
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5339228/publications.pdf Version: 2024-02-01

MIN-HSIN YEH

#	Article	IF	CITATIONS
1	Self-powered textile for wearable electronics by hybridizing fiber-shaped nanogenerators, solar cells, and supercapacitors. Science Advances, 2016, 2, e1600097.	10.3	705
2	Harvesting Low-Frequency (<5 Hz) Irregular Mechanical Energy: A Possible Killer Application of Triboelectric Nanogenerator. ACS Nano, 2016, 10, 4797-4805.	14.6	606
3	A highly sensitive, self-powered triboelectric auditory sensor for social robotics and hearing aids. Science Robotics, 2018, 3, .	17.6	573
4	All-in-One Shape-Adaptive Self-Charging Power Package for Wearable Electronics. ACS Nano, 2016, 10, 10580-10588.	14.6	290
5	A highly shape-adaptive, stretchable design based on conductive liquid for energy harvesting and self-powered biomechanical monitoring. Science Advances, 2016, 2, e1501624.	10.3	274
6	Blow-driven triboelectric nanogenerator as an active alcohol breath analyzer. Nano Energy, 2015, 16, 38-46.	16.0	255
7	Harvesting Broad Frequency Band Blue Energy by a Triboelectric–Electromagnetic Hybrid Nanogenerator. ACS Nano, 2016, 10, 6526-6534.	14.6	244
8	A Waterâ€Proof Triboelectric–Electromagnetic Hybrid Generator for Energy Harvesting in Harsh Environments. Advanced Energy Materials, 2016, 6, 1501593.	19.5	243
9	Triboelectrificationâ€Enabled Selfâ€Powered Detection and Removal of Heavy Metal Ions in Wastewater. Advanced Materials, 2016, 28, 2983-2991.	21.0	204
10	Ultralight Cut-Paper-Based Self-Charging Power Unit for Self-Powered Portable Electronic and Medical Systems. ACS Nano, 2017, 11, 4475-4482.	14.6	201
11	Motion-Driven Electrochromic Reactions for Self-Powered Smart Window System. ACS Nano, 2015, 9, 4757-4765.	14.6	158
12	An Ultrarobust High-Performance Triboelectric Nanogenerator Based on Charge Replenishment. ACS Nano, 2015, 9, 5577-5584.	14.6	135
13	High-efficiency ramie fiber degumming and self-powered degumming wastewater treatment using triboelectric nanogenerator. Nano Energy, 2016, 22, 548-557.	16.0	132
14	Conducting polymer-based counter electrode for a quantum-dot-sensitized solar cell (QDSSC) with a polysulfide electrolyte. Electrochimica Acta, 2011, 57, 277-284.	5.2	128
15	Whirligig-inspired triboelectric nanogenerator with ultrahigh specific output as reliable portable instant power supply for personal health monitoring devices. Nano Energy, 2018, 47, 74-80.	16.0	122
16	Designing a carbon nanotubes-interconnected ZIF-derived cobalt sulfide hybrid nanocage for supercapacitors. Journal of Materials Chemistry A, 2019, 7, 1479-1490.	10.3	109
17	A Streaming Potential/Currentâ€Based Microfluidic Direct Current Generator for Selfâ€Powered Nanosystems. Advanced Materials, 2015, 27, 6482-6487.	21.0	104
18	Site Activity and Population Engineering of NiRu-Layered Double Hydroxide Nanosheets Decorated with Silver Nanoparticles for Oxygen Evolution and Reduction Reactions. ACS Catalysis, 2019, 9, 117-129.	11.2	103

#	Article	IF	CITATIONS
19	Rolling Friction Enhanced Freeâ€Standing Triboelectric Nanogenerators and their Applications in Selfâ€Powered Electrochemical Recovery Systems. Advanced Functional Materials, 2016, 26, 1054-1062.	14.9	101
20	Self-Powered Triboelectric Nanosensor for Microfluidics and Cavity-Confined Solution Chemistry. ACS Nano, 2015, 9, 11056-11063.	14.6	99
