Christine Dupont-Gillain

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5340636/publications.pdf

Version: 2024-02-01

279798 361022 66 1,493 23 35 citations h-index g-index papers 69 69 69 2122 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Layer-by-Layer Nanoarchitectonics Using Protein–Polyelectrolyte Complexes toward a Generalizable Tool for Protein Surface Immobilization. Langmuir, 2022, 38, 5579-5589.	3.5	11
2	Effect of nanoconfinement on the enzymatic activity of bioactive layer-by-layer assemblies in nanopores. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 647, 129059.	4.7	1
3	Confined adsorption within nanopatterns as generic means to drive high adsorption efficiencies on affinity sensors. Sensors and Actuators B: Chemical, 2022, 366, 131945.	7.8	4
4	Gas Cluster Ion Beams as a Versatile Soft-Landing Tool for the Controlled Construction of Thin (Bio)Films. ACS Applied Bio Materials, 2022, 5, 3180-3192.	4.6	8
5	Hybrid chemoenzymatic heterogeneous catalyst prepared in one step from zeolite nanocrystals and enzyme–polyelectrolyte complexes. Nanoscale Advances, 2021, 3, 1646-1655.	4.6	16
6	Deposition of Intact and Active Proteins In Vacuo Using Large Argon Cluster Ion Beams. Journal of Physical Chemistry Letters, 2021, 12, 952-957.	4.6	9
7	Improvement of biomolecular analysis in thin films using <i>in situ</i> in situin matrix enhanced secondary ion mass spectrometry. Analyst, The, 2021, 146, 6506-6519.	3.5	5
8	Quantifying Analyte Surface Densities and Their Distribution with Respect to Electromagnetic Hot Spots in Plasmon-Enhanced Spectroscopic Biosensors. Journal of Physical Chemistry C, 2021, 125, 9866-9874.	3.1	2
9	Embedding Collagen in Multilayers for Enzyme-Assisted Mineralization: A Promising Way to Direct Crystallization in Confinement. Biomacromolecules, 2021, 22, 3460-3473.	5.4	5
10	Unravelling surface changes on Cu-Ni alloy upon immersion in aqueous media simulating catalytic activity of aerobic biofilms. Applied Surface Science, 2020, 503, 144081.	6.1	8
11	Use of a quartz crystal microbalance platform to study protein adsorption on aluminum hydroxide vaccine adjuvants: Focus on phosphate-hydroxide ligand exchanges. International Journal of Pharmaceutics, 2020, 573, 118834.	5.2	3
12	Highly Hydrated Thin Films Obtained via Templating of the Polyelectrolyte Multilayer Internal Structure with Proteins. ACS Applied Polymer Materials, 2020, 2, 2602-2611.	4.4	3
13	Large cluster ions: soft local probes and tools for organic and bio surfaces. Physical Chemistry Chemical Physics, 2020, 22, 17427-17447.	2.8	29
14	Self-Reorganizing Multilayer to Release Free Proteins from Self-Assemblies. Langmuir, 2020, 36, 972-978.	3.5	7
15	Protein-based polyelectrolyte multilayers. Advances in Colloid and Interface Science, 2020, 280, 102161.	14.7	29
16	Enzyme-assisted mineralization of calcium phosphate: exploring confinement for the design of highly crystalline nano-objects. Nanoscale, 2020, 12, 10051-10064.	5.6	16
17	European bamboo fibres for composites applications, study on the seasonal influence. Industrial Crops and Products, 2019, 133, 304-316.	5.2	26
18	Mixed Polymer Brushes for the Selective Capture and Release of Proteins. Biomacromolecules, 2019, 20, 778-789.	5.4	33

