## Mikiko C Siomi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5338727/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                          | IF   | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Biogenesis of small RNAs in animals. Nature Reviews Molecular Cell Biology, 2009, 10, 126-139.                                                                                   | 37.0 | 2,885     |
| 2  | PIWI-interacting small RNAs: the vanguard of genome defence. Nature Reviews Molecular Cell Biology, 2011, 12, 246-258.                                                           | 37.0 | 1,114     |
| 3  | A Slicer-Mediated Mechanism for Repeat-Associated siRNA 5' End Formation in Drosophila. Science, 2007, 315, 1587-1590.                                                           | 12.6 | 1,065     |
| 4  | On the road to reading the RNA-interference code. Nature, 2009, 457, 396-404.                                                                                                    | 27.8 | 583       |
| 5  | PIWI-Interacting RNA: Its Biogenesis and Functions. Annual Review of Biochemistry, 2015, 84, 405-433.                                                                            | 11.1 | 579       |
| 6  | Specific association of Piwi with rasiRNAs derived from retrotransposon and heterochromatic regions in the <i>Drosophila</i> genome. Genes and Development, 2006, 20, 2214-2222. | 5.9  | 566       |
| 7  | A <i>Drosophila</i> fragile X protein interacts with components of RNAi and ribosomal proteins.<br>Genes and Development, 2002, 16, 2497-2508.                                   | 5.9  | 513       |
| 8  | Essential role for KH domains in RNA binding: Impaired RNA binding by a mutation in the KH domain of FMR1 that causes fragile X syndrome. Cell, 1994, 77, 33-39.                 | 28.9 | 437       |
| 9  | Drosophila endogenous small RNAs bind to Argonaute 2 in somatic cells. Nature, 2008, 453, 793-797.                                                                               | 27.8 | 417       |
| 10 | Pimet, the <i>Drosophila</i> homolog of HEN1, mediates 2′- <i>O</i> -methylation of Piwi- interacting RNAs at their 3′ ends. Genes and Development, 2007, 21, 1603-1608.         | 5.9  | 400       |
| 11 | A regulatory circuit for piwi by the large Maf gene traffic jam in Drosophila. Nature, 2009, 461,<br>1296-1299.                                                                  | 27.8 | 387       |
| 12 | Processing of Pre-microRNAs by the Dicer-1–Loquacious Complex in Drosophila Cells. PLoS Biology,<br>2005, 3, e235.                                                               | 5.6  | 352       |
| 13 | Slicer function of Drosophila Argonautes and its involvement in RISC formation. Genes and Development, 2005, 19, 2837-2848.                                                      | 5.9  | 343       |
| 14 | Biology of PIWI-interacting RNAs: new insights into biogenesis and function inside and outside of germlines. Genes and Development, 2012, 26, 2361-2373.                         | 5.9  | 305       |
| 15 | Structure and function of Zucchini endoribonuclease in piRNA biogenesis. Nature, 2012, 491, 284-287.                                                                             | 27.8 | 298       |
| 16 | Roles for the Yb body components Armitage and Yb in primary piRNA biogenesis in <i>Drosophila</i> .<br>Genes and Development, 2010, 24, 2493-2498.                               | 5.9  | 261       |
| 17 | Gene silencing mechanisms mediated by Aubergine–piRNA complexes in <i>Drosophila</i> male gonad.<br>Rna, 2007, 13, 1911-1922.                                                    | 3.5  | 245       |
| 18 | Functional involvement of Tudor and dPRMT5 in the piRNA processing pathway in Drosophila germlines. EMBO Journal, 2009, 28, 3820-3831.                                           | 7.8  | 174       |