21	A novel core–shell multi-walled carbon nanotube@graphene oxide nanoribbon heterostructure as a potential supercapacitor material. Journal of Materials Chemistry A, 2013, 1, 11237.	10.3	90
22	Ternary Electrification Layered Architecture for High-Performance Triboelectric Nanogenerators. ACS Nano, 2020, 14, 9050-9058.	14.6	88
23	A low-cost counter electrode of ITO glass coated with a graphene/Nafion® composite film for use in dye-sensitized solar cells. Carbon, 2012, 50, 4192-4202.	10.3	77
24	Multiwalled Carbon Nanotube@Reduced Graphene Oxide Nanoribbon as the Counter Electrode for Dye-Sensitized Solar Cells. Journal of Physical Chemistry C, 2014, 118, 16626-16634.	3.1	76
25	Boron-doped carbon nanotubes as metal-free electrocatalyst for dye-sensitized solar cells: Heteroatom doping level effect on tri-iodide reduction reaction. Journal of Power Sources, 2018, 375, 29-36.	7.8	75
26	A composite catalytic film of PEDOT:PSS/TiN–NPs on a flexible counter-electrode substrate for a dye-sensitized solar cell. Journal of Materials Chemistry, 2011, 21, 19021.	6.7	73
27	A coral-like film of Ni@NiS with core–shell particles for the counter electrode of an efficient dye-sensitized solar cell. Journal of Materials Chemistry A, 2014, 2, 5816-5824.	10.3	70
28	Facile Synthesis of Boron-doped Graphene Nanosheets with Hierarchical Microstructure at Atmosphere Pressure for Metal-free Electrochemical Detection of Hydrogen Peroxide. Electrochimica Acta, 2015, 172, 52-60.	5.2	68
29	A zeolitic imidazolate framework-derived ZnSe/N-doped carbon cube hybrid electrocatalyst as the counter electrode for dye-sensitized solar cells. Journal of Materials Chemistry A, 2018, 6, 5107-5118.	10.3	63
30	A composite film of TiS2/PEDOT:PSS as the electrocatalyst for the counter electrode in dye-sensitized solar cells. Journal of Materials Chemistry A, 2013, 1, 14888.	10.3	59
31	Robust and conductive MagnéliÂPhase Ti4O7 decorated on 3D-nanoflower NiRu-LDH as high-performance oxygen reduction electrocatalyst. Nano Energy, 2018, 47, 309-315.	16.0	59
32	Enhanced performance of a flexible dye-sensitized solar cell with a composite semiconductor film of ZnO nanorods and ZnO nanoparticles. Electrochimica Acta, 2012, 62, 341-347.	5.2	58
33	Dyeâ€Sensitized Solar Cells with Reduced Graphene Oxide as the Counter Electrode Prepared by a Green Photothermal Reduction Process. ChemPhysChem, 2014, 15, 1175-1181.	2.1	58
34	Insights into the co-sensitizer adsorption kinetics for complementary organic dye-sensitized solar cells. Journal of Power Sources, 2014, 247, 906-914.	7.8	54
35	Designing a spontaneously deriving NiFe-LDH from bimetallic MOF-74 as an electrocatalyst for oxygen evolution reaction in alkaline solution. Chemical Engineering Journal, 2021, 423, 130204.	12.7	50
36	Graphite with Different Structures as Catalysts for Counter Electrodes in Dye-sensitized Solar Cells. Electrochimica Acta, 2015, 179, 211-219.	5.2	49

#	Article	IF	CITATIONS
37	A counter electrode based on hollow spherical particles of polyaniline for a dye-sensitized solar cell. Journal of Materials Chemistry, 2012, 22, 14727.	6.7	46
38	Size effects of platinum nanoparticles on the electrocatalytic ability of the counter electrode in dye-sensitized solar cells. Nano Energy, 2015, 17, 241-253.	16.0	44
39	Thermally Stable Boron-Doped Multiwalled Carbon Nanotubes as a Pt-free Counter Electrode for Dye-Sensitized Solar Cells. ACS Sustainable Chemistry and Engineering, 2017, 5, 537-546.	6.7	44