#	Article	IF	CITATIONS
19	Investigation of the tensile behavior of treated flax fibre bio-composites at ambient humidity. Composites Science and Technology, 2018, 159, 119-126.	7.8	20
20	Reversible Protein Adsorption on Mixed PEO/PAA Polymer Brushes: Role of Ionic Strength and PEO Content. Langmuir, 2018, 34, 3037-3048.	3. 5	33
21	Immobilization of Aluminum Hydroxide Particles on Quartz Crystal Microbalance Sensors to Elucidate Antigen–Adjuvant Interaction Mechanisms in Vaccines. Analytical Chemistry, 2018, 90, 1168-1176.	6.5	10
22	Predicting the adhesion strength of thermoplastic/glass interfaces from wetting measurements. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2018, 558, 280-290.	4.7	17
23	Biofunctionalized and self-supported polypyrrole frameworks as nanostructured ECM-like biointerfaces. RSC Advances, 2018, 8, 22932-22943.	3.6	4
24	Sulindac encapsulation and release from functional poly(HEMA) microparticles prepared in supercritical carbon dioxide. International Journal of Pharmaceutics, 2018, 549, 161-168.	5. 2	5
25	Antimicrobial peptide encapsulation and sustained release from polymer network particles prepared in supercritical carbon dioxide. Journal of Colloid and Interface Science, 2018, 532, 112-117.	9.4	20
26	Integrating Proteins in Layer-by-Layer Assemblies Independently of their Electrical Charge. ACS Nano, 2018, 12, 8372-8381.	14.6	44
27	NaCl strongly modifies the physicochemical properties of aluminum hydroxide vaccine adjuvants. International Journal of Pharmaceutics, 2017, 517, 226-233.	5. 2	11
28	Protein–polyelectrolyte complexes to improve the biological activity of proteins in layer-by-layer assemblies. Nanoscale, 2017, 9, 17186-17192.	5.6	32
29	A photocleavable stabilizer for the preparation of PHEMA nanogels by dispersion polymerization in supercritical carbon dioxide. Polymer Chemistry, 2017, 8, 581-591.	3.9	7
30	Combination of collagen and fibronectin to design biomimetic interfaces: Do these proteins form layer-by-layer assemblies?. Colloids and Surfaces B: Biointerfaces, 2016, 147, 54-64.	5.0	15
31	Effect of humidity during manufacturing on the interfacial strength of non-pre-dried flax fibre/unsaturated polyester composites. Composites Part A: Applied Science and Manufacturing, 2016, 84, 209-215.	7.6	40
32	Oxygen plasma surface modification augments poly(Lâ€lactideâ€∢i>co⟨/i>â€glycolide) cytocompatibility toward osteoblasts and minimizes immune activation of macrophages. Journal of Biomedical Materials Research - Part A, 2015, 103, 3965-3977.	4.0	12
33	Fibrin hydrogels to deliver dental stem cells of the apical papilla for regenerative medicine. Regenerative Medicine, 2015, 10, 153-167.	1.7	21
34	Mechanical behaviour and practical adhesion at a bamboo composite interface: Physical adhesion and mechanical interlocking. Composites Science and Technology, 2015, 109, 40-47.	7.8	76
35	In situ quartz crystal microbalance monitoring of the adsorption of polyoxometalate on a polyampholyte polymer matrix. Journal of Colloid and Interface Science, 2015, 445, 24-30.	9.4	7
36	Chitosan-coated electrospun nanofibers with antibacterial activity. Journal of Materials Chemistry B, 2015, 3, 3508-3517.	5 . 8	42