Μικικό C Siomi

| #  | Article                                                                                                                                                                                   | IF   | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | How does the Royal Family of Tudor rule the PIWI-interacting RNA pathway?. Genes and Development, 2010, 24, 636-646.                                                                      | 5.9  | 172       |
| 20 | Small RNA-Mediated Quiescence of Transposable Elements in Animals. Developmental Cell, 2010, 19, 687-697.                                                                                 | 7.0  | 156       |
| 21 | DmGTSF1 is necessary for Piwi–piRISC-mediated transcriptional transposon silencing in the<br><i>Drosophila</i> ovary. Genes and Development, 2013, 27, 1656-1661.                         | 5.9  | 122       |
| 22 | Crystal Structure of Silkworm PIWI-Clade Argonaute Siwi Bound to piRNA. Cell, 2016, 167, 484-497.e9.                                                                                      | 28.9 | 116       |
| 23 | Piwi Modulates Chromatin Accessibility by Regulating Multiple Factors Including Histone H1 to<br>Repress Transposons. Molecular Cell, 2016, 63, 408-419.                                  | 9.7  | 110       |
| 24 | Biogenesis pathways of piRNAs loaded onto AGO3 in the <i>Drosophila</i> testis. Rna, 2010, 16, 2503-2515.                                                                                 | 3.5  | 109       |
| 25 | Characterization of the miRNA-RISC loading complex and miRNA-RISC formed in the <i>Drosophila</i> miRNA pathway. Rna, 2009, 15, 1282-1291.                                                | 3.5  | 96        |
| 26 | Respective Functions of Two Distinct Siwi Complexes Assembled during PIWI-Interacting RNA<br>Biogenesis in Bombyx Germ Cells. Cell Reports, 2015, 10, 193-203.                            | 6.4  | 94        |
| 27 | piRNA biogenesis in the germline: From transcription of piRNA genomic sources to piRNA maturation.<br>Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2016, 1859, 82-92.      | 1.9  | 87        |
| 28 | piRNA clusters and open chromatin structure. Mobile DNA, 2014, 5, 22.                                                                                                                     | 3.6  | 86        |
| 29 | PIWI-Interacting RNA in <i>Drosophila</i> : Biogenesis, Transposon Regulation, and Beyond. Chemical Reviews, 2018, 118, 4404-4421.                                                        | 47.7 | 82        |
| 30 | Small RNA profiling and characterization of piRNA clusters in the adult testes of the common marmoset, a model primate. Rna, 2014, 20, 1223-1237.                                         | 3.5  | 80        |
| 31 | Inheritance of a Nuclear PIWI from Pluripotent Stem Cells by Somatic Descendants Ensures<br>Differentiation by Silencing Transposons in Planarian. Developmental Cell, 2016, 37, 226-237. | 7.0  | 71        |
| 32 | Maelstrom coordinates microtubule organization during <i>Drosophila</i> oogenesis through interaction with components of the MTOC. Genes and Development, 2011, 25, 2361-2373.            | 5.9  | 65        |
| 33 | Somatic Primary piRNA Biogenesis Driven by cis-Acting RNA Elements and trans-Acting Yb. Cell Reports, 2015, 12, 429-440.                                                                  | 6.4  | 63        |
| 34 | Roles of R2D2, a Cytoplasmic D2 Body Component, in the Endogenous siRNA Pathway in Drosophila.<br>Molecular Cell, 2013, 49, 680-691.                                                      | 9.7  | 62        |
| 35 | Yb Integrates piRNA Intermediates and Processing Factors into Perinuclear Bodies to Enhance piRISC Assembly. Cell Reports, 2014, 8, 103-113.                                              | 6.4  | 62        |
| 36 | Krimper Enforces an Antisense Bias on piRNA Pools by Binding AGO3 in the Drosophila Germline.<br>Molecular Cell, 2015, 59, 553-563.                                                       | 9.7  | 61        |

Μικικό C Siomi

| #  | Article                                                                                                                                                                                        | IF   | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 37 | Nuclear RNA export factor variant initiates piRNAâ€guided coâ€transcriptional silencing. EMBO Journal,<br>2019, 38, e102870.                                                                   | 7.8  | 57        |
| 38 | The piRNA pathway in <i>Drosophila</i> ovarian germ and somatic cells. Proceedings of the<br>Japan Academy Series B: Physical and Biological Sciences, 2020, 96, 32-42.                        | 3.8  | 50        |
| 39 | Piwi Nuclear Localization and Its Regulatory Mechanism in Drosophila Ovarian Somatic Cells. Cell<br>Reports, 2018, 23, 3647-3657.                                                              | 6.4  | 45        |
| 40 | Hierarchical roles of mitochondrial Papi and Zucchini in Bombyx germline piRNA biogenesis. Nature,<br>2018, 555, 260-264.                                                                      | 27.8 | 44        |
| 41 | Crystal structure of Drosophila Piwi. Nature Communications, 2020, 11, 858.                                                                                                                    | 12.8 | 42        |
| 42 | Distinct and Collaborative Functions of Yb and Armitage in Transposon-Targeting piRNA Biogenesis.<br>Cell Reports, 2019, 27, 1822-1835.e8.                                                     | 6.4  | 37        |
| 43 | Crystal Structure and Activity of the Endoribonuclease Domain of the piRNA Pathway Factor<br>Maelstrom. Cell Reports, 2015, 11, 366-375.                                                       | 6.4  | 36        |
| 44 | RNA silencing in germlