure retarded osmosis (PRO) membranes for osmotic power generation. Progress in Polymer Science, 2015, 51, 1-27.	24.7	171
70	Enhanced forward osmosis from chemically modified polybenzimidazole (PBI) nanofiltration hollow fiber membranes with a thin wall. Chemical Engineering Science, 2009, 64, 1577-1584.	3.8	169
71	Separation of CO2/CH4 through carbon molecular sieve membranes derived from P84 polyimide. Carbon, 2004, 42, 3123-3131.	10.3	168
72	Self-standing and flexible covalent organic framework (COF) membranes for molecular separation. Science Advances, 2020, 6, .	10.3	168

#	Article	IF	CITATIONS
73	Reverse-selective polymeric membranes for gas separations. Progress in Polymer Science, 2013, 38, 740-766.	24.7	166
74	Study of draw solutes using 2-methylimidazole-based compounds in forward osmosis. Journal of Membrane Science, 2010, 364, 242-252.	8.2	165
75	Mixed Matrix PVDF Hollow Fiber Membranes with Nanoscale Pores for Desalination through Direct Contact Membrane Distillation. Industrial & Engineering Chemistry Research, 2009, 48, 4474-4483.	3.7	164
76	Fabrication of polybenzimidazole (PBI) nanofiltration hollow fiber membranes for removal of chromate. Journal of Membrane Science, 2006, 281, 307-315.	8.2	163
77	Morphology and fracture behavior of intercalated epoxy/clay nanocomposites. Journal of Applied Polymer Science, 2004, 94, 1236-1244.	2.6	162
78	Enhanced gas separation performance of nanocomposite membranes using MgO nanoparticles. Journal of Membrane Science, 2007, 302, 207-217.	8.2	162
79	The characterization of flat composite nanofiltration membranes and their applications in the separation of Cephalexin. Journal of Membrane Science, 2005, 247, 37-50.	8.2	160
80	Nanofiltration hollow fiber membranes for textile wastewater treatment: Lab-scale and pilot-scale studies. Chemical Engineering Science, 2014, 114, 51-57.	3.8	160
81	Highly Permeable and Selective Pore‧panning Biomimetic Membrane Embedded with Aquaporin Z. Small, 2012, 8, 1185-1190.	10.0	158
82	Development of simultaneous membrane distillation–crystallization (SMDC) technology for treatment of saturated brine. Chemical Engineering Science, 2013, 98, 160-172.	3.8	156
83	The ionic liquid [EMIM]OAc as a solvent to fabricate stable polybenzimidazole membranes for organic solvent nanofiltration. Green Chemistry, 2014, 16, 1383-1392.	9.0	154
84	Pervaporation study on the dehydration of aqueous butanol solutions: a comparison of flux vs. permeance, separation factor vs. selectivity. Journal of Membrane Science, 2004, 245, 199-210.	8.2	152
85	Macrovoid evolution and critical factors to form macrovoid-free hollow fiber membranes. Journal of Membrane Science, 2008, 318, 363-372.	8.2	148
86	Highly porous and macrovoid-free PVDF hollow fiber membranes for membrane distillation by a solvent-dope solution co-extrusion approach. Journal of Membrane Science, 2009, 331, 66-74.	8.2	148
87	Anti-Fouling Behavior of Hyperbranched Polyglycerol-Grafted Poly(ether sulfone) Hollow Fiber Membranes for Osmotic Power Generation. Environmental Science & Environmental Science & 2014, 48, 9898-9907.	10.0	148
88	Osmotic power generation by pressure retarded osmosis using seawater brine as the draw solution and wastewater retentate as the feed. Journal of Membrane Science, 2015, 479, 148-158.	8.2	148
89	Effect of air-gap distance on the morphology and thermal properties of polyethersulfone hollow fibers. Journal of Applied Polymer Science, 1997, 66, 1067-1077.	2.6	147
90	Combination of forward osmosis (FO) processÂwith coagulation/flocculation (CF) for potential treatment of textile wastewater. Water Research, 2016, 91, 361-370.	11.3	146

#	Article	IF	Citations
91	Morphological aspects and structure control of dual-layer asymmetric hollow fiber membranes formed by a simultaneous co-extrusion approach. Journal of Membrane Science, 2004, 243, 155-175.	8.2	145
92	Highly Permeable Double-Skinned Forward Osmosis Membranes for Anti-Fouling in the Emulsified Oil–Water Separation Process. Environmental Science & Dil–Water Separation Process. Environmental Science & Dil–Water Separation Process. Environmental Science & Dil–Water Separation Process. Environmental Science & Dilâ6€" Water Separation Process. Environmental Science & Dilâ6€ "Water Separation Process." Environmental Science & Dilâ6€ "Water Separation Process" Environmental Science & Dilâ6€ "Water Separation" Environmental Science & Dilâ6€ "Water Science" Envir	10.0	144
93	Novel Ag+-zeolite/polymer mixed matrix membranes with a high CO2/CH4 selectivity. AICHE Journal, 2007, 53, 610-616.	3.6	143
94	ZIF-90/P84 mixed matrix membranes for pervaporation dehydration of isopropanol. Journal of Membrane Science, 2014, 453, 155-167.	8.2	142
95	Room-temperature synthesis of ZIF-90 nanocrystals and the derived nano-composite membranes for hydrogen separation. Journal of Materials Chemistry A, 2013, 1, 6081.	10.3	141
96	Effect of shear rate within the spinneret on morphology, separation performance and mechanical properties of ultrafiltration polyethersulfone hollow fiber membranes. Chemical Engineering Science, 2000, 55, 1077-1091.	3.8	140
97	Effect of Mixed Solvents on Characteristics of Poly(N-isopropylacrylamide) Gels. Langmuir, 2002, 18, 2538-2542.	3.5	139
98	Aquaporin-embedded biomimetic membranes for nanofiltration. Journal of Membrane Science, 2012, 407-408, 27-33.	8.2	139
99	Symmetric and Asymmetric Zeolitic Imidazolate Frameworks (ZIFs)/Polybenzimidazole (PBI) Nanocomposite Membranes for Hydrogen Purification at High Temperatures. Advanced Energy Materials, 2012, 2, 1358-1367.	19.5	138
100	Exploring the potential of commercial polyethylene membranes for desalination by membrane distillation. Journal of Membrane Science, 2016, 497, 239-247.	8.2	136
101	PVDF/ionic liquid polymer blends with superior separation performance for removing CO2 from hydrogen and flue gas. International Journal of Hydrogen Energy, 2012, 37, 11796-11804.	7.1	135
102	Substrate modifications and alcohol treatment on thin film composite membranes for osmotic power. Chemical Engineering Science, 2013, 87, 40-50.	3.8	135
103	Novel Nanofiltration Membranes Consisting of a Sulfonated Pentablock Copolymer Rejection Layer for Heavy Metal Removal. Environmental Science & Enviro	10.0	135
104	Diamine modification of P84 polyimide membranes for pervaporation dehydration of isopropanol. AICHE Journal, 2006, 52, 3462-3472.	3.6	134
105	A novel dual-layer forward osmosis membrane for protein enrichment and concentration. Separation and Purification Technology, 2009, 69, 269-274.	7.9	134
106	Effects of additives on dual-layer hydrophobic–hydrophilic PVDF hollow fiber membranes for membrane distillation and continuous performance. Chemical Engineering Science, 2012, 68, 567-578.	3.8	134
107	Novel cellulose ester substrates for high performance flat-sheet thin-film composite (TFC) forward osmosis (FO) membranes. Journal of Membrane Science, 2015, 473, 63-71.	8.2	134
108	Chemically modified polybenzimidazole nanofiltration membrane for the separation of electrolytes and cephalexin. Chemical Engineering Science, 2006, 61, 5807-5817.	3.8	132

#	Article	IF	Citations
109	Enhanced double-skinned FO membranes with inner dense layer for wastewater treatment and macromolecule recycle using Sucrose as draw solute. Journal of Membrane Science, 2012, 396, 92-100.	8.2	131
110	What is next for forward osmosis (FO) and pressure retarded osmosis (PRO). Separation and Purification Technology, 2015, 156, 856-860.	7.9	131
111	The effects of substrate characteristics and pre-wetting agents on PAN–PDMS composite hollow fiber membranes for CO2/N2 and O2/N2 separation. Journal of Membrane Science, 2013, 434, 18-25.	8.2	130
112	Grafting thermally labile molecules on cross-linkable polyimide to design membrane materials for natural gas purification and CO ₂ capture. Energy and Environmental Science, 2011, 4, 201-208.	30.8	129
113	Low-Pressure Nanofiltration Hollow Fiber Membranes for Effective Fractionation of Dyes and Inorganic Salts in Textile Wastewater. Environmental Science & Environmental Science & 2018, 52, 3676-3684.	10.0	129
114	Deformation and reinforcement of thin-film composite (TFC) polyamide-imide (PAI) membranes for osmotic power generation. Journal of Membrane Science, 2013, 434, 204-217.	8.2	127
115	Poly(vinyl alcohol) multilayer mixed matrix membranes for the dehydration of ethanol–water mixture. Journal of Membrane Science, 2006, 268, 113-122.	8.2	126
116	Application of thin film composite membranes with forward osmosis technology for the separation of emulsified oil–water. Journal of Membrane Science, 2014, 452, 117-126.	8.2	126
117	Fabrication of fluoropolyimide/polyethersulfone (PES) dual-layer asymmetric hollow fiber membranes for gas separation. Journal of Membrane Science, 2002, 198, 211-223.	8.2	125
118	Fabrication and characterization of BTDA-TDI/MDI (P84) co-polyimide membranes for the pervaporation dehydration of isopropanol. Journal of Membrane Science, 2005, 264, 176-189.	8.2	125
119	An aquaporin-based vesicle-embedded polymeric membrane for low energy water filtration. Journal of Materials Chemistry A, 2013, 1, 7592.	10.3	125
120	High performance ZIF-8/PBI nano-composite membranes for high temperature hydrogen separation consisting of carbon monoxide and water vapor. International Journal of Hydrogen Energy, 2013, 38, 229-239.	7.1	125
121	Thermosensitive Poly(N-isopropylacrylamide-co-acrylic acid) Hydrogels with Expanded Network Structures and Improved Oscillating Swellingâ ^{^2} Deswelling Properties. Langmuir, 2002, 18, 2013-2018.	3.5	124
122	Highly Robust Thin-Film Composite Pressure Retarded Osmosis (PRO) Hollow Fiber Membranes with High Power Densities for Renewable Salinity-Gradient Energy Generation. Environmental Science & Environmental Science amp; Technology, 2013, 47, 8070-8077.	10.0	124
123	Facile synthesis of thermosensitive magnetic nanoparticles as "smart―draw solutes in forward osmosis. Chemical Communications, 2011, 47, 10788.	4.1	123
124	Dual-layer PVDF/PTFE composite hollow fibers with a thin macrovoid-free selective layer for water production via membrane distillation. Chemical Engineering Journal, 2011, 171, 684-691.	12.7	123
125	Design of robust hollow fiber membranes with high power density for osmotic energy production. Chemical Engineering Journal, 2014, 241, 457-465.	12.7	123
126	Molecular-level mixed matrix membranes comprising Pebax \hat{A}^{\otimes} and POSS for hydrogen purification via preferential CO2 removal. International Journal of Hydrogen Energy, 2010, 35, 10560-10568.	7.1	122

#	Article	IF	CITATIONS
127	Enhanced osmotic energy generation from salinity gradients by modifying thin film composite membranes. Chemical Engineering Journal, 2014, 242, 195-203.	12.7	122
128	Design and fabrication of hollow fiber membrane modules. Journal of Membrane Science, 2017, 538, 96-107.	8.2	122
129	Thickness and Air Gap Dependence of Macrovoid Evolution in Phase-Inversion Asymmetric Hollow Fiber Membranes. Industrial & Engineering Chemistry Research, 2006, 45, 7618-7626.	3.7	119
130	Sublayer structure and reflection coefficient and their effects on concentration polarization and membrane performance in FO processes. Journal of Membrane Science, 2011, 376, 214-224.	8.2	119
131	Enhancement of flux and solvent stability of Matrimid (sup \hat{A}^{\otimes} (sup thin \hat{a} film composite membranes for organic solvent nanofiltration. AICHE Journal, 2014, 60, 3623-3633.	3.6	119
132	The effects of spinning conditions on asymmetric 6FDA/6FDAM polyimide hollow fibers for air separation. Journal of Applied Polymer Science, 1997, 65, 1555-1569.	2.6	118
133	UVâ€Rearranged PIMâ€1 Polymeric Membranes for Advanced Hydrogen Purification and Production. Advanced Energy Materials, 2012, 2, 1456-1466.	19.5	118
134	Photo-oxidative PIM-1 based mixed matrix membranes with superior gas separation performance. Journal of Materials Chemistry A, 2015, 3, 17273-17281.	10.3	118
135	High-performance composite hollow fiber membrane for flue gas and air separations. Journal of Membrane Science, 2017, 541, 367-377.	8.2	118
136	Omniphobic Hollow-Fiber Membranes for Vacuum Membrane Distillation. Environmental Science & Environmental Science & Technology, 2018, 52, 4472-4480.	10.0	118
137	Investigation of different hollow fiber module designs for flux enhancement in the membrane distillation process. Journal of Membrane Science, 2008, 311, 371-379.	8.2	117
138	Effect of polyvinylpyrrolidone molecular weights on morphology, oil/water separation, mechanical and thermal properties of polyetherimide/polyvinylpyrrolidone hollow fiber membranes. Journal of Applied Polymer Science, 1999, 74, 2220-2233.	2.6	116
139	CO ₂ Separation from Flue Gas Using Polyvinyl-(Room Temperature Ionic Liquid)–Room Temperature Ionic Liquid Composite Membranes. Industrial & Engineering Chemistry Research, 2011, 50, 9344-9353.	3.7	116
140	A conceptual demonstration of freeze desalination–membrane distillation (FD–MD) hybrid desalination process utilizing liquefied natural gas (LNG) cold energy. Water Research, 2012, 46, 4037-4052.	11.3	116
141	High performance composite hollow fiber membranes for CO2/H2 and CO2/N2 separation. International Journal of Hydrogen Energy, 2014, 39, 5043-5053.	7.1	116
142	Cross-linked mixed matrix membranes (MMMs) consisting of amine-functionalized multi-walled carbon nanotubes and P84 polyimide for organic solvent nanofiltration (OSN) with enhanced flux. Journal of Membrane Science, 2018, 548, 319-331.	8.2	116
143	Thin-film nanocomposite membranes incorporated with UiO-66-NH2 nanoparticles for brackish water and seawater desalination. Journal of Membrane Science, 2020, 604, 118039.	8.2	116
144	Suppression of aging and plasticization in highly permeable polymers. Polymer, 2015, 77, 377-386.	3.8	114

