Amy Hansen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5340403/publications.pdf Version: 2024-02-01

AMY HANGEN

#	Article	IF	CITATIONS
1	Contribution of wetlands to nitrate removal at the watershed scale. Nature Geoscience, 2018, 11, 127-132.	12.9	166
2	River network saturation concept: factors influencing the balance of biogeochemical supply and demand of river networks. Biogeochemistry, 2018, 141, 503-521.	3.5	96
3	Priorities and Interactions of Sustainable Development Goals (SDGs) with Focus on Wetlands. Water (Switzerland), 2019, 11, 619.	2.7	75
4	Predicting algal blooms: Are we overlooking groundwater?. Science of the Total Environment, 2021, 769, 144442.	8.0	35
5	Large eddy simulation of turbulence and solute transport in a forested headwater stream. Journal of Geophysical Research F: Earth Surface, 2016, 121, 146-167.	2.8	32
6	Do wetlands enhance downstream denitrification in agricultural landscapes?. Ecosphere, 2016, 7, e01516.	2.2	31
7	Contextualizing Wetlands Within a River Network to Assess Nitrate Removal and Inform Watershed Management. Water Resources Research, 2018, 54, 1312-1337.	4.2	31
8	Phosphorus Transport in Intensively Managed Watersheds. Water Resources Research, 2019, 55, 9148-9172.	4.2	27
9	Integrated assessment modeling reveals near-channel management as cost-effective to improve water quality in agricultural watersheds. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	27
10	Coupling freshwater mussel ecology and river dynamics using a simplified dynamic interaction model. Freshwater Science, 2016, 35, 200-215.	1.8	26
11	Flow-related dynamics in suspended algal biomass and its contribution to suspended particulate matter in an agricultural river network of the Minnesota River Basin, USA. Hydrobiologia, 2017, 785, 127-147.	2.0	18
12	Highâ€Frequency Sensor Data Reveal Acrossâ€Scale Nitrate Dynamics in Response to Hydrology and Biogeochemistry in Intensively Managed Agricultural Basins. Journal of Geophysical Research G: Biogeosciences, 2018, 123, 2168-2182.	3.0	15
13	Data for wetlandscapes and their changes around the world. Earth System Science Data, 2020, 12, 1083-1100.	9.9	12
14	Uptake of dissolved nickel by Elodea canadensis and epiphytes influenced by fluid flow conditions. Hydrobiologia, 2011, 658, 127-138.	2.0	11
15	Microscale measurements reveal contrasting effects of photosynthesis and epiphytes on frictional drag on the surfaces of filamentous algae. Freshwater Biology, 2014, 59, 312-324.	2.4	9
16	The Power of Environmental Observatories for Advancing Multidisciplinary Research, Outreach, and Decision Support: The Case of the Minnesota River Basin. Water Resources Research, 2019, 55, 3576-3592.	4.2	6
17	Quantifying cryptic function loss during community disassembly. Journal of Applied Ecology, 2019, 56, 2710-2722.	4.0	4
18	Adding our leaves: A communityâ€wide perspective on research directions in ecohydrology. Hydrological Processes, 2020, 34, 1665-1673.	2.6	3

#	Article	IF	CITATIONS
19	Do wetlands enhance downstream denitrification in agricultural landscapes?. , 2016, 7, e01516.		1
20	Assessment of Climatic and Anthropogenic Controls on Bridge Deck Drainage and Sediment Removal. Water (Switzerland), 2021, 13, 3556.	2.7	1
21	The St. Anthony Falls Laboratory: 80 Years of Progress Part 2A Transition to Environmental Research. , 2018, , .		0