40	Oxygen Plasma Activation of Carbon Nanotubes-Interconnected Prussian Blue Analogue for Oxygen Evolution Reaction. ACS Applied Materials & amp; Interfaces, 2020, 12, 42634-42643.	8.0	44
41	Morphological Influence of Polypyrrole Nanoparticles on the Performance of Dye–Sensitized Solar Cells. Electrochimica Acta, 2015, 155, 263-271.	5.2	42
42	Facile fabrication of PtNP/MWCNT nanohybrid films for flexible counter electrode in dye-sensitized solar cells. Journal of Materials Chemistry, 2012, 22, 3185.	6.7	41
43	ZnO nanowire/nanoparticles composite films for the photoanodes of quantum dot-sensitized solar cells. Electrochimica Acta, 2013, 88, 35-43.	5.2	40
44	Designing ZIF-67 derived NiCo layered double hydroxides with 3D hierarchical structure for Enzyme-free electrochemical lactate monitoring in human sweat. Chemical Engineering Journal, 2022, 427, 131687.	12.7	39
45	Structural and Electronic Effects of Carbonâ€Supported Pt _{<i>x</i>} Pd _{1â^<i>x</i>} Nanoparticles on the Electrocatalytic Activity of the Oxygenâ€Reduction Reaction and on Methanol Tolerance. Chemistry - A European Journal, 2010, 16, 11064-11071.	3.3	37
46	Boron-doped carbon nanotubes with uniform boron doping and tunable dopant functionalities as an efficient electrocatalyst for dopamine oxidation reaction. Sensors and Actuators B: Chemical, 2017, 248, 288-297.	7.8	37
47	Surface-engineered N-doped carbon nanotubes with B-doped graphene quantum dots: Strategies to develop highly-efficient noble metal-free electrocatalyst for online-monitoring dissolved oxygen biosensor. Carbon, 2022, 186, 406-415.	10.3	36
48	Lowâ€ŧemperature flexible Ti/TiO ₂ photoanode for dyeâ€sensitized solar cells with binderâ€free TiO ₂ paste. Progress in Photovoltaics: Research and Applications, 2012, 20, 181-190.	8.1	35
49	Nanocomposite Graphene/Pt Electrocatalyst as Economical Counter Electrode for Dyeâ€ S ensitized Solar Cells. ChemElectroChem, 2014, 1, 416-425.	3.4	35
50	Low-Temperature Flexible Photoanode and Net-Like Pt Counter Electrode for Improving the Performance of Dye-Sensitized Solar Cells. Journal of Physical Chemistry C, 2010, 114, 21808-21815.	3.1	34
51	High performance CdS quantum-dot-sensitized solar cells with Ti-based ceramic materials as catalysts on the counter electrode. Journal of Power Sources, 2013, 237, 141-148.	7.8	34
52	Bimetallic catalyst of PtIr nanoparticles with high electrocatalytic ability for hydrogen peroxide oxidation. Sensors and Actuators B: Chemical, 2014, 190, 55-60.	7.8	34
53	Self-powered molecular imprinted polymers-based triboelectric sensor for noninvasive monitoring lactate levels in human sweat. Nano Energy, 2022, 100, 107464.	16.0	32
54	Zinc oxide-based dye-sensitized solar cells with a ruthenium dye containing an alkyl bithiophene group. Journal of Power Sources, 2014, 246, 1-9.	7.8	31

#	Article	IF	CITATIONS
55	Synthesis of a novel amphiphilic polymeric ionic liquid and its application in quasi-solid-state dye-sensitized solar cells. Journal of Materials Chemistry A, 2014, 2, 20814-20822.	10.3	30
56	A composite poly(3,3-diethyl-3,4-dihydro-2H-thieno-[3,4-b][1,4]-dioxepine) and Pt film as a counter electrode catalyst in dye-sensitized solar cells. Electrochimica Acta, 2011, 56, 6157-6164.	5.2	29
57	Dye-sensitized solar cells with low-cost catalytic films of polymer-loaded carbon black on their counter electrode. RSC Advances, 2013, 3, 5871.	3.6	29
58	Double-Wall TiO ₂ Nanotubes for Dye-Sensitized Solar Cells: A Study of Growth Mechanism. ACS Sustainable Chemistry and Engineering, 2018, 6, 3907-3915.	6.7	29
59	Synthesis of Surfactant-Free and Morphology-Controllable Vanadium Diselenide for Efficient Counter Electrodes in Dye-Sensitized Solar Cells. ACS Applied Materials & Interfaces, 2019, 11, 25090-25099.	8.0	29
60	Solid-state dye-sensitized solar cell with a charge transfer layer comprising two ionic liquids and a carbon material. Journal of Materials Chemistry, 2011, 21, 15471.	6.7	28
61	Effect of trifluoromethyl substituents in benzyl-based viologen on the electrochromic performance: Optical contrast and stability. Solar Energy Materials and Solar Cells, 2019, 200, 110020.	6.2	27
62	Preparing core–shell structure of ZnO@TiO2 nanowires through a simple dipping–rinse–hydrolyzation process as the photoanode for dye-sensitized solar cells. Nano Energy, 2013, 2, 609-621.	16.0	26
63	Prussian Blue Analogue-Derived Metal Oxides as Electrocatalysts for Oxygen Evolution Reaction: Tailoring the Molar Ratio of Cobalt to Iron. ACS Applied Energy Materials, 2020, 3, 11752-11762.	5.1	26
64	Flexible dye-sensitized solar cells with one-dimensional ZnO nanorods as electron collection centers in photoanodes. Electrochimica Acta, 2013, 88, 421-428.	5.2	25
65	Transparent Cobalt Selenide/Graphene Counter Electrode for Efficient Dye-Sensitized Solar Cells with Co ²⁺ / ³⁺ -Based Redox Couple. ACS Applied Materials & Interfaces, 2020, 12, 44597-44607.	8.0	25
66	A novel 2,7-diaminofluorene-based organic dye for a dye-sensitized solar cell. Journal of Power Sources, 2012, 215, 122-129.	7.8	24
67	Metal-based flexible TiO2 photoanode with titanium oxide nanotubes as the underlayer for enhancement of performance of a dye-sensitized solar cell. Electrochimica Acta, 2011, 57, 270-276.	5.2	22
68	Designing bimetallic Ni-based layered double hydroxides for enzyme-free electrochemical lactate biosensors. Sensors and Actuators B: Chemical, 2021, 346, 130505.	7.8	22
69	Improved performance of dye-sensitized solar cells using TiO 2 nanotubes infiltrated by TiO 2 nanoparticles using a dipping–rinsing–hydrolysis process. Journal of Power Sources, 2013, 243, 535-543.	7.8	20
70	Incorporating electrospun nanofibers of TEMPO-grafted PVDF-HFP polymer matrix in viologen-based electrochromic devices. Solar Energy Materials and Solar Cells, 2020, 208, 110375.	6.2	19
71	Synthesis of Boron–doped Multi–walled Carbon Nanotubes by an Ammonia–assisted Substitution Reaction for Applying in Supercapacitors. Energy Procedia, 2014, 61, 1764-1767.	1.8	18
72	Surface modification of TiO ₂ nanotube arrays with Y ₂ O ₃ barrier layer: controlling charge recombination dynamics in dye-sensitized solar cells. Journal of Materials Chemistry A, 2014, 2, 8281-8287.	10.3	18

#	Article	IF	CITATIONS
73	Platinum nanoparticles decorated graphene nanoribbon with eco-friendly unzipping process for electrochemical sensors. Journal of the Taiwan Institute of Chemical Engineers, 2019, 96, 566-574.	5.3	18
74	CO-assisted synthesis of finely size-controlled platinum nanoparticles. Chemical Communications, 2011, 47, 3864.	4.1	17
75	Designing a hybrid type photoelectrochromic device with dual coloring modes for realizing ultrafast response/high optical contrast self-powered smart windows. Nano Energy, 2021, 90, 106575.	16.0	17
76	Highly ordered TiO2 nanotube stamps on Ti foils: Synthesis and application for all flexible dye–sensitized solar cells. Electrochemistry Communications, 2013, 37, 71-75.	4.7	14