#	Article	IF	Citations
145	Dehydration of isopropanol and its comparison with dehydration of butanol isomers from thermodynamic and molecular aspects. Journal of Membrane Science, 2005, 252, 37-49.	8.2	113
146	Zwitterionic polymers grafted poly(ether sulfone) hollow fiber membranes and their antifouling behaviors for osmotic power generation. Journal of Membrane Science, 2016, 497, 142-152.	8.2	113
147	Casting solvent effects on morphologies, gas transport properties of a novel 6FDA/PMDA?TMMDA copolyimide membrane and its derived carbon membranes. Journal of Membrane Science, 2004, 244, 77-87.	8.2	112
148	Thin film composite forward-osmosis membranes with enhanced internal osmotic pressure for internal concentration polarization reduction. Chemical Engineering Journal, 2014, 249, 236-245.	12.7	112
149	Hydrophobic/hydrophilic PVDF/Ultem \hat{A}^{\otimes} dual-layer hollow fiber membranes with enhanced mechanical properties for vacuum membrane distillation. Journal of Membrane Science, 2017, 523, 103-110.	8.2	112
150	Effect of wet and dry-jet wet spinning on the shear-induced orientation during the formation of ultrafiltration hollow fiber membranes. Journal of Membrane Science, 2001, 182, 57-75.	8.2	111
151	Green modification of outer selective P84 nanofiltration (NF) hollow fiber membranes for cadmium removal. Journal of Membrane Science, 2016, 499, 361-369.	8.2	109
152	Pharmaceutical concentration using organic solvent forward osmosis for solvent recovery. Nature Communications, 2018, 9, 1426.	12.8	109
153	Fabrication of dual-layer polyethersulfone (PES) hollow fiber membranes with an ultrathin dense-selective layer for gas separation. Journal of Membrane Science, 2004, 245, 53-60.	8.2	108
154	Novel polyamide-imide/cellulose acetate dual-layer hollow fiber membranes for nanofiltration. Journal of Membrane Science, 2010, 363, 232-242.	8.2	108
155	Development of hollow fiber membranes for water and salt recovery from highly concentrated brine via direct contact membrane distillation and crystallization. Journal of Membrane Science, 2012, 421-422, 111-123.	8.2	108
156	Highly crosslinked layer-by-layer polyelectrolyte FO membranes: Understanding effects of salt concentration and deposition time on FO performance. Journal of Membrane Science, 2013, 427, 411-421.	8.2	107
157	Recent progress of organic solvent nanofiltration membranes. Progress in Polymer Science, 2021, 123, 101470.	24.7	107
158	Molecular design of thin film composite (TFC) hollow fiber membranes for isopropanol dehydration via pervaporation. Journal of Membrane Science, 2012, 405-406, 123-133.	8.2	106
159	Minimizing the Instant and Accumulative Effects of Salt Permeability to Sustain Ultrahigh Osmotic Power Density. Environmental Science & Environmental	10.0	105
160	A novel crosslinking technique towards the fabrication of high-flux polybenzimidazole (PBI) membranes for organic solvent nanofiltration (OSN). Separation and Purification Technology, 2019, 209, 182-192.	7.9	104
161	Advanced Fabrication of Carbon Molecular Sieve Membranes by Nonsolvent Pretreatment of Precursor Polymers. Industrial & Description (2004, 43, 6476-6483).	3.7	103
162	Surface Modification of Polyimide Membranes by Diamines for H2 and CO2 Separation. Macromolecular Rapid Communications, 2006, 27, 998-1003.	3.9	103

#	Article	IF	Citations
163	Tailoring pore size and pore size distribution of kidney dialysis hollow fiber membranes via dual-bath coagulation approach. Journal of Membrane Science, 2007, 290, 153-163.	8.2	103
164	Water reclamation from emulsified oily wastewater via effective forward osmosis hollow fiber membranes under the PRO mode. Water Research, 2015, 81, 54-63.	11.3	103
165	Novel PVDF membranes comprising n-butylamine functionalized graphene oxide for direct contact membrane distillation. Journal of Membrane Science, 2017, 539, 34-42.	8.2	103
166	The limitations of using Flory-Huggins equation for the states of solutions during asymmetric hollow-fiber formation. Journal of Membrane Science, 1997, 126, 19-34.	8.2	102
167	Silver–PEGylated dendrimer nanocomposite coating for anti-fouling thin film composite membranes for water treatment. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2013, 436, 207-214.	4.7	102
168	Energy recovery by pressure retarded osmosis (PRO) in SWRO–PRO integrated processes. Applied Energy, 2016, 162, 687-698.	10.1	102
169	From ultrafiltration to nanofiltration: Hydrazine cross-linked polyacrylonitrile hollow fiber membranes for organic solvent nanofiltration. Journal of Membrane Science, 2017, 542, 289-299.	8.2	102
170	High-performance multiple-layer PIM composite hollow fiber membranes for gas separation. Journal of Membrane Science, 2018, 563, 93-106.	8.2	102
171	The development of high performance P84 co-polyimide hollow fibers for pervaporation dehydration of isopropanol. Chemical Engineering Science, 2005, 60, 6674-6686.	3.8	101
172	Development of Thin-Film Composite forward Osmosis Hollow Fiber Membranes Using Direct Sulfonated Polyphenylenesulfone (sPPSU) as Membrane Substrates. Environmental Science & Environmental Science & Technology, 2013, 47, 7430-7436.	10.0	101
173	The effect of shear rates on gas separation performance of 6FDA-durene polyimide hollow fibers. Journal of Membrane Science, 2000, 167, 55-66.	8.2	100
174	Molecular design of the cellulose ester-based forward osmosis membranes for desalination. Chemical Engineering Science, 2011, 66, 2008-2018.	3.8	100
175	Dual-layer P84/polyethersulfone hollow fibers for pervaporation dehydration of isopropanol. Journal of Membrane Science, 2007, 294, 103-114.	8.2	99
176	Freeze desalination of seawater using LNG cold energy. Water Research, 2016, 102, 282-293.	11.3	99
177	Removal of organic micro-pollutants (phenol, aniline and nitrobenzene) via forward osmosis (FO) process: Evaluation of FO as an alternative method to reverse osmosis (RO). Water Research, 2016, 91, 104-114.	11.3	99
178	Graphene oxide membranes for nanofiltration. Current Opinion in Chemical Engineering, 2017, 16, 9-15.	7.8	99
179	Planar biomimetic aquaporin-incorporated triblock copolymer membranes on porous alumina supports for nanofiltration. Journal of Membrane Science, 2012, 409-410, 34-43.	8.2	98
180	Outer-Selective Pressure-Retarded Osmosis Hollow Fiber Membranes from Vacuum-Assisted Interfacial Polymerization for Osmotic Power Generation. Environmental Science & Eamp; Technology, 2013, 47, 13167-13174.	10.0	98

#	Article	IF	CITATIONS
181	Molecularly Tuned Free Volume of Vapor Crossâ€Linked 6FDAâ€Durene/ZIFâ€71 MMMs for H ₂ /CO ₂ Separation at 150 °C. Advanced Materials, 2017, 29, 1603833.	21.0	98
182	An omniphobic slippery membrane with simultaneous anti-wetting and anti-scaling properties for robust membrane distillation. Journal of Membrane Science, 2020, 595, 117572.	8.2	98
183	Facilitated transport by hybrid POSS®–Matrimid®–Zn2+ nanocomposite membranes for the separation of natural gas. Journal of Membrane Science, 2010, 356, 14-21.	8.2	97
184	POSS-containing delamination-free dual-layer hollow fiber membranes for forward osmosis and osmotic power generation. Journal of Membrane Science, 2013, 443, 144-155.	8.2	97
185	Highly permeable chemically modified PIM-1/Matrimid membranes for green hydrogen purification. Journal of Materials Chemistry A, 2013, 1, 13914.	10.3	97
186	Facile Synthesis of Dual-Layer Organic Solvent Nanofiltration (OSN) Hollow Fiber Membranes. ACS Sustainable Chemistry and Engineering, 2015, 3, 3019-3023.	6.7	97
187	Formation of Cellulose Acetate Membranes via Phase Inversion Using Ionic Liquid, [BMIM]SCN, As the Solvent. Industrial & Engineering Chemistry Research, 2010, 49, 8761-8769.	3.7	96
188	Particle-Size Effects on Gas Transport Properties of 6FDA-Durene/ZIF-71 Mixed Matrix Membranes. Industrial & Description of the Research, 2016, 55, 9507-9517.	3.7	96
189	Design of zero liquid discharge desalination (ZLDD) systems consisting of freeze desalination, membrane distillation, and crystallization powered by green energies. Desalination, 2019, 458, 66-75.	8.2	96
190	Tri-bore PVDF hollow fibers with a super-hydrophobic coating for membrane distillation. Journal of Membrane Science, 2016, 514, 165-175.	8.2	95
191	Using green solvent, triethyl phosphate (TEP), to fabricate highly porous PVDF hollow fiber membranes for membrane distillation. Journal of Membrane Science, 2017, 539, 295-304.	8.2	95
192	A critical review on diffusivity and the characterization of diffusivity of 6FDA–6FpDA polyimide membranes for gas separation. Journal of Membrane Science, 2002, 198, 259-271.	8.2	94
193	Thickness Dependence of Macrovoid Evolution in Wet Phase-Inversion Asymmetric Membranes. Industrial & Dependence of Macrovoid Evolution in Wet Phase-Inversion Asymmetric Membranes.	3.7	93
194	Effect of inner-layer thermal conductivity on flux enhancement of dual-layer hollow fiber membranes in direct contact membrane distillation. Journal of Membrane Science, 2010, 364, 278-289.	8.2	93
195	Immobilized-Cell Membrane Bioreactor for High-Strength Phenol Wastewater. Journal of Environmental Engineering, ASCE, 2000, 126, 75-79.	1.4	92
196	The study of elongation and shear rates in spinning process and its effect on gas separation performance of Poly(ether sulfone) (PES) hollow fiber membranes. Chemical Engineering Science, 2004, 59, 1053-1062.	3.8	92
197	The evolution of physicochemical and transport properties of 6FDA-durene toward carbon membranes; from polymer, intermediate to carbon. Microporous and Mesoporous Materials, 2005, 84, 59-68.	4.4	92
198	Fundamental Characteristics of Sorption, Swelling, and Permeation of P84 Co-polyimide Membranes for Pervaporation Dehydration of Alcohols. Industrial & Engineering Chemistry Research, 2005, 44, 8938-8943.	3.7	92

#	Article	IF	CITATIONS
199	Effects of Brominating Matrimid Polyimide on the Physical and Gas Transport Properties of Derived Carbon Membranes. Macromolecules, 2005, 38, 10042-10049.	4.8	92
200	Thermal induced structural rearrangement of cardo-copolybenzoxazole membranes for enhanced gas transport properties. Journal of Membrane Science, 2012, 397-398, 51-65.	8.2	92
201	Stabilization and immobilization of aquaporin reconstituted lipid vesicles for water purification. Colloids and Surfaces B: Biointerfaces, 2013, 102, 466-471.	5.0	92
202	Polyelectrolyte functionalized lamellar graphene oxide membranes on polypropylene support for organic solvent nanofiltration. Carbon, 2017, 122, 604-613.	10.3	92
203	Enhanced Matrimid membranes for pervaporation by homogenous blends with polybenzimidazole (PBI). Journal of Membrane Science, 2006, 271, 221-231.	8.2	91
204	Mechanically robust and highly permeable AquaporinZ biomimetic membranes. Journal of Membrane Science, 2013, 434, 130-136.	8.2	90
205	Preparation and characterization of pore-suspending biomimetic membranes embedded with Aquaporin Z on carboxylated polyethylene glycol polymer cushion. Soft Matter, 2011, 7, 7274.	2.7	89
206	Dehydration of alcohols by pervaporation through polyimide <mml:math altimg="si46.gif" display="inline" overflow="scroll" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msup><mml:mrow><mml:mi>Matrimid</mml:mi></mml:mrow><mml:mrow><mml:mo>asymmetric hollow fibers with various modifications. Chemical Engineering Science, 2008, 63, 204-216.</mml:mo></mml:mrow></mml:msup></mml:math>	۸ ^{9.8} /mml	:m <mark>88</mark>
207	Hydroxyl Functionalized Polytriazole- <i>co</i> polyoxadiazole as Substrates for Forward Osmosis Membranes. ACS Applied Materials & Interfaces, 2015, 7, 3960-3973.	8.0	88
208	Zeolite filled P84 co-polyimide membranes for dehydration of isopropanol through pervaporation process. Chemical Engineering Science, 2006, 61, 6816-6825.	3.8	87
209	A novel strategy for surface modification of polyimide membranes by vapor-phase ethylenediamine (EDA) for hydrogen purification. International Journal of Hydrogen Energy, 2009, 34, 8716-8722.	7.1	87
210	Novel thin-film composite nanofiltration membranes consisting of a zwitterionic co-polymer for selenium and arsenic removal. Journal of Membrane Science, 2018, 555, 299-306.	8.2	87
211	Development of a defect-free 6FDA-durene asymmetric hollow fiber and its composite hollow fibers. Journal of Membrane Science, 1994, 88, 21-36.	8.2	85
212	Matrimid®/MgO mixed matrix membranes for pervaporation. AICHE Journal, 2007, 53, 1745-1757.	3.6	85
213	Miscibility study of Torlon \hat{A}^{\otimes} polyamide-imide with Matrimid \hat{A}^{\otimes} 5218 polyimide and polybenzimidazole. Polymer, 2007, 48, 2901-2909.	3.8	85
214	Solvent resistant hollow fiber membranes comprising P84 polyimide and amine-functionalized carbon nanotubes with potential applications in pharmaceutical, food, and petrochemical industries. Chemical Engineering Journal, 2018, 345, 174-185.	12.7	85
215	Na+ functionalized carbon quantum dot incorporated thin-film nanocomposite membranes for selenium and arsenic removal. Journal of Membrane Science, 2018, 564, 483-491.	8.2	85
216	Chiral assembly of gold nanorods with collective plasmonic circular dichroism response. Soft Matter, 2011, 7, 8370.	2.7	84