#	Article	IF	CITATIONS
37	Minimal amounts of dipalmitoylphosphatidylcholine improve aerosol performance of spray-dried temocillin powders for inhalation. International Journal of Pharmaceutics, 2015, 495, 981-990.	5.2	24
38	Oxidation of laccase for improved cathode biofuel cell performances. Bioelectrochemistry, 2015, 106, 77-87.	4.6	11
39	Dual stimuli-responsive coating designed through layer-by-layer assembly of PAA-b-PNIPAM block copolymers for the control of protein adsorption. Soft Matter, 2015, 11, 8154-8164.	2.7	27
40	Protein adsorption can be reversibly switched on and off on mixed PEO/PAA brushes. Acta Biomaterialia, 2015, 11, 68-79.	8.3	31
41	Polythiolactone-Based Redox-Responsive Layers for the Reversible Release of Functional Molecules. ACS Applied Materials & Diterfaces, 2014, 6, 22457-22466.	8.0	23
42	The type and composition of alginate and hyaluronic-based hydrogels influence the viability of stem cells of the apical papilla. Dental Materials, 2014, 30, e349-e361.	3.5	41
43	Understanding and controlling type I collagen adsorption and assembly at interfaces, and application to cell engineering. Colloids and Surfaces B: Biointerfaces, 2014, 124, 87-96.	5.0	15
44	Conditioning materials with biomacromolecules: Composition of the adlayer and influence on cleanability. Journal of Colloid and Interface Science, 2014, 432, 158-169.	9.4	12
45	Equilibrium contact angle measurements of natural fibers by an acoustic vibration technique. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2014, 455, 164-173.	4.7	13
46	Biointerfaces Designed Through Directed Collagen Assembly. Journal of Bionanoscience, 2014, 8, 407-418.	0.4	3
47	Characterisation of protein nanotubes by ToFâ€SIMS imaging. Surface and Interface Analysis, 2013, 45, 333-337.	1.8	3
48	Understanding the interfacial compatibility and adhesion of natural coir fibre thermoplastic composites. Composites Science and Technology, 2013, 80, 23-30.	7.8	104
49	Effect of physical adhesion on mechanical behaviour of bamboo fibre reinforced thermoplastic composites. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2013, 418, 7-15.	4.7	64
50	Colloidal lithography using silica particles: Improved particle distribution and tunable wetting properties. Journal of Colloid and Interface Science, 2013, 392, 219-225.	9.4	12
51	Interaction of preosteoblasts with surface-immobilized collagen-based nanotubes. Colloids and Surfaces B: Biointerfaces, 2013, 111, 134-141.	5.0	8
52	Adsorption of a PEO–PPO–PEO triblock copolymer on metal oxide surfaces with a view to reducing protein adsorption and further biofouling. Biofouling, 2013, 29, 1123-1137.	2.2	14
53	α-Acetal, ω-Alkyne Poly(ethylene oxide) as a Versatile Building Block for the Synthesis of Glycoconjugated Graft-Copolymers Suited for Targeted Drug Delivery. Bioconjugate Chemistry, 2012, 23, 1740-1752.	3.6	12
54	Optimization of cryoâ€XPS analyses for the study of thin films of a block copolymer (PSâ€PEO). Surface and Interface Analysis, 2012, 44, 175-184.	1.8	10

#	Article	IF	CITATIONS
55	Interfaces in Natural Fibre Composites: Effect of Surface Energy and Physical Adhesion. Journal of Biobased Materials and Bioenergy, 2012, 6, 456-462.	0.3	6
56	Elaboration of Nanostructured Biointerfaces with Tunable Degree of Coverage by Protein Nanotubes Using Electrophoretic Deposition. Biomacromolecules, 2011, 12, 4104-4111.	5.4	16
57	Self-assembled multilayers based on native or denatured collagen: mechanism and synthesis of size-controlled nanotubes. Soft Matter, 2011, 7, 3337.	2.7	24
58	Wetting behaviour and surface properties of technical bamboo fibres. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2011, 380, 89-99.	4.7	94
59	Competitive adsorption of fibrinogen and albumin and blood platelet adhesion on surfaces modified with nanoparticles and/or PEO. Colloids and Surfaces B: Biointerfaces, 2010, 77, 139-149.	5.0	65
60	Surface spectroscopy of adsorbed proteins: input of data treatment by principal component analysis. Journal of Materials Science: Materials in Medicine, 2010, 21, 955-961.	3.6	15
61	Plasma Surface Fluorination of Hydrogel Materials—Coating Stability and <i>in vitro</i> Biocompatibility Testing. Soft Materials, 2010, 8, 164-182.	1.7	3
62	Growth Mechanism of Confined Polyelectrolyte Multilayers in Nanoporous Templates. Langmuir, 2010, 26, 3350-3355.	3.5	51
63	Synthesis of Collagen Nanotubes with Highly Regular Dimensions through Membrane-Templated Layer-by-Layer Assembly. Biomacromolecules, 2009, 10, 1021-1024.	5.4	44
64	An AFM, XPS and wettability study of the surface heterogeneity of PS/PMMA-r-PMAA demixed thin films. Journal of Colloid and Interface Science, 2008, 319, 63-71.	9.4	24
65	Characterization of Insulin Adsorption in the Presence of Albumin by Time-of-Flight Secondary Ion Mass Spectrometry and X-ray Photoelectron Spectroscopy. Langmuir, 2008, 24, 458-464.	3.5	12
66	Conformation Change of Albumin Adsorbed on Polycarbonate Membranes as Revealed by ToF-SIMS.	3.5	80