77	Controlling Available Active Sites of Pt-Loaded TiO2 Nanotube-Imprinted Ti Plates for Efficient Dye-Sensitized Solar Cells. ACS Applied Materials & Interfaces, 2015, 7, 3910-3919.	8.0	14
78	Synthesis of hexagonal ZnO clubs with opposite faces of unequal dimensions for the photoanode of dye-sensitized solar cells. Physical Chemistry Chemical Physics, 2011, 13, 20999.	2.8	13
79	Carbonaceous allotropes modified ionic liquid electrolytes for efficient quasi-solid-state dye-sensitized solar cells. Electrochimica Acta, 2014, 130, 587-593.	5.2	12
80	Identification of the physical origin behind disorder, heterogeneity, and reconstruction and their correlation with the photoluminescence lifetime in hybrid perovskite thin films. Journal of Materials Chemistry A, 2017, 5, 21002-21015.	10.3	10
81	Large-area blade-coated organic solar cells processed from halogen-free solvent. Organic Electronics, 2019, 75, 105376.	2.6	9
82	Boron and Nitrogen Codoped Multilayer Graphene as a Counter Electrode: A Combined Theoretical and Experimental Study on Dye-Sensitized Solar Cells under Ambient Light Conditions. Journal of Physical Chemistry C, 2021, 125, 24894-24901.	3.1	9
83	Composite Films Based on Poly(3,4-ethylene dioxythiophene):Poly(styrene sulfonate) Conducting Polymer and TiC Nanoparticles as the Counter Electrodes for Flexible Dye-Sensitized Solar Cells. Japanese Journal of Applied Physics, 2012, 51, 10NE01.	1.5	8
84	Study on Oxidation State Dependent Electrocatalytic Ability for I ^{â^'} /I ₃ ^{â^'} Redox Reaction of Reduced Graphene Oxides. Electroanalysis, 2014, 26, 147-155.	2.9	7
85	Composite Films Based on Poly(3,4-ethylene dioxythiophene):Poly(styrene sulfonate) Conducting Polymer and TiC Nanoparticles as the Counter Electrodes for Flexible Dye-Sensitized Solar Cells. Japanese Journal of Applied Physics, 0, 51, 10NE01.	1.5	3
86	Designing Novel Poly(oxyalkylene)-Segmented Ester-Based Polymeric Dispersants for Efficient TiO2 Photoanodes of Dye-Sensitized Solar Cells. ACS Applied Materials & Interfaces, 2018, 10, 38394-38403.	8.0	2
87	Electrochemical and Microstructural Investigations of PtFe Nanocompounds Synthesized by Atmospheric-Pressure Plasma Jet. Journal of the Electrochemical Society, 2020, 167, 056501.	2.9	2
88	Self-Powered Electrochromic Smart Window Driven By Transparent Triboelectric Nanogenerators Via Harvesting Wind and Rain Energies. ECS Meeting Abstracts, 2015, , .	0.0	0
89	Dye-Sensitized Solar Cells with Reduced Graphene Oxideas the Counter Electrode Prepared By a Greenphotothermal Reduction Process. ECS Meeting Abstracts, 2015, , .	0.0	0
90	(Invited) Ultralight Triboelectric Nanogenerators for Portable Self-Charging Power Unit and Self-Powered Sensing Platform. ECS Meeting Abstracts, 2019, , .	0.0	0

#	Article	IF	CITATIONS
91	Unraveling the Efficiency of Heteroatom-Doped Graphene Quantum Dots Incorporated Mof-Derived Bimetallic Layered Double Hydroxide Towards Oxygen Evolution Reaction. SSRN Electronic Journal, 0, , .	0.4	Ο
92	Boron-Doped Graphene Quantum Dots Anchored Carbon Nanotubes as a Noble Metal-Free Electrocatalyst of Uric Acid for Wearable Sweat Sensor. SSRN Electronic Journal, 0, , .	0.4	0
93	Boron-Doped Graphene Quantum Dots Anchored Carbon Nanotubes as a Noble Metal-Free Electrocatalyst of Uric Acid for Wearable Sweat Sensor. SSRN Electronic Journal, 0, , .	0.4	0