#	Article	IF	Citations
217	Natural gas purification and olefin/paraffin separation using cross-linkable 6FDA-Durene/DABA co-polyimides grafted with $\hat{l}\pm$, \hat{l}^2 , and \hat{l}^3 -cyclodextrin. Journal of Membrane Science, 2012, 390-391, 141-151.	8.2	84
218	Graphene oxide (GO) laminar membranes for concentrating pharmaceuticals and food additives in organic solvents. Carbon, 2018, 130, 503-514.	10.3	84
219	Surface energy of thermotropic liquid crystalline polyesters and polyesteramide. Journal of Polymer Science, Part B: Polymer Physics, 1998, 36, 2327-2337.	2.1	83
220	Polymeric asymmetric membranes made from polyetherimide/polybenzimidazole/poly(ethylene glycol) (PEI/PBI/PEG) for oil–surfactant–water separation. Journal of Membrane Science, 1999, 158, 41-53.	8.2	83
221	Development of asymmetric hollow fibers from polyimides for air separation. Journal of Membrane Science, 1992, 75, 181-195.	8.2	82
222	Effect of polyimides with different ratios of para - to meta - analogous fluorinated diamines on relaxation process. Polymer, 2001, 42, 6393-6401.	3.8	82
223	Polyamideâ€imide nanofiltration hollow fiber membranes with elongationâ€induced nanoâ€pore evolution. AICHE Journal, 2010, 56, 1481-1494.	3.6	82
224	Molecular design of the morphology and pore size of PVDF hollow fiber membranes for ethanol–water separation employing the modified pore-flow concept. Journal of Membrane Science, 2011, 374, 67-82.	8.2	82
225	Concurrent Removal of Selenium and Arsenic from Water Using Polyhedral Oligomeric Silsesquioxane (POSS)–Polyamide Thin-Film Nanocomposite Nanofiltration Membranes. Industrial & Lamp; Engineering Chemistry Research, 2016, 55, 12929-12938.	3.7	82
226	High-performance UiO-66/polyimide mixed matrix membranes for ethanol, isopropanol and n-butanol dehydration via pervaporation. Journal of Membrane Science, 2017, 531, 16-26.	8.2	82
227	In situ fabrication of cross-linked PEO/silica reverse-selective membranes for hydrogen purification. International Journal of Hydrogen Energy, 2009, 34, 6492-6504.	7.1	81
228	Synthesis and characterization of poly (ethylene oxide) containing copolyimides for hydrogen purification. Polymer, 2010, 51, 4077-4086.	3.8	80
229	Novel dual-stage FO system for sustainable protein enrichment using nanoparticles as intermediate draw solutes. Journal of Membrane Science, 2011, 372, 201-209.	8.2	80
230	Thin-film composite P84 co-polyimide hollow fiber membranes for osmotic power generation. Applied Energy, 2014, 114, 600-610.	10.1	80
231	Thin film nanocomposite hollow fiber membranes comprising Na+-functionalized carbon quantum dots for brackish water desalination. Water Research, 2019, 154, 54-61.	11.3	79
232	A prospective study on the application of thermally rearranged acetate-containing polyimide membranes in dehydration of biofuels via pervaporation. Chemical Engineering Science, 2012, 79, 41-53.	3.8	78
233	Chemical Cross-Linking Modification of Polyimide/Poly(ether sulfone) Dual-Layer Hollow-Fiber Membranes for Gas Separation. Industrial & Engineering Chemistry Research, 2003, 42, 1190-1195.	3.7	77
234	Novel thin-film composite tri-bore hollow fiber membrane fabrication for forward osmosis. Journal of Membrane Science, 2014, 461, 28-38.	8.2	77

#	Article	IF	Citations
235	Molecularly tunable thin-film nanocomposite membranes with enhanced molecular sieving for organic solvent forward osmosis. Nature Communications, 2020, 11, 1198.	12.8	77
236	Development of asymmetric 6FDA-2,6 DAT hollow fiber membranes for CO2/CH4 separation. Journal of Membrane Science, 2002, 207, 227-240.	8.2	76
237	Fabrication of lab-scale hollow fiber membrane modules with high packing density. Separation and Purification Technology, 2004, 40, 15-30.	7.9	76
238	A layer-by-layer self-assembly approach to developing an aquaporin-embedded mixed matrix membrane. RSC Advances, 2013, 3, 473-481.	3.6	76
239	PIM-1 as an organic filler to enhance the gas separation performance of Ultem polyetherimide. Journal of Membrane Science, 2014, 453, 614-623.	8.2	76
240	Enhanced fouling by inorganic and organic foulants on pressure retarded osmosis (PRO) hollow fiber membranes under high pressures. Journal of Membrane Science, 2015, 479, 190-203.	8.2	76
241	Investigation of shear stress effect within a spinneret on flux, separation and thermomechanical properties of hollow fiber ultrafiltration membranes. Journal of Membrane Science, 2000, 175, 197-213.	8.2	75
242	Dual-layer hollow carbon fiber membranes for gas separation consisting of carbon and mixed matrix layers. Carbon, 2007, 45, 166-172.	10.3	75
243	Design and fabrication of lotus-root-like multi-bore hollow fiber membrane for direct contact membrane distillation. Journal of Membrane Science, 2012, 421-422, 361-374.	8.2	75
244	Oil/water separation via ultrafiltration by novel triangle-shape tri-bore hollow fiber membranes from sulfonated polyphenylenesulfone. Journal of Membrane Science, 2015, 476, 162-170.	8.2	75
245	Investigation of unique interactions between cellulose acetate and ionic liquid [EMIM]SCN, and their influences on hollow fiber ultrafiltration membranes. Journal of Membrane Science, 2011, 380, 87-97.	8.2	74
246	Synthesis, cross-linking modifications of 6FDA-NDA/DABA polyimide membranes for ethanol dehydration via pervaporation. Journal of Membrane Science, 2012, 415-416, 109-121.	8.2	74
247	Blends of a Polymer of Intrinsic Microporosity and Partially Sulfonated Polyphenylenesulfone for Gas Separation. ChemSusChem, 2016, 9, 1953-1962.	6.8	74
248	Techno-economic evaluation of various RO+PRO and RO+FO integrated processes. Applied Energy, 2018, 212, 1038-1050.	10.1	74
249	Organic solvent nanofiltration (OSN) membranes made from plasma grafting of polyethylene glycol on cross-linked polyimide ultrafiltration substrates. Journal of Membrane Science, 2018, 565, 169-178.	8.2	74
250	Robust polybenzimidazole (PBI) hollow fiber membranes for organic solvent nanofiltration. Journal of Membrane Science, 2019, 572, 580-587.	8.2	74
251	Effect of Shear Stress within the Spinneret on Hollow Fiber Membrane Morphology and Separation Performance. Industrial & Engineering Chemistry Research, 1998, 37, 3930-3938.	3.7	73
252	Fundamental understanding of the effect of air-gap distance on the fabrication of hollow fiber membranes. Journal of Applied Polymer Science, 1999, 72, 379-395.	2.6	73

#	Article	IF	Citations
253	Structure and Properties Relationships for Aromatic Polyimides and Their Derived Carbon Membranes:  Experimental and Simulation Approaches. Journal of Physical Chemistry B, 2005, 109, 18741-18748.	2.6	73
254	Effects of polyethylene glycol on membrane formation and properties of hydrophilic sulfonated polyphenylenesulfone (sPPSU) membranes. Journal of Membrane Science, 2017, 531, 27-35.	8.2	73
255	Aldehyde functionalized graphene oxide frameworks as robust membrane materials for pervaporative alcohol dehydration. Chemical Engineering Science, 2017, 161, 341-349.	3.8	73
256	Thin-film composite (TFC) hollow fiber membrane with double-polyamide active layers for internal concentration polarization and fouling mitigation in osmotic processes. Journal of Membrane Science, 2017, 523, 497-504.	8.2	73
257	Visualization of the effect of die shear rate on the outer surface morphology of ultrafiltration membranes by AFM. Journal of Membrane Science, 2002, 196, 251-266.	8.2	72
258	A processing-induced clay dispersion and its effect on the structure and properties of polyamide 6. Polymer International, 2004, 53, 392-399.	3.1	72
259	The fabrication of hollow fiber membranes with double-layer mixed-matrix materials for gas separation. Journal of Membrane Science, 2008, 325, 326-335.	8.2	72
260	Microscopic behavior of polyvinylpyrrolidone hydrophilizing agents on phase inversion polyethersulfone hollow fiber membranes for hemofiltration. Journal of Membrane Science, 2009, 326, 322-331.	8.2	72
261	Metal ion modified PIM-1 and its application for propylene/propane separation. Journal of Membrane Science, 2016, 515, 36-44.	8.2	72
262	Phase Inversion Directly Induced Tight Ultrafiltration (UF) Hollow Fiber Membranes for Effective Removal of Textile Dyes. Environmental Science & Envi	10.0	72
263	Performance enhancement in organic solvent nanofiltration by double crosslinking technique using sulfonated polyphenylsulfone (sPPSU) and polybenzimidazole (PBI). Journal of Membrane Science, 2018, 551, 204-213.	8.2	72
264	Evolution of nano-particle distribution during the fabrication of mixed matrix TiO2-polyimide hollow fiber membranes. Chemical Engineering Science, 2006, 61, 6228-6233.	3.8	71
265	Evolution of ultra-thin dense-selective layer from single-layer to dual-layer hollow fibers using novel Extem® polyetherimide for gas separation. Journal of Membrane Science, 2010, 360, 48-57.	8.2	71
266	Fabrication of loose inner-selective polyethersulfone (PES) hollow fibers by one-step spinning process for nanofiltration (NF) of textile dyes. Journal of Membrane Science, 2017, 541, 413-424.	8.2	71
267	110th Anniversary: Selection of Cross-Linkers and Cross-Linking Procedures for the Fabrication of Solvent-Resistant Nanofiltration Membranes: A Review. Industrial & Engineering Chemistry Research, 2019, 58, 10678-10691.	3.7	71
268	Can Composite Janus Membranes with an Ultrathin Dense Hydrophilic Layer Resist Wetting in Membrane Distillation?. Environmental Science & Environmenta	10.0	71
269	The effects of 1,3-cyclohexanebis(methylamine) modification on gas transport and plasticization resistance of polyimide membranes. Journal of Membrane Science, 2005, 267, 78-89.	8.2	70
270	Development of flat-sheet membranes for C1–C4 alcohols dehydration via pervaporation from sulfonated polyphenylsulfone (sPPSU). Journal of Membrane Science, 2012, 415-416, 686-695.	8.2	70

#	Article	IF	Citations
271	Design of high efficiency PVDF-PEG hollow fibers for air filtration of ultrafine particles. Journal of Membrane Science, 2017, 535, 342-349.	8.2	70
272	Facile fabrication of solvent resistant thin film composite membranes by interfacial crosslinking reaction between polyethylenimine and dibromo-p-xylene on polybenzimidazole substrates. Journal of Membrane Science, 2018, 560, 115-124.	8.2	70
273	Hydroacid complexes: a new class of draw solutes to promote forward osmosis (FO) processes. Chemical Communications, 2013, 49, 8471.	4.1	69
274	A slow–fast phase separation (SFPS) process to fabricate dual-layer hollow fiber substrates for thin-film composite (TFC) organic solvent nanofiltration (OSN) membranes. Chemical Engineering Science, 2015, 129, 232-242.	3.8	69
275	Flexible thermally treated 3D PIM-CD molecular sieve membranes exceeding the upper bound line for propylene/propane separation. Journal of Materials Chemistry A, 2017, 5, 4583-4595.	10.3	69
276	Asymmetric hollow fiber membranes prepared from miscible polybenzimidazole and polyetherimide blends. Journal of Membrane Science, 1998, 147, 35-47.	8.2	68
277	Facile synthesis of hyperbranched polyimides from A2 + BB?2 monomers. Journal of Polymer Science Part A, 2002, 40, 4563-4569.	2.3	68
278	Asymmetric hollow fibers by polyimide and polybenzimidazole blends for toluene/iso-octane separation. Journal of Membrane Science, 2010, 360, 303-314.	8.2	68
279	Polyetheramine–polyhedral oligomeric silsesquioxane organic–inorganic hybrid membranes for CO2/H2 and CO2/N2 separation. Journal of Membrane Science, 2011, 385-386, 40-48.	8.2	68
280	Rheology and phase inversion behavior of polyphenylenesulfone (PPSU) and sulfonated PPSU for membrane formation. Polymer, 2016, 99, 72-82.	3.8	68
281	Fluorographite modified PVDF membranes for seawater desalination via direct contact membrane distillation. Desalination, 2017, 413, 119-126.	8.2	68
282	Robust thin film composite PDMS/PAN hollow fiber membranes for water vapor removal from humid air and gases. Separation and Purification Technology, 2018, 202, 345-356.	7.9	68
283	A novel ionically cross-linked sulfonated polyphenylsulfone (sPPSU) membrane for organic solvent nanofiltration (OSN). Journal of Membrane Science, 2018, 545, 221-228.	8.2	68
284	PAMAM Dendrimer-Induced Cross-Linking Modification of Polyimide Membranes. Langmuir, 2004, 20, 2966-2969.	3.5	67
285	Polybenzimidazole nanofiltration hollow fiber for cephalexin separation. AICHE Journal, 2006, 52, 1363-1377.	3.6	67
286	Mechanistic understanding of CO2-induced plasticization of a polyimide membrane: A combination of experiment and simulation study. Polymer, 2010, 51, 4439-4447.	3.8	67
287	Aromatic polyimide and crosslinked thermally rearranged poly(benzoxazole-co-imide) membranes for isopropanol dehydration via pervaporation. Journal of Membrane Science, 2016, 499, 317-325.	8.2	67
288	Novel Hollow Fiber Air Filters for the Removal of Ultrafine Particles in PM _{2.5} with Repetitive Usage Capability. Environmental Science & En	10.0	67

#	Article	IF	Citations
289	Highly permeable and aging resistant 3D architecture from polymers of intrinsic microporosity incorporated with beta-cyclodextrin. Journal of Membrane Science, 2017, 523, 92-102.	8.2	67
290	Thin-film composite hollow fiber membrane with inorganic salt additives for high mechanical strength and high power density for pressure-retarded osmosis. Journal of Membrane Science, 2018, 555, 388-397.	8.2	67
291	Fabrication of loose outer-selective nanofiltration (NF) polyethersulfone (PES) hollow fibers via single-step spinning process for dye removal. Separation and Purification Technology, 2018, 192, 483-490.	7.9	67
292	Exploration of highly sulfonated polyethersulfone (SPES) as a membrane material with the aid of dual-layer hollow fiber fabrication technology for protein separation. Journal of Membrane Science, 2008, 309, 45-55.	8.2	66
293	Physical aging and carbon dioxide plasticization of thin polyimide films in mixed gas permeation. Journal of Membrane Science, 2014, 450, 457-468.	8.2	66
294	Cross-linked mixed matrix membranes consisting of carboxyl-functionalized multi-walled carbon nanotubes and P84 polyimide for organic solvent nanofiltration (OSN). Separation and Purification Technology, 2017, 186, 243-254.	7.9	66
295	Thermal Imidization of the Precursor of a Liquid Crystalline Polyimide. Macromolecular Materials and Engineering, 2002, 287, 931-937.	3.6	65
296	The Influence of Cold Treatment on Properties of Temperature-Sensitive Poly(N-isopropylacrylamide) Hydrogels. Journal of Colloid and Interface Science, 2002, 246, 105-111.	9.4	65
297	Robust and high performance pressure retarded osmosis hollow fiber membranes for osmotic power generation. AICHE Journal, 2014, 60, 1107-1119.	3.6	65
298	Physical aging and plasticization of thick and thin films of the thermally rearranged ortho-functional polyimide 6FDA–HAB. Journal of Membrane Science, 2014, 458, 27-35.	8.2	65
299	The evolution of physicochemical and gas transport properties of thermally rearranged polyhydroxyamide (PHA). Journal of Membrane Science, 2011, 385-386, 86-95.	8.2	64
300	Fabrication and positron annihilation spectroscopy (PAS) characterization of cellulose triacetate membranes for forward osmosis. Journal of Membrane Science, 2012, 394-395, 230-240.	8.2	64
301	Functionalization of cellulose dialysis membranes for chiral separation using beta-cyclodextrin immobilization. Journal of Membrane Science, 2007, 290, 78-85.	8.2	63
302	Thin film composite membranes on ceramic for pervaporation dehydration of isopropanol. Journal of Membrane Science, 2013, 448, 34-43.	8.2	63
303	Flexible Hybrid Membranes of NiCo ₂ O ₄ -Doped Carbon Nanofiber@MnO ₂ Core–Sheath Nanostructures for High-Performance Supercapacitors. Journal of Physical Chemistry C, 2015, 119, 13442-13450.	3.1	63
304	Ultrathin Polyamide Membranes Fabricated from Free-Standing Interfacial Polymerization: Synthesis, Modifications, and Post-treatment. Industrial & Engineering Chemistry Research, 2017, 56, 513-523.	3.7	63
305	Vapor-phase crosslinked mixed matrix membranes with UiO-66-NH2 for organic solvent nanofiltration. Journal of Membrane Science, 2019, 574, 124-135.	8.2	63
306	Carbon–zeolite composite membranes for gas separation. Carbon, 2005, 43, 2025-2027.	10.3	62

#	Article	IF	Citations
307	Investigations of inorganic and organic fouling behaviors, antifouling and cleaning strategies for pressure retarded osmosis (PRO) membrane using seawater desalination brine and wastewater. Water Research, 2016, 103, 264-275.	11.3	62
308	Zwitterions coated hollow fiber membranes with enhanced antifouling properties for osmotic power generation from municipal wastewater. Water Research, 2016, 104, 389-396.	11.3	62
309	Membrane fouling and anti-fouling strategies using RO retentate from a municipal water recycling plant as the feed for osmotic power generation. Water Research, 2016, 88, 144-155.	11.3	62
310	Thermally treated ammonia functionalized graphene oxide/polyimide membranes for pervaporation dehydration of isopropanol. Journal of Membrane Science, 2017, 528, 231-242.	8.2	62
311	Nanofiltration-Inspired Janus Membranes with Simultaneous Wetting and Fouling Resistance for Membrane Distillation. Environmental Science & Environmen	10.0	62
312	Investigation of surface energy for organic light emitting polymers and indium tin oxide. Thin Solid Films, 2000, 371, 140-147.	1.8	61
313	The observation of elongation dependent macrovoid evolution in single- and dual-layer asymmetric hollow fiber membranes. Chemical Engineering Science, 2004, 59, 4657-4660.	3.8	61
314	Hollow Fiber Membrane Dehumidification Device for Air Conditioning System. Membranes, 2015, 5, 722-738.	3.0	61
315	Carbon Quantum Dots Grafted Antifouling Membranes for Osmotic Power Generation via Pressure-Retarded Osmosis Process. Environmental Science & Environm	10.0	61
316	Novel thin film composite hollow fiber membranes incorporated with carbon quantum dots for osmotic power generation. Journal of Membrane Science, 2018, 551, 94-102.	8.2	61
317	The forward osmosis-pressure retarded osmosis (FO-PRO) hybrid system: A new process to mitigate membrane fouling for sustainable osmotic power generation. Journal of Membrane Science, 2018, 559, 63-74.	8.2	61
318	Organic solvent resistant membranes made from a cross-linked functionalized polymer with intrinsic microporosity (PIM) containing thioamide groups. Chemical Engineering Journal, 2018, 353, 689-698.	12.7	61
319	Synthesis and properties of fluoro-polyetherimides. Polymer Engineering and Science, 2000, 40, 1318-1329.	3.1	60
320	The accelerated CO2 plasticization of ultra-thin polyimide films and the effect of surface chemical cross-linking on plasticization and physical aging. Journal of Membrane Science, 2003, 225, 125-134.	8.2	60
321	Enhanced propylene/propane separation by carbonaceous membrane derived from poly (aryl ether) Tj ETQq1 1 0.	.784314 r 10.3	gBT /Overloc 60
322	Structural Determination of Extem XH 1015 and Its Gas Permeability Comparison with Polysulfone and Ultem via Molecular Simulation. Industrial & Engineering Chemistry Research, 2010, 49, 12014-12021.	3.7	60
323	Design and synthesis of a fluoro-silane amine monomer for novel thin film composite membranes to dehydrate ethanol via pervaporation. Journal of Materials Chemistry A, 2013, 1, 9814.	10.3	60
324	Surface modification of polyimide membranes by diethylenetriamine (DETA) vapor for H2 purification and moisture effect on gas permeation. Journal of Membrane Science, 2013, 430, 223-233.	8.2	60

#	Article	IF	Citations
325	Effects of Thermal Treatments and Dendrimers Chemical Structures on the Properties of Highly Surface Cross-Linked Polyimide Films. Industrial & Engineering Chemistry Research, 2005, 44, 3059-3067.	3.7	59
326	Investigation of amphoteric polybenzimidazole (PBI) nanofiltration hollow fiber membrane for both cation and anions removal. Journal of Membrane Science, 2008, 310, 557-566.	8.2	59
327	Silica Nanohybrid Membranes with High CO ₂ Affinity for Green Hydrogen Purification. Advanced Energy Materials, 2011, 1, 634-642.	19.5	59
328	Surface-Dissociated Nanoparticle Draw Solutions in Forward Osmosis and the Regeneration in an Integrated Electric Field and Nanofiltration System. Industrial & Engineering Chemistry Research, 2012, 51, 15463-15471.	3.7	59
329	Janus membranes with asymmetric wettability via a layer-by-layer coating strategy for robust membrane distillation. Journal of Membrane Science, 2020, 603, 118031.	8.2	59
330	Surface Characterization, Modification Chemistry, and Separation Performance of Polyimide and Polyamidoamine Dendrimer Composite Films. Langmuir, 2004, 20, 8230-8238.	3.5	58
331	Modified pore-flow model for pervaporation mass transport in PVDF hollow fiber membranes for ethanol–water separation. Journal of Membrane Science, 2010, 362, 393-406.	8.2	58
332	A New-Generation Asymmetric Multi-Bore Hollow Fiber Membrane for Sustainable Water Production via Vacuum Membrane Distillation. Environmental Science & Echnology, 2013, 47, 6272-6278.	10.0	58
333	Pervaporation dehydration of acetone using P84 co-polyimide flat sheet membranes modified by vapor phase crosslinking. Journal of Membrane Science, 2014, 458, 76-85.	8.2	57
334	Miscible blends of carboxylated polymers of intrinsic microporosity (cPIM-1) and Matrimid. Polymer, 2015, 59, 290-297.	3.8	57
335	Mixed matrix membranes with nano-sized functional UiO-66-type MOFs embedded in 6FDA-HAB/DABA polyimide for dehydration of C1-C3 alcohols via pervaporation. Journal of Membrane Science, 2018, 549, 217-226.	8.2	57
336	A novel primer to prevent nanoparticle agglomeration in mixed matrix membranes. AICHE Journal, 2007, 53, 2470-2475.	3.6	56
337	Fundamentals of semi-crystalline poly(vinylidene fluoride) membrane formation and its prospects for biofuel (ethanol and acetone) separation via pervaporation. Journal of Membrane Science, 2011, 378, 149-162.	8.2	56
338	Ferric and cobaltous hydroacid complexes for forward osmosis (FO) processes. Water Research, 2014, 58, 230-238.	11.3	56
339	High performance thin-film composite membranes with mesh-reinforced hydrophilic sulfonated polyphenylenesulfone (sPPSU) substrates for osmotically driven processes. Journal of Membrane Science, 2016, 502, 84-93.	8.2	56
340	Facile fabrication of sulfonated polyphenylenesulfone (sPPSU) membranes with high separation performance for organic solvent nanofiltration. Journal of Membrane Science, 2018, 549, 550-558.	8.2	56
341	Design of nanofiltration (NF) hollow fiber membranes made from functionalized bore fluids containing polyethyleneimine (PEI) for heavy metal removal. Journal of Membrane Science, 2020, 603, 118022.	8.2	56
342	Functionalization of polybenzimidizole membranes to impart negative charge and hydrophilicity. Journal of Membrane Science, 2010, 363, 195-203.	8.2	55

#	Article	IF	Citations
343	Pressure retarded osmosis dual-layer hollow fiber membranes developed by co-casting method and ammonium persulfate (APS) treatment. Journal of Membrane Science, 2014, 469, 488-498.	8.2	55
344	Cellulose acetate membranes for transdermal delivery of scopolamine base. Materials Science and Engineering C, 2002, 20, 93-100.	7.3	54
345	Novel approaches to fabricate carbon molecular sieve membranes based on chemical modified and solvent treated polyimides. Microporous and Mesoporous Materials, 2004, 73, 151-160.	4.4	54
346	Multi-layer composite hollow fiber membranes derived from poly(ethylene glycol) (PEG) containing hybrid materials for CO2/N2 separation. Journal of Membrane Science, 2011, 381, 211-220.	8.2	54
347	Forward osmosis: an emerging technology for sustainable supply of clean water. Clean Technologies and Environmental Policy, 2012, 14, 507-511.	4.1	54
348	Novel organic–inorganic thin film composite membranes with separation performance surpassing ceramic membranes for isopropanol dehydration. Journal of Membrane Science, 2013, 433, 60-71.	8.2	53
349	POE–PEG–POE triblock copolymeric microspheres containing protein. Journal of Controlled Release, 2001, 75, 115-128.	9.9	52
350	Gas and hydrocarbon (C2 and C3) transport properties of co-polyimides synthesized from 6FDA and 1,5-NDA (naphthalene)/Durene diamines. Journal of Membrane Science, 2003, 218, 235-245.	8.2	52
351	Development and positron annihilation spectroscopy (PAS) characterization of polyamide imide (PAI)–polyethersulfone (PES) based defect-free dual-layer hollow fiber membranes with an ultrathin dense-selective layer for gas separation. Journal of Membrane Science, 2011, 378, 541-550.	8.2	52
352	Effects of annealing on the microstructure and performance of cellulose acetate membranes for pressure-retarded osmosis processes. Journal of Membrane Science, 2010, 364, 344-353.	8.2	51
353	The evolution of poly(hydroxyamide amic acid) to poly(benzoxazole) via stepwise thermal cyclization: Structural changes and gas transport properties. Polymer, 2011, 52, 5127-5138.	3.8	51
354	Dualâ€layer PBI/P84 hollow fibers for pervaporation dehydration of acetone. AICHE Journal, 2012, 58, 1133-1145.	3.6	51
355	Highly permeable aquaporin-embedded biomimetic membranes featuring a magnetic-aided approach. RSC Advances, 2013, 3, 9178.	3.6	51
356	High-performance sulfonated polyimide/polyimide/polyhedral oligosilsesquioxane hybrid membranes for ethanol dehydration applications. Journal of Membrane Science, 2014, 454, 62-73.	8.2	51
357	Thin-film nanocomposite membranes incorporated with defective ZIF-8 nanoparticles for brackish water and seawater desalination. Journal of Membrane Science, 2021, 625, 119158.	8.2	51
358	Exploring Torlon/P84 co-polyamide-imide blended hollow fibers and their chemical cross-linking modifications for pervaporation dehydration of isopropanol. Separation and Purification Technology, 2008, 61, 404-413.	7.9	50
359	Development of high performance carboxylated PIM-1/P84 blend membranes for pervaporation dehydration of isopropanol and CO2/CH4 separation. Journal of Membrane Science, 2016, 518, 110-119.	8.2	50
360	Advanced Anti-Fouling Membranes for Osmotic Power Generation from Wastewater via Pressure Retarded Osmosis (PRO). Environmental Science & Eamp; Technology, 2018, 52, 6686-6694.	10.0	50

#	Article	IF	CITATIONS
361	Effects of orientation relaxation and bore fluid chemistry on morphology and performance of polyethersulfone hollow fibers for gas separation. Journal of Membrane Science, 2004, 229, 1-9.	8.2	49
362	Pervaporation dehydration of C2–C4 alcohols by 6FDA-ODA-NDA/Ultem® dual-layer hollow fiber membranes with enhanced separation performance and swelling resistance. Chemical Engineering Journal, 2009, 155, 736-743.	12.7	49
363	High performance carbon molecular sieve membranes derived from hyperbranched polyimide precursors for improved gas separation applications. Carbon, 2013, 53, 101-111.	10.3	49
364	Thin-film composite membranes with modified polyvinylidene fluoride substrate for ethanol dehydration via pervaporation. Chemical Engineering Science, 2014, 118, 173-183.	3.8	49
365	Integration of Nanofiltration Hollow Fiber Membranes with Coagulation–Flocculation to Treat Colored Wastewater from a Dyestuff Manufacturer: A Pilot-Scale Study. Industrial & Engineering Chemistry Research, 2015, 54, 11159-11166.	3.7	49
366	Forward osmosis for oily wastewater reclamation: Multi-charged oxalic acid complexes as draw solutes. Water Research, 2017, 122, 580-590.	11.3	49
367	Tuning water content in polymer dopes to boost the performance of outer-selective thin-film composite (TFC) hollow fiber membranes for osmotic power generation. Journal of Membrane Science, 2017, 524, 97-107.	8.2	49
368	Molecular interaction between acidic sPPSU and basic HPEI polymers and its effects on membrane formation for ultrafiltration. Journal of Membrane Science, 2017, 524, 33-42.	8.2	49
369	Superior gas separation performance of dual-layer hollow fiber membranes with an ultrathin dense-selective layer. Journal of Membrane Science, 2008, 325, 23-27.	8.2	48
370	Ultrathin polymeric interpenetration network with separation performance approaching ceramic membranes for biofuel. AICHE Journal, 2009, 55, 75-86.	3.6	48
371	Carbon molecular sieve membranes for biofuel separation. Carbon, 2011, 49, 369-375.	10.3	48
372	Advanced FO membranes from newly synthesized CAP polymer for wastewater reclamation through an integrated FOâ€MD hybrid system. AICHE Journal, 2013, 59, 1245-1254.	3.6	48
373	Formation of defectâ€free polyetherimide/PIMâ€1 hollow fiber membranes for gas separation. AICHE Journal, 2014, 60, 3848-3858.	3.6	48
374	Thin Film Interfacial Cross-Linking Approach To Fabricate a Chitosan Rejecting Layer over Poly(ether) Tj ETQq0 0 472-479.	0 rgBT /Ο\ 3.7	verlock 10 Tf : 48
375	Negatively charged hyperbranched polyglycerol grafted membranes for osmotic power generation from municipal wastewater. Water Research, 2016, 89, 50-58.	11.3	48
376	The ageing phenomenon of polyethersulphone hollow fibre membranes for gas separation and their characteristics. Journal of Membrane Science, 1999, 152, 175-188.	8.2	47
377	Asymmetric structure and enhanced gas separation performance induced by in situ growth of silver nanoparticles in carbon membranes. Carbon, 2010, 48, 408-416.	10.3	47
378	Effective As(III) Removal by A Multi-Charged Hydroacid Complex Draw Solute Facilitated Forward Osmosis-Membrane Distillation (FO-MD) Processes. Environmental Science & Enviro	10.0	47

#	Article	IF	CITATIONS
379	Separation of vegetable oil compounds and solvent recovery using commercial organic solvent nanofiltration membranes. Journal of Membrane Science, 2019, 588, 117202.	8.2	47
380	Infiltrating molecular gatekeepers with coexisting molecular solubility and 3D-intrinsic porosity into a microporous polymer scaffold for gas separation. Journal of Materials Chemistry A, 2020, 8, 6196-6209.	10.3	47
381	Fluoro-containing polyimide blends: Prediction and experiments. Journal of Polymer Science Part A, 1991, 29, 1207-1212.	2.3	46
382	The effects of chemical modifications on morphology and performance of 6FDA-ODA/NDA hollow fiber membranes for CO2/CH4 separation. Journal of Membrane Science, 2003, 222, 133-147.	8.2	46
383	The role of additives on dope rheology and membrane formation of defect-free Torlon® hollow fibers for gas separation. Journal of Membrane Science, 2009, 343, 62-72.	8.2	46
384	Effect of End Groups and Grafting on the CO ₂ Separation Performance of Poly(ethylene) Tj ETQq0 C	0 0 ₄ .8BT /C	Verlock 10 T
385	Micro-morphology and formation of layer-by-layer membranes and their performance in osmotically driven processes. Chemical Engineering Science, 2013, 101, 13-26.	3.8	46
386	Fabrication and use of hollow fiber thin film composite membranes for ethanol dehydration. Journal of Membrane Science, 2014, 450, 124-137.	8.2	46
387	Robust outer-selective thin-film composite polyethersulfone hollow fiber membranes with low reverse salt flux for renewable salinity-gradient energy generation. Journal of Membrane Science, 2016, 506, 119-129.	8.2	46
388	New polyethersulfone (PESU) hollow fiber membranes for CO 2 capture. Journal of Membrane Science, 2018, 552, 305-314.	8.2	46
389	Green Design of Poly(<i>m</i> -Phenylene Isophthalamide)-Based Thin-Film Composite Membranes for Organic Solvent Nanofiltration and Concentrating Lecithin in Hexane. ACS Sustainable Chemistry and Engineering, 2018, 6, 10696-10705.	6.7	46
390	Fabrication of multi-layer composite hollow fiber membranes for gas separation. Journal of Membrane Science, 1999, 152, 211-225.	8.2	45
391	Effects of free volume in thinâ€film composite membranes on osmotic power generation. AICHE Journal, 2013, 59, 4749-4761.	3.6	45
392	Conceptual demonstration of novel closed-loop pressure retarded osmosis process for sustainable osmotic energy generation. Applied Energy, 2014, 132, 383-393.	10.1	45
393	Hybrid pressure retarded osmosis–membrane distillation (PRO–MD) process for osmotic power and clean water generation. Environmental Science: Water Research and Technology, 2015, 1, 507-515.	2.4	45
394	Novel reverse osmosis membranes incorporated with Co-Al layered double hydroxide (LDH) with enhanced performance for brackish water desalination. Desalination, 2021, 498, 114740.	8.2	45
395	Exploratory development of dual-layer carbon–zeolite nanocomposite hollow fiber membranes with high performance for oxygen enrichment and natural gas separation. Microporous and Mesoporous Materials, 2008, 113, 315-324.	4.4	44
396	PVDF/Nanosilica Dual-Layer Hollow Fibers with Enhanced Selectivity and Flux as Novel Membranes for Ethanol Recovery. Industrial & Engineering Chemistry Research, 2012, 51, 978-993.	3.7	44

#	Article	IF	CITATIONS
397	Oxalic acid complexes: promising draw solutes for forward osmosis (FO) in protein enrichment. Chemical Communications, 2015, 51, 4854-4857.	4.1	44
398	Molecular Design of Nanofiltration Membranes for the Recovery of Phosphorus from Sewage Sludge. ACS Sustainable Chemistry and Engineering, 2016, 4, 5570-5577.	6.7	44
399	Enhancement of molecular-sieving properties by constructing surface nano-metric layer via vapor cross-linking. Journal of Membrane Science, 2016, 497, 248-258.	8.2	44
400	Molecular design of Tröger's base-based polymers with intrinsic microporosity for gas separation. Journal of Membrane Science, 2017, 521, 65-72.	8.2	44
401	Cleaning strategies and membrane flux recovery on anti-fouling membranes for pressure retarded osmosis. Journal of Membrane Science, 2017, 522, 116-123.	8.2	44
402	C2 and C3 hydrocarbon separations in poly(1,5-naphthalene-2,2′-bis(3,4-phthalic) hexafluoropropane) diimide (6FDA-1,5-NDA) dense membranes. Journal of Membrane Science, 2002, 210, 55-64.	8.2	43
403	Pervaporation study of water andtert-butanol mixtures. Journal of Applied Polymer Science, 2004, 91, 4082-4090.	2.6	43
404	Effects of thermally labile saccharide units on the gas separation performance of highly permeable polyimide membranes. Journal of Membrane Science, 2012, 415-416, 375-382.	8.2	43
405	Evaluation of hydroacid complex in the forward osmosis–membrane distillation (FO–MD) system for desalination. Journal of Membrane Science, 2015, 494, 1-7.	8.2	43
406	Metal–Organic Framework-Functionalized Alumina Membranes for Vacuum Membrane Distillation. Water (Switzerland), 2016, 8, 586.	2.7	43
407	Outer-selective thin film composite (TFC) hollow fiber membranes for osmotic power generation. Journal of Membrane Science, 2016, 505, 157-166.	8.2	43
408	Design and fabrication of inner-selective thin-film composite (TFC) hollow fiber modules for pressure retarded osmosis (PRO). Separation and Purification Technology, 2017, 172, 32-42.	7.9	43
409	H2/CO2 separation enhancement via chemical modification of polybenzimidazole nanostructure. Journal of Membrane Science, 2019, 572, 343-349.	8.2	43
410	Nanoclaysâ€Incorporated Thinâ€Film Nanocomposite Membranes for Reverse Osmosis Desalination. Advanced Materials Interfaces, 2020, 7, 1902108.	3.7	43
411	Fabrication of composite hollow fibers for air separation. Journal of Applied Polymer Science, 1994, 53, 701-708.	2.6	42
412	Natural gas purification and olefin/paraffin separation using cross-linkable dual-layer hollow fiber membranes comprising \hat{l}^2 -Cyclodextrin. Journal of Membrane Science, 2012, 423-424, 392-403.	8.2	42
413	Membrane development and energy analysis of freeze desalination-vacuum membrane distillation hybrid systems powered by LNG regasification and solar energy. Desalination, 2019, 449, 16-25.	8.2	42
414	Gas transport properties of 6FDA-durene/1,3-phenylenediamine (mPDA) copolyimides. Journal of Applied Polymer Science, 2001, 81, 3552-3564.	2.6	41

#	Article	IF	CITATIONS
415	Liquidlike Poly(ethylene glycol) Supported in the Organic–Inorganic Matrix for CO2Removal. Macromolecules, 2011, 44, 5268-5280.	4.8	41
416	Aging and carbon dioxide plasticization of thin polyetherimide films. Polymer, 2012, 53, 2099-2108.	3.8	41
417	PVDF hollow fibers with novel sandwich structure and superior wetting resistance for vacuum membrane distillation. Desalination, 2017, 417, 94-101.	8.2	41
418	Effects of hydrolyzed PIM-1 in polyimide-based membranes on C2–C4 alcohols dehydration via pervaporation. Journal of Membrane Science, 2017, 523, 430-438.	8.2	41
419	Developing ultra-high gas permeance PVDF hollow fibers for air filtration applications. Separation and Purification Technology, 2018, 205, 184-195.	7.9	41
420	High performance dual-layer hollow fiber membrane of sulfonated polyphenylsulfone/Polybenzimidazole for hydrogen purification. Journal of Membrane Science, 2019, 591, 117292.	8.2	41
421	Fabrication of defect-free thin-film nanocomposite (TFN) membranes for reverse osmosis desalination. Desalination, 2021, 516, 115230.	8.2	41
422	A vapor-phase surface modification method to enhance different types of hollow fiber membranes for industrial scale hydrogen separation. International Journal of Hydrogen Energy, 2010, 35, 8970-8982.	7.1	40
423	The development of high-performance 6FDA-NDA/DABA/POSS/Ultem® dual-layer hollow fibers for ethanol dehydration via pervaporation. Journal of Membrane Science, 2013, 447, 163-176.	8.2	40
424	The effect of purge environment on thermal rearrangement of ortho-functional polyamide and polyimide. Polymer, 2013, 54, 2324-2334.	3.8	40
425	Effects of Different Ionic Liquids as Green Solvents on the Formation and Ultrafiltration Performance of CA Hollow Fiber Membranes. Industrial & Engineering Chemistry Research, 2016, 55, 7505-7513.	3.7	40
426	Boron-embedded hydrolyzed PIM-1 carbon membranes for synergistic ethylene/ethane purification. Journal of Membrane Science, 2017, 534, 92-99.	8.2	40
427	Employing a green cross-linking method to fabricate polybenzimidazole (PBI) hollow fiber membranes for organic solvent nanofiltration (OSN). Separation and Purification Technology, 2021, 255, 117702.	7.9	40
428	Study on multi-layer composite hollow fiber membranes for gas separation. Chemical Engineering Science, 1999, 54, 675-684.	3.8	39
429	Transmission Electron Microscopy Observations on Lamellar Melting of Cold-Crystallized Isotactic Polystyrene. Macromolecules, 2001, 34, 4305-4307.	4.8	39
430	Gas-sorption properties of 6FDA-durene/1,4-phenylenediamine (pPDA) and 6FDA-durene/1,3-phenylenediamine (mPDA) copolyimides. Journal of Applied Polymer Science, 2003, 90, 2187-2193.	2.6	39
431	In-situ synthesis and cross-linking of polyamide thin film composite (TFC) membranes for bioethanol applications. Journal of Membrane Science, 2014, 458, 47-57.	8.2	39
432	Enhanced membrane systems to harvest water and provide comfortable air via dehumidification & moisture condensation. Separation and Purification Technology, 2019, 220, 136-144.	7.9	39

#	Article	IF	CITATIONS
433	Silver ionic modification in dual-layer hollow fiber membranes with significant enhancement in CO2/CH4 and O2/N2 separation. Journal of Membrane Science, 2010, 350, 226-231.	8.2	38
434	Hollow fiber membrane lumen modified by polyzwitterionic grafting. Journal of Membrane Science, 2017, 522, 1-11.	8.2	38
435	Molecular design of double crosslinked sulfonated polyphenylsulfone /polybenzimidazole blend membranes for an efficient hydrogen purification. Journal of Membrane Science, 2018, 563, 726-733.	8.2	38
436	A study on pilot-scale degassing by polypropylene (PP) hollow fiber membrane contactors. Desalination, 2008, 234, 316-322.	8.2	37
437	Cellulose esters for forward osmosis: Characterization of water and salt transport properties and free volume. Polymer, 2012, 53, 2664-2672.	3.8	37
438	Novel Cellulose Esters for Forward Osmosis Membranes. Industrial & Engineering Chemistry Research, 2012, 51, 16135-16145.	3.7	37
439	CO2-selective membranes for hydrogen purification and the effect of carbon monoxide (CO) on its gas separation performance. International Journal of Hydrogen Energy, 2012, 37, 6001-6011.	7.1	37
440	Tri-bore ultra-filtration hollow fiber membranes with a novel triangle-shape outer geometry. Journal of Membrane Science, 2014, 452, 212-218.	8.2	37
441	Pre-treatment of wastewater retentate to mitigate fouling on the pressure retarded osmosis (PRO) process. Separation and Purification Technology, 2019, 215, 390-397.	7.9	37
442	Ultra-strong polymeric hollow fiber membranes for saline dewatering and desalination. Nature Communications, 2021, 12, 2338.	12.8	37
443	The rheology of Torlon® solutions and its role in the formation of ultra-thin defect-free Torlon® hollow fiber membranes for gas separation. Journal of Membrane Science, 2009, 326, 608-617.	8.2	36
444	Facile Preparation of Antifouling Hollow Fiber Membranes for Sustainable Osmotic Power Generation. ACS Sustainable Chemistry and Engineering, 2016, 4, 1154-1160.	6.7	36
445	Effects of chemical structure on gas transport properties of polyethersulfone polymers. Polymer, 2018, 135, 76-84.	3.8	36
446	Fabrication of organic solvent nanofiltration membranes via facile bioinspired one-step modification. Chemical Engineering Science, 2019, 198, 74-84.	3.8	36
447	One-step cross-linking and tannic acid modification of polyacrylonitrile hollow fibers for organic solvent nanofiltration. Journal of Membrane Science, 2020, 610, 118294.	8.2	36
448	Production of ultrahigh-modulus liquid-crystal polymer rods. Journal of Polymer Science, Part B: Polymer Physics, 1988, 26, 1549-1552.	2.1	35
449	Pressure and temperature dependence of the gas-transport properties of dense poly[2,6-toluene-2,2-bis(3,4-dicarboxylphenyl)hexafluoropropane diimide] membranes. Journal of Polymer Science, Part B: Polymer Physics, 2004, 42, 354-364.	2.1	35
450	Pioneering explorations of rooting causes for morphology and performance differences in hollow fiber kidney dialysis membranes spun from linear and hyperbranched polyethersulfone. Journal of Membrane Science, 2008, 313, 190-198.	8.2	35

#	Article	IF	CITATIONS
451	Fabrication of porous and interconnected PBI/P84 ultrafiltration membranes using [EMIM]OAc as the green solvent. Chemical Engineering Science, 2013, 87, 194-203.	3.8	35
452	Fouling behaviors of polybenzimidazole (PBI)–polyhedral oligomeric silsesquioxane (POSS)/polyacrylonitrile (PAN) hollow fiber membranes for engineering osmosis processes. Desalination, 2014, 335, 17-26.	8.2	35
453	The Development of Novel Nexar Block Copolymer/Ultem Composite Membranes for C2–C4 Alcohols Dehydration via Pervaporation. ACS Applied Materials & Samp; Interfaces, 2014, 6, 13874-13883.	8.0	35
454	Forward Osmosis (FO) for Water Reclamation from Emulsified Oil/Water Solutions: Effects of Membrane and Emulsion Characteristics. ACS Sustainable Chemistry and Engineering, 2016, 4, 5021-5032.	6.7	35
455	Evolution of micro-deformation in inner-selective thin film composite hollow fiber membranes and its implications for osmotic power generation. Journal of Membrane Science, 2016, 516, 104-112.	8.2	35
456	Rheologically controlled design of nature-inspired superhydrophobic and self-cleaning membranes for clean water production. Npj Clean Water, 2020, 3, .	8.0	35
457	Optimization of TFC-PES hollow fiber membranes for reverse osmosis (RO) and osmotically assisted reverse osmosis (OARO) applications. Journal of Membrane Science, 2021, 625, 119156.	8.2	35
458	Thin-film nanocomposite reverse osmosis membranes incorporated with citrate-modified layered double hydroxides (LDHs) for brackish water desalination and boron removal. Desalination, 2022, 527, 115583.	8.2	35
459	High performance dual-layer hollow fiber fabricated via novel immiscibility induced phase separation (I2PS) process for dehydration of ethanol. Journal of Membrane Science, 2012, 421-422, 271-282.	8.2	34
460	A novel method of AquaporinZ incorporation via binary-lipid Langmuir monolayers. Colloids and Surfaces B: Biointerfaces, 2012, 89, 283-288.	5.0	34
461	Thin-film composite tri-bore hollow fiber (TFC TbHF) membranes for isopropanol dehydration by pervaporation. Journal of Membrane Science, 2014, 471, 155-167.	8.2	34
462	Nanoparticles Embedded in Amphiphilic Membranes for Carbon Dioxide Separation and Dehumidification. ChemSusChem, 2017, 10, 4046-4055.	6.8	34
463	Polyarylether membranes for dehydration of ethanol and methanol via pervaporation. Separation and Purification Technology, 2018, 193, 165-174.	7.9	34
464	Structural Tuning of Polymers of Intrinsic Microporosity via the Copolymerization with Macrocyclic 4â€ <i>tert</i> à€butylcalix[4]arene for Enhanced Gas Separation Performance. Advanced Sustainable Systems, 2018, 2, 1800044.	5.3	34
465	A governing equation for physical aging of thick and thin fluoropolyimide films. Journal of Applied Polymer Science, 2004, 92, 1758-1764.	2.6	33
466	Novel Polybenzimidazole (PBI) Nanofiltration Membranes for the Separation of Sulfate and Chromate from High Alkalinity Brine To Facilitate the Chlor-Alkali Process. Industrial & Engineering Chemistry Research, 2007, 46, 1572-1577.	3.7	33
467	Polybenzimidazoles (PBIs) and state-of-the-art PBI hollow fiber membranes for water, organic solvent and gas separations: a review. Journal of Materials Chemistry A, 2022, 10, 8687-8718.	10.3	33
468	A Critical Review of Polybenzimidazoles. Polymer Reviews, 1997, 37, 277-301.	10.9	32

#	Article	IF	CITATIONS
469	Rheology, morphology and properties of LCP/Nylon 66 composite fibers. Polymer Composites, 2000, 21, 114-123.	4.6	32
470	Universal surface modification by aldehydes on polymeric membranes for isopropanol dehydration via pervaporation. Journal of Membrane Science, 2015, 492, 197-208.	8.2	32
471	Effects of Pluronic F127 on phase inversion and membrane formation of PAN hollow fibers for air filtration. Journal of Membrane Science, 2019, 584, 137-147.	8.2	32
472	High performance polymer blends. , 1994, , 297-327.		31
473	Thermal decomposition behavior of main-chain thermotropic liquid crystalline polymers, Vectra A-950, B-950, and Xydar SRT-900. Journal of Applied Polymer Science, 1999, 73, 2195-2207.	2.6	31
474	Activated carbon-filled cellulose acetate hollow-fiber membrane for cell immobilization and phenol degradation. Journal of Applied Polymer Science, 2000, 76, 695-707.	2.6	31
475	Study and characterization of the hysteresis behavior of polyimide membranes in the thermal cycle process of pervaporation separation. Journal of Membrane Science, 2005, 253, 13-22.	8.2	31
476	The development of chemically modified P84 Co-polyimide membranes as supported liquid membrane matrix for Cu(II) removal with prolonged stability. Chemical Engineering Science, 2007, 62, 1721-1729.	3.8	31
477	Novel rectangular membranes with multiple hollow holes for ultrafiltration. Journal of Membrane Science, 2011, 372, 20-28.	8.2	31
478	Modifying the molecular structure and gas separation performance of thermally labile polyimide-based membranes for enhanced natural gas purification. Chemical Engineering Science, 2013, 104, 1056-1064.	3.8	31
479	Sulfonated hyperbranched polyglycerol grafted membranes with antifouling properties for sustainable osmotic power generation using municipal wastewater. Journal of Membrane Science, 2018, 563, 521-530.	8.2	31
480	Selection of crosslinkers and control of microstructure of vapor-phase crosslinked composite membranes for organic solvent nanofiltration. Journal of Membrane Science, 2020, 616, 118582.	8.2	31
481	Kinetics of thermal degradation of 6FDA based copolyimides—I. Polymer Degradation and Stability, 2002, 75, 273-285.	5.8	30
482	Schiff base reaction assisted one-step self-assembly method for efficient gravity-driven oil-water emulsion separation. Separation and Purification Technology, 2019, 213, 437-446.	7.9	30
483	Mitigation of inorganic fouling on pressure retarded osmosis (PRO) membranes by coagulation pretreatment of the wastewater concentrate feed. Journal of Membrane Science, 2019, 572, 658-667.	8.2	30
484	Determination of pore sizes and surface porosity and the effect of shear stress within a spinneret on asymmetric hollow fiber membranes. Journal of Membrane Science, 2001, 188, 29-37.	8.2	29
485	Highly permeable forward osmosis (FO) membranes for high osmotic pressure but viscous draw solutes. Journal of Membrane Science, 2015, 496, 132-141.	8.2	29
486	Mechanically Strong and Flexible Hydrolyzed Polymers of Intrinsic Microporosity (PIMâ€1) Membranes. Journal of Polymer Science, Part B: Polymer Physics, 2017, 55, 344-354.	2.1	29

#	Article	IF	CITATIONS
487	Pressure-assisted polydopamine modification of thin-film composite reverse osmosis membranes for enhanced desalination and antifouling performance. Desalination, 2022, 530, 115671.	8.2	29
488	Exploration of heavy metal ions transmembrane flux enhancement across a supported liquid membrane by appropriate carrier selection. Chemical Engineering Science, 2007, 62, 6032-6039.	3.8	28
489	Molecular interactions between polybenzimidazole and [EMIM]OAc, and derived ultrafiltration membranes for protein separation. Green Chemistry, 2012, 14, 1405.	9.0	28
490	Reduced thermal rearrangement temperature via formation of zeolitic imidazolate framework (ZIF)-8-based nanocomposites for hydrogen purification. Separation and Purification Technology, 2019, 212, 965-973.	7.9	28
491	Ultrahigh Flux Composite Hollow Fiber Membrane via Highly Crosslinked PDMS for Recovery of Hydrocarbons: Propane and Propene. Macromolecular Rapid Communications, 2018, 39, 1700535.	3.9	28
492	Macromolecular composites of extruded thermotropic polymer sheets. Journal of Macromolecular Science - Physics, 1984, 23, 497-509.	1.0	27
493	A pilot study on pressure retarded osmosis operation and effective cleaning strategies. Desalination, 2017, 420, 273-282.	8.2	27
494	WS2 deposition on cross-linked polyacrylonitrile with synergistic transformation to yield organic solvent nanofiltration membranes. Journal of Membrane Science, 2019, 588, 117219.	8.2	27
495	Emerging R&D on membranes and systems for water reuse and desalination. Chinese Journal of Chemical Engineering, 2019, 27, 1578-1585.	3 . 5	27
496	Highly permeable thin film composite hollow fiber membranes for brackish water desalination by incorporating amino functionalized carbon quantum dots and hypochlorite treatment. Journal of Membrane Science, 2021, 620, 118952.	8.2	27
497	Aging phenomenon of 6FDA-polyimide/polyacrylonitrile composite hollow fibers. Journal of Applied Polymer Science, 1996, 59, 77-82.	2.6	26
498	Effect of â^'C(CF3)2â^' on the Surface Energy of Main-Chain Liquid Crystalline and Crystalline Polymers. Journal of Physical Chemistry B, 2001, 105, 4145-4150.	2.6	26
499	Auto-catalyzed poly(ortho ester) microspheres: a study of their erosion and drug release mechanism. Journal of Controlled Release, 2001, 75, 11-25.	9.9	26
500	Novel microencapsulated curing accelerator for prolonging shelf life of epoxy resin composition. Journal of Applied Polymer Science, 2002, 85, 873-878.	2.6	26
501	Rheological investigations of linear and hyperbranched polyethersulfone towards their as-spun phase inversion membranes' differences. Polymer, 2009, 50, 524-533.	3.8	26
502	Physical aging, high temperature and water vapor permeation studies of UV-rearranged PIM-1 membranes for advanced hydrogen purification and production. International Journal of Hydrogen Energy, 2013, 38, 9786-9793.	7.1	26
503	Mitigating the Hydraulic Compression of Nanofiltration Hollow Fiber Membranes through a Single-Step Direct Spinning Technique. Environmental Science & Environmental Science & 2014, 48, 13933-13940.	10.0	26
504	<i>Inâ€situ</i> crossâ€linked PVDF membranes with enhanced mechanical durability for vacuum membrane distillation. AICHE Journal, 2016, 62, 4013-4022.	3 . 6	26

#	Article	IF	Citations
505	Hydrophobic Perfluoropolyether-Coated Thin-Film Composite Membranes for Organic Solvent Nanofiltration. ACS Applied Polymer Materials, 2019, 1, 472-481.	4.4	26
506	Investigation of novel molecularly tunable thin-film nanocomposite nanofiltration hollow fiber membranes for boron removal. Journal of Membrane Science, 2021, 620, 118887.	8.2	26
507	Nanovoid-Enhanced Thin-Film Composite Reverse Osmosis Membranes Using ZIF-67 Nanoparticles as a Sacrificial Template. ACS Applied Materials & Sacrificial Template.	8.0	26
508	Film and membrane properties of polybenzimidazole (PBI) and polyarylate alloys. Polymer Engineering and Science, 1990, 30, 1-6.	3.1	26
509	Pressure build-up during the packing stage of injection molding. Polymer Engineering and Science, 1985, 25, 772-777.	3.1	25
510	Development of Novel Multichannel Rectangular Membranes with Grooved Outer Selective Surface for Membrane Distillation. Industrial & Engineering Chemistry Research, 2011, 50, 14046-14054.	3.7	25
511	Pushing the limits of high performance dualâ€layer hollow fiber fabricated via I ² PS process in dehydration of ethanol. AICHE Journal, 2013, 59, 3006-3018.	3.6	25
512	Characteristics of water and salt transport, free volume and their relationship with the functional groups of novel cellulose esters. Polymer, 2013, 54, 4560-4569.	3.8	25
513	Green Layerâ€byâ€Layer Method for the Preparation of Polyacrylonitrileâ€Supported Zinc Benzeneâ€1,4â€dicarboxylic Acid Membranes. ChemSusChem, 2018, 11, 2612-2619.	6.8	25
514	Effects of relative humidity, particle hygroscopicity, and filter hydrophilicity on filtration performance of hollow fiber air filters. Journal of Membrane Science, 2020, 595, 117561.	8.2	25
515	Effects of spacer arm length and benzoation on enantioseparation performance of \hat{l}^2 -cyclodextrin functionalized cellulose membranes. Journal of Membrane Science, 2009, 339, 21-27.	8.2	24
516	Elimination of die swell and instability in hollow fiber spinning process of hyperbranched polyethersulfone (HPES) via novel spinneret designs and precise spinning conditions. Chemical Engineering Journal, 2010, 163, 143-153.	12.7	24
517	Gypsum (CaSO4·2H2O) Scaling on Polybenzimidazole and Cellulose Acetate Hollow Fiber Membranes under Forward Osmosis. Membranes, 2013, 3, 354-374.	3.0	24
518	Teflon AF2400/polyethylene membranes for organic solvent nanofiltration (OSN). Journal of Membrane Science, 2020, 602, 117972.	8.2	24
519	Thermal analysis of vectra B950 liquid crystal polymer. Polymer Engineering and Science, 1999, 39, 953-962.	3.1	23
520	The physical aging phenomenon of 6FDA-durene polyimide hollow fiber membranes. Journal of Polymer Science, Part B: Polymer Physics, 2000, 38, 765-775.	2.1	23
521	Experimental and computational studies of membrane extraction of Cu(II). AICHE Journal, 2006, 52, 3266-3277.	3.6	23
522	Sandwich-structured hollow fiber membranes for osmotic power generation. Desalination, 2015, 376, 73-81.	8.2	23

#	Article	IF	Citations
523	In situ regulation of micro-pore to design high performance polyimide membranes for pervaporation dehydration of isopropanol. Journal of Membrane Science, 2015, 493, 299-310.	8.2	23
524	Dual-skinned polyamide/poly(vinylidene fluoride)/cellulose acetate membranes with embedded woven. Journal of Membrane Science, 2016, 520, 840-849.	8.2	23
525	Analysis of flux reduction behaviors of PRO hollow fiber membranes: Experiments, mechanisms, and implications. Journal of Membrane Science, 2016, 505, 1-14.	8.2	23
526	Preparation and Characterization of 4,4′-Bis(4-aminophenoxy)diphenyl Sulfone Based Fluoropoly(ether-imide)/Organo-Modified Clay Nanocomposites. Macromolecular Materials and Engineering, 2003, 288, 337-356.	3.6	22
527	The exploration of the reversed enantioselectivity of a chitosan functionalized cellulose acetate membranes in an electric field driven process. Journal of Membrane Science, 2012, 389, 372-379.	8.2	22
528	Study on water transport through a mechanically robust Aquaporin Z biomimetic membrane. Journal of Membrane Science, 2013, 445, 47-52.	8.2	22
529	Exploring the spinning and operations of multibore hollow fiber membranes for vacuum membrane distillation. AICHE Journal, 2014, 60, 1078-1090.	3.6	22
530	Permeability, Solubility, Diffusivity, and PALS Data of Cross-linkable 6FDA-based Copolyimides. Industrial & Engineering Chemistry Research, 2014, 53, 2449-2460.	3.7	22
531	Hydroxyl-terminated poly(ethyleneimine) polymer enhanced ultrafiltration for boron removal. Separation and Purification Technology, 2019, 222, 214-220.	7.9	22
532	Tunable Supramolecular Cavities Molecularly Homogenized in Polymer Membranes for Ultraefficient Precombustion CO ₂ Capture. Advanced Materials, 2022, 34, e2105156.	21.0	22
533	Supramolecular Polymer Network Membranes with Molecularâ€Sieving Nanocavities for Efficient Preâ€Combustion CO ₂ Capture. Small Methods, 2022, 6, e2101288.	8.6	22
534	POE–PEG–POE triblock copolymeric microspheres containing protein. Journal of Controlled Release, 2001, 75, 129-141.	9.9	21
535	Effects of Si–O–Si Agglomerations on CO2Transport and Separation Properties of Sol-Derived Nanohybrid Membranes. Macromolecules, 2011, 44, 6057-6066.	4.8	21
536	Mass transport of various membrane configurations in pressure retarded osmosis (PRO). Journal of Membrane Science, 2017, 537, 160-176.	8.2	21
537	UiO-66-NH2 incorporated dual-layer hollow fibers made by immiscibility induced phase separation (I2PS) process for ethanol dehydration via pervaporation. Journal of Membrane Science, 2020, 595, 117571.	8.2	21
538	3D-macrocycles impregnated polybenzimidazole hollow fiber membranes with excellent organic solvent resistance for industrial solvent recovery. Journal of Membrane Science, 2021, 638, 119678.	8.2	21
539	Mechanically strong Janus tri-bore hollow fiber membranes with asymmetric pores for anti-wetting and anti-fouling membrane distillation. Chemical Engineering Journal, 2022, 429, 132455.	12.7	21
540	Fluid behavior and orientation developments during extrusion of liquid-crystal polymeric rods. Journal of Polymer Science, Part C: Polymer Letters, 1986, 24, 299-303.	0.7	20

#	Article	IF	CITATIONS
541	Understanding of low osmotic efficiency in forward osmosis: Experiments and modeling. Desalination, 2013, 313, 156-165.	8.2	20
542	Food sustainability by designing and modelling a membrane controlled atmosphere storage system. Journal of Food Engineering, 2013, 114, 361-374.	5.2	20
543	Thickness dependent thermal rearrangement of an ortho-functional polyimide. Journal of Membrane Science, 2014, 450, 308-312.	8.2	20
544	Teflon AF2400/Ultem composite hollow fiber membranes for alcohol dehydration by highâ€temperature vapor permeation. AICHE Journal, 2016, 62, 1747-1757.	3.6	20
545	Synthesis and structure of wholly aromatic liquid-crystalline polyesters containing meta- and ortholinkages. Journal of Polymer Science Part A, 2001, 39, 1242-1248.	2.3	19
546	Experiments and Modeling of Boric Acid Permeation through Double-Skinned Forward Osmosis Membranes. Environmental Science & En	10.0	19
547	Two-dimensional (2D) particle coating on membranes for pervaporation dehydration of isopropanol: A new approach to seal defects and enhance separation performance. Journal of Membrane Science, 2017, 544, 378-387.	8.2	19
548	Thermally evolved and boron bridged graphene oxide (GO) frameworks constructed on microporous hollow fiber substrates for water and organic matters separation. Carbon, 2017, 123, 193-204.	10.3	19
549	Optimization of interfacial polymerization to fabricate thin-film composite hollow fiber membranes in modules for brackish water reverse osmosis. Journal of Membrane Science, 2021, 626, 119187.	8.2	19
550	Polybenzimidazole and polysulfone blends. Polymer Engineering and Science, 1993, 33, 1042-1048.	3.1	18
551	Novel thin-film polymerization and time evolution of liquid crystal texture during polymerization. Chemical Engineering Science, 1999, 54, 663-674.	3.8	18
552	Effect of polymer compositions on the fabrication of poly(ortho-ester) microspheres for controlled release of protein. Journal of Applied Polymer Science, 2001, 80, 1630-1642.	2.6	18
553	Using iron (III) acetylacetonate as both a cross-linker and micropore former to develop polyimide membranes with enhanced gas separation performance. Separation and Purification Technology, 2014, 133, 120-128.	7.9	18
554	Cooling Crystallization of Sodium Chloride via Hollow Fiber Devices to Convert Waste Concentrated Brines to Useful Products. Industrial & Engineering Chemistry Research, 2017, 56, 10183-10192.	3.7	18
555	The Role of Fluorinated Aryl Ether Moiety in Polyimide- <i>co</i> -etherimide on Gas Transport Properties. Industrial & Description of the Properties of the P	3.7	18
556	Modification of the commercial carrier in supported liquid membrane system to enhance lactic acid flux and to separate l,d-lactic acid enantiomers. Journal of Membrane Science, 2007, 294, 127-131.	8.2	17
557	Engineering design of outerâ€selective tribore hollow fiber membranes for forward osmosis and oilâ€water separation. AICHE Journal, 2015, 61, 4491-4501.	3.6	17
558	Polyphenylsulfone (PPSU)-Based Copolymeric Membranes: Effects of Chemical Structure and Content on Gas Permeation and Separation. Polymers, 2021, 13, 2745.	4.5	17

#	Article	IF	Citations
559	Analysis of the packing stage in injection molding of disk cavities. Journal of Applied Polymer Science, 1983, 28, 2999-3002.	2.6	16
560	Cure mechanism of a modified nitrile epoxy adhesive. Journal of Applied Polymer Science, 1984, 29, 4403-4406.	2.6	16
561	Miscibility of fluoro-containing polyimide blends. Polymer, 1996, 37, 1635-1640.	3.8	16
562	Revisit the crystallization mechanism of vectra,? a liquid crystal polymer. Journal of Applied Polymer Science, 1999, 72, 1139-1150.	2.6	16
563	Effect of catalysts on thin-film polymerization of thermotropic liquid crystalline copolyester. Journal of Polymer Science Part A, 2000, 38, 1257-1269.	2.3	16
564	Micelle-like macrovoids in mixed matrix PVDF-PTFE hollow fiber membranes. Journal of Membrane Science, 2009, 338, 5-10.	8.2	16
565	Integration of membrane distillation (MD) and solid hollow fiber cooling crystallization (SHFCC) systems for simultaneous production of water and salt crystals. Journal of Membrane Science, 2018, 564, 905-915.	8.2	16
566	Solvent Recovery via Organic Solvent Pressure Assisted Osmosis. Industrial & Engineering Chemistry Research, 2019, 58, 4970-4978.	3.7	16
567	Fabrication of thin-film composite hollow fiber membranes in modules for concentrating pharmaceuticals and separating sulphate from high salinity brine in the chlor-alkali process. Journal of Membrane Science, 2021, 640, 119822.	8.2	16
568	Thermotropic polyester amide-carbon fiber composites. Journal of Applied Polymer Science, 1986, 31, 965-977.	2.6	15
569	Phase-Inversion Poly(ether imide) Membranes Prepared from Water-Miscible/Immiscible Mixture Solvents. Industrial & Engineering Chemistry Research, 1999, 38, 2650-2658.	3.7	15
570	Preferential Solvation Stabilization for Hydrophobic Polymeric Nanoparticle Fabrication. Journal of Physical Chemistry B, 2005, 109, 13877-13882.	2.6	15
571	Development of high-performance polysulfone/poly(4-vinylpyridine) composite hollow fibers for CO2/CH4 separation. Desalination, 2006, 192, 112-116.	8.2	15
572	High-affinity sulfonated materials with transition metal counterions for enhanced protein separation in dual-layer hollow fiber membrane chromatography. Journal of Chromatography A, 2008, 1187, 285-288.	3.7	15
573	Dehydration of industrial isopropanol (IPA) waste by pervaporation and vapor permeation membranes. Journal of Applied Polymer Science, 2018, 135, 45086.	2.6	15
574	Osmotic power generation by inner selective hollow fiber membranes: An investigation of thermodynamics, mass transfer, and module scale modelling. Journal of Membrane Science, 2017, 526, 417-428.	8.2	14
575	Advanced multiple-layer composite CTA/CDA hollow fiber membranes for CO2 separations. Journal of Membrane Science, 2021, 625, 119124.	8.2	14
576	Novel Cellulose Triacetate (CTA)/Cellulose Diacetate (CDA) Blend Membranes Enhanced by Amine Functionalized ZIF-8 for CO2 Separation. Polymers, 2021, 13, 2946.	4.5	14

#	Article	IF	CITATIONS
577	Effects of monomer structures on the evolution of liquid-crystal texture and crystallization during thin-film polymerization. Journal of Polymer Science, Part B: Polymer Physics, 1999, 37, 3084-3096.	2.1	13
578	Configuration effects of ortho, meta, and para linkages on liquid crystallinity during thin-film polymerization of poly(ester-amide)s. Journal of Polymer Science, Part B: Polymer Physics, 2000, 38, 2221-2231.	2.1	13
579	Studies on the phase transition and thermal stability of Xydar and Zenite series liquid crystalline polymers. Polymer Engineering and Science, 2000, 40, 841-856.	3.1	13
580	Morphology Control and Mechanical Properties of Liquid Crystalline Polymer-Polyamide Composite Fibers. Polymer Journal, 2002, 34, 575-583.	2.7	13
581	Bulk Viscosity and Its Unstable Behavior upon Storage in Polyimide Precursor Solutions. Industrial & Lamp; Engineering Chemistry Research, 2002, 41, 4266-4272.	3.7	13
582	Novel Approach to Fabricate Carbon Molecular-Sieve Membranes Based on Consideration of Interpenetrating Networks. Macromolecular Rapid Communications, 2004, 25, 1247-1250.	3.9	13
583	Exploration of ionic modification in dualâ€layer hollow fiber membranes for longâ€term highâ€performance protein separation. AICHE Journal, 2009, 55, 321-330.	3.6	13
584	A fine match between the stereoselective ligands and membrane pore size for enhanced chiral separation. AICHE Journal, 2009, 55, 2284-2291.	3.6	13
585	Exploration of regeneration and reusability of human serum albumin as a stereoselective ligand for chiral separation in affinity ultrafiltration. Journal of Membrane Science, 2010, 362, 501-508.	8.2	13
586	Revitalize integrally skinned hollow fiber membranes with spatially impregnated 3D-macrocycles for organic solvent nanofiltration. Chemical Engineering Journal, 2021, 422, 130015.	12.7	13
587	Braid-reinforced polybenzimidazole (PBI) hollow fiber membranes for organic solvent nanofiltration (OSN). Separation and Purification Technology, 2022, 290, 120811.	7.9	13
588	Phase Separation and Coalescence, Annihilation of Liquid Crystal Textures during Polymerization of Main-Chain Liquid Crystalline Polyesters. Journal of Physical Chemistry B, 1999, 103, 4923-4932.	2.6	12
589	Influence of contaminants in glycerol/water mixtures during post-treatment on physicochemical properties and separation performance of air-dried membranes. Journal of Membrane Science, 2019, 572, 223-229.	8.2	12
590	Unlock the secret of air blowing in developing high strength and superhydrophobic membranes for membrane distillation. Desalination, 2022, 527, 115579.	8.2	12
591	The potential of calixarenes for membrane separation. Chemical Engineering Research and Design, 2022, 183, 538-545.	5.6	12
592	Rheological behavior and prediction for blending conditions of a thermotropic liquid crystalline polyester with nylon. Polymers for Advanced Technologies, 2000, 11, 153-158.	3.2	11
593	The facile synthesis of an aldehyde-containing graft copolymer membrane for covalent protein capture with retention of protein functionality. Journal of Chromatography A, 2010, 1217, 1904-1911.	3.7	11
594	Osmotic power production from seawater brine by hollow fiber membrane modules: Net power output and optimum operating conditions. AICHE Journal, 2016, 62, 1216-1225.	3.6	11

#	Article	IF	Citations
595	Maximize the operating profit of a SWRO-PRO integrated process for optimal water production and energy recovery. Renewable Energy, 2016, 94, 304-313.	8.9	11
596	The effect of melt compressibility on a high-speed wire-coating process. Polymer Engineering and Science, 1986, 26, 410-414.	3.1	10
597	Novel hollow fiber membranes with defined unit-step morphological change. Journal of Membrane Science, 2001, 193, 123-128.	8.2	10
598	Novel membrane processes for the enantiomeric resolution of tryptophan by selective permeation enhancements. AICHE Journal, 2011, 57, 1154-1162.	3.6	10
599	A Conceptual Demonstration of Decaffeination via Nanofiltration. Industrial & Engineering Chemistry Research, 2015, 54, 7737-7742.	3.7	10
600	Halo formation in asymmetric polyetherimide and polybenzimidazole blend hollow fiber membranes. Journal of Polymer Science, Part B: Polymer Physics, 1999, 37, 1575-1585.	2.1	9
601	Molecular mass determination of polyamic acid ionic salt by size-exclusion chromatography. Journal of Chromatography A, 2002, 977, 207-212.	3.7	9
602	Enantiomeric resolution of tryptophan via stereoselective binding in an ion-exchange membrane partitioned free flow isoelectric focusing system. Chemical Engineering Journal, 2011, 174, 522-529.	12.7	9
603	Haze particles removal and thermally induced membrane dehumidification system. Separation and Purification Technology, 2017, 185, 24-32.	7.9	9
604	Membranes made from nonsolvent-thermally induced phase separation (N-TIPS) for decellularization of blood in dry plasma spot (DPS) applications. Chemical Engineering Science, 2021, 229, 116010.	3.8	9
605	Forward osmosis for heavy metal removal: Multi-charged metallic complexes as draw solutes. Desalination, 2022, 539, 115924.	8.2	9
606	Improvement of LPS-based command surfaces: effect of inserting a flexible disiloxane segment into the azo side chain on photo-driven response. Liquid Crystals, 2000, 27, 1683-1689.	2.2	8
607	The Effect of -(C6F4)- on the Surface Free Energy of Main-Chain Liquid Crystalline and Crystalline Polymers. Macromolecular Rapid Communications, 2001, 22, 835-841.	3.9	8
608	Solâ^'Gel Synthesis and Characterization of SrFeCo0.5O3.25-ÎPowder. Industrial & Engineering Chemistry Research, 2002, 41, 5432-5435.	3.7	8
609	Hydrogen storage in molecular clathrate cages under conditions of moderate pressure and ambient temperature. International Journal of Hydrogen Energy, 2018, 43, 19998-20003.	7.1	8
610	Experimental and theoretical estimations of surface tensions for commercial liquid crystalline polymers, VectraTM A-950, B-950 and XydarTM SRT-900. Macromolecular Chemistry and Physics, 1998, 199, 1013-1017.	2.2	7
611	Evolution of Surface Free Energy during Thin-Film Polymerization of Main-Chain Liquid Crystalline Polymers. Journal of Physical Chemistry B, 1999, 103, 108-114.	2.6	7
612	Anisotropic dielectric properties of polyimides consisting of various molar ratios ofmeta topara diamine with trifluoromethyl group. Polymer Engineering and Science, 2001, 41, 1783-1793.	3.1	7

#	Article	IF	Citations
613	Thin-film polymerization and â€~RIS' Metropolis Monte Carlo simulation of fluorinated aromatic copoly(ester–amide)s. Polymer, 2005, 46, 3914-3926.	3.8	7
614	A New Testing System To Determine the O2/N2Mixed-Gas Permeation through Hollow-Fiber Membranes with an Oxygen Analyzer. Industrial & Engineering Chemistry Research, 2006, 45, 871-874.	3.7	7
615	Self-sharpening phenomenon arisen by ion-exchange membranes in multi-compartment free-flow isoelectric focusing (IEM-FFIEF). Chemical Engineering Science, 2009, 64, 5222-5230.	3.8	7
616	Surface Functionalization of Polybenzimidazole Membranes To Increase Hydrophilicity and Charge. ACS Symposium Series, 2011, , 303-321.	0.5	7
617	Particle grouping and agglomeration assisted by damper oscillation systems. Separation and Purification Technology, 2018, 207, 12-19.	7.9	7
618	Nanostructured Membranes for Enhanced Forward Osmosis and Pressure-Retarded Osmosis. , 2020, , 373-394.		7
619	Plasticization-enhanced trimethylbenzene functionalized polyethersulfone hollow fiber membranes for propylene and propane separation. Journal of Membrane Science, 2022, 647, 120293.	8.2	7
620	The effect of lithium chloride on polybenzimidazole and polysulfone blend fibers. Polymer Engineering and Science, 1994, 34, 428-433.	3.1	6
621	A simple approach to estimate gas permeability and selectivity of extremely thin and brittle materials. Chemical Engineering Science, 2000, 55, 1093-1099.	3.8	6
622	Synthesis and mesomorphic properties of a novel ladder-like 1,4-phenylene-bridged liquid crystalline polysiloxane containing ester-based mesogenic side groups. Liquid Crystals, 2001, 28, 35-43.	2.2	6
623	Studies on ionic salt of polyamic acid and related compounds. Journal of Polymer Research, 2005, 11, 299-308.	2.4	6
624	Solvent selection for manufacture of fluorinated polyimide composite membranes. Desalination, 2006, 193, 8-13.	8.2	6
625	Highly Permeable and Selective Poreâ€Spanning Biomimetic Membrane Embedded with Aquaporin Z. Small, 2012, 8, 1969-1969.	10.0	6
626	Emerging membrane technologies developed in NUS for water reuse and desalination applications: membrane distillation and forward osmosis. Membrane Water Treatment, 2011, 2, 1-24.	0.5	6
627	Experimental and theoretical estimations of surface tensions for commercial liquid crystalline polymers, Vectraâ,, A-950, B-950 and Xydarâ, SRT-900. Macromolecular Chemistry and Physics, 1998, 199, 1013-1017.	2.2	6
628	Mathematical Modeling of Air-Drag Spinning for Nonwoven Fabrics. Polymer-Plastics Technology and Engineering, 1985, 24, 117-127.	1.9	5
629	Laser-induced fluid motion on a dye/polymer layer for optical data storage. AICHE Journal, 1987, 33, 1041-1044.	3.6	5
630	Effect of a fluorine lateral moiety on the liquid crystallinity of wholly aromatic polyester-amides. Polymer, 2002, 43, 7433-7441.	3.8	5

#	Article	IF	CITATIONS
631	Surface Microcracks Decoration and Disclination Defects of Wholly Aromatic Liquid Crystalline Copolyesters. Journal of Physical Chemistry B, 2006, 110, 5889-5896.	2.6	5
632	Design and fabrication of hollow fiber membrane modules. , 2021, , 225-252.		5
633	Analysis of the calendering of compressible fluids. Journal of Applied Polymer Science, 1983, 28, 2119-2124.	2.6	4
634	Isothermal steady spinning of an oldroyd fluid B. AICHE Journal, 1985, 31, 857-859.	3.6	4
635	Synthesis and characterization of a metal chelate-bridged quasi-ladder main chain discotic liquid crystal polymer. Liquid Crystals, 2001, 28, 477-481.	2.2	4
636	Aromatic liquid-crystalline polyesters comprising a 2,5-thiophene unit synthesized and studied by the thin-film polymerization method. Journal of Materials Research, 2003, 18, 1509-1521.	2.6	4
637	Synthesis of mosaic membranes and application for egg white protein fractionation by partitioned free-flow isoelectric focusing (FFIEF). Journal of Membrane Science, 2010, 353, 94-102.	8.2	4
638	Characterizing free volumes and layer structures in polymeric membranes using slow positron annihilation spectroscopy. Journal of Physics: Conference Series, 2011, 262, 012027.	0.4	4
639	Delamination of single layer hollow fiber membranes induced by bi-directional phase separation. Journal of Membrane Science, 2021, 622, 118992.	8.2	4
640	Molecular elucidation of morphology and mechanical properties of PVDF hollow fiber membranes from aspects of phase inversion, crystallization, and rheology., 2021,, 333-360.		4
641	Novel Sandwich-Structured Hollow Fiber Membrane for High-Efficiency Membrane Distillation and Scale-Up for Pilot Validation. Membranes, 2022, 12, 423.	3.0	4
642	Principles of Preform Design for Stretch Blow Molding Process. Polymer-Plastics Technology and Engineering, 1983, 20, 147-160.	1.9	3
643	Ternary fluoro-containing polyimide blends and fluoro-containing polyimide/polyester blends. Polymers for Advanced Technologies, 1997, 8, 537-544.	3.2	3
644	Synthesis and characterization of a novel polyorganosiloxane having a bigger sized tubular structure and its supramolecular clathrate. Polymers for Advanced Technologies, 2002, 13, 188-195.	3.2	3
645	Molecular design of liquid crystalline poly(ester-amide)s with perfluoroalkyl spacers. Liquid Crystals, 2004, 31, 871-881.	2.2	3
646	Crystallization of Main Chain Liquid Crystalline Polymers. , 2001, , .		3
647	Effect of Polymer Material Behavior on a Tubular Membrane Deformation. International Journal of Polymeric Materials and Polymeric Biomaterials, 1984, 10, 249-257.	3.4	2
648	AN UNDERSTANDING OF THE FLUID MOTION AND PRESSURE BUILD-UP IN A NON-ISOTHERMAL INJECTION MOLD PACKING STAGE. Journal of Polymer Engineering, 1988, 8, .	1.4	2

#	Article	IF	Citations
649	Dynamic Responses of a Thermotropic Main-Chain Liquid Crystalline Polyester during Polymerization under Electric Fields. Journal of Physical Chemistry B, 2000, 104, 10506-10512.	2.6	2
650	Thin-film polymerization and characterization of Sumitomo's Sumikasuper \hat{A}^{\otimes} -type liquid crystalline polymers. Liquid Crystals, 2003, 30, 753-764.	2.2	2
651	Thin-film polymerization and Metropolis Monte Carlo simulation of thermotropic liquid crystalline poly(ester-amide)s. Synthetic Metals, 2004, 147, 191-197.	3.9	2
652	High recovery, pointâ€ofâ€collection plasma separation from blood using electrospun polyacrylonitrile membranes. AICHE Journal, 2021, 67, e17088.	3.6	2
653	Macrovoid evolution and critical factors to form macrovoid-free hollow fiber membranes., 2021,, 141-161.		2
654	The thickness and air gap dependence of macrovoid evolution in phase-inversion asymmetric hollow fiber membranes., 2021,, 123-140.		2
655	Evolution of surface chemistry and physical properties during thin film polymerization of thermotropic liquid crystalline polymers. Journal of Adhesion Science and Technology, 1999, 13, 1193-1208.	2.6	1
656	Calorimetry as a Tool for Predicting Bulk Viscosity Drift of Polyamic Acid Ionic Salt Solutions Analytical Sciences, 2002, 18, 211-214.	1.6	1
657	Investigation of the Effect of an Ether Moiety on the Liquid Crystallinity by Thin Film Polymerization. Macromolecular Chemistry and Physics, 2002, 203, 122-128.	2.2	1
658	Micro- and nanomorphologies of isotactic polystyrene revealed by PLM, AFM, and TEM. Journal of Applied Polymer Science, 2002, 86, 422-427.	2.6	1
659	Dynamics of Defect Annihilations in Polymerization of Aromatic Liquid Crystalline Polyesters. Journal of Physical Chemistry B, 2004, 108, 1596-1603.	2.6	1
660	Forward Osmosis Membranes: Synthesis and Characterization. , 2015, , 151-180.		1
661	Membrane Distillation, Forward Osmosis, and Pressure-Retarded Osmosis Through Polymer Membranes., 2018,, 323-346.		1
662	Hollow-Fiber Membranes for Salinity Gradient Processes. , 2018, , 175-200.		1
663	Polyimide hollow fiber membranes and their applications. , 2021, , 361-383.		1
664	The effects of spinneret dimension and hollow fiber dimension on gas separation performance of ultra-thin defect-free Torlon hollow fiber membranes. , 2021, , 187-205.		1
665	The investigation of irregular inner skin morphology of hollow fiber membranes at high-speed spinning and the solutions to overcome it., 2021,, 105-122.		1
666	A note on the role of diffusion during the inflation of a tubular viscoelastic film. Polymer Engineering and Science, 1984, 24, 1249-1252.	3.1	0

#	Article	IF	CITATIONS
667	The effect of diffusion on the inflation of a spherical viscoelastic film. Chemical Engineering Science, 1985, 40, 1608-1610.	3.8	O
668	Reply to comment on "Exploration of heavy metal ions transmembrane flux enhancement across a supported liquid membrane by appropriate carrier selection―[Chemical Science Engineering 62 (2007) 6032–6039]. Chemical Engineering Science, 2009, 64, 613.	3.8	0
669	Reply to the Rebuttal "Rebuttal to the Reply to comment on †Exploration of heavy metal ions transmembrane flux enhancement across a supported liquid membrane by appropriate carrier selection'―[Chem. Eng. Sci. 62 (2007) 6032†6039]. Chemical Engineering Science, 2009, 64, 616.	3.8	0
670	Materials for Water Remediation (Membranes). , 2016, , 37-74.		0
671	Investigation of corrugation phenomenon in the inner contour of hollow fibers during the nonsolvent-induced phase-separation process., 2021,, 85-104.		0
672	Hollow fiber membranes for membrane distillation applications. , 2021, , 495-521.		0
673	High performance dual-layer hollow fiber fabricated via novel immiscibility-induced phase separation (I2PS) process for dehydration of ethanol., 2021,, 407-430.		0
674	Design and fabrication of lotus root-like multibore hollow fiber membrane for direct contact membrane distillation., 2021,, 291-314.		0
675	Rheology and phase inversion behavior of polyphenylenesulfone (PPSU) and sulfonated PPSU for membrane formation., 2021,, 163-185.		0
676	Solvent transport properties of POSS nanocomposites. , 2021, , 405-419.		0
677	Fabrication and applications of polyethersulfone hollow fiber membranes. , 2021, , 315-332.		0
678	The Thermal Stability and Degradation Behavior of Thermotropic Liquid Crystalline Polymers (TLCPs)., 2001,,.		0
679	Introduction of Liquid Crystalline Materials. , 2001, , .		0
680	Reply from Honglei Wang, Tai-Shung Chung, Yen Wah Tong, Wenyuan Xie and Fang He. General Physiology and Biophysics, 2013, 32, 595-596.	0.9	0
681	Scale Up and Validation of Novel Tri-Bore PVDF Hollow Fiber Membranes for Membrane Distillation Application in Desalination and Industrial Wastewater Recycling. Membranes, 2022, 12, 573.	3.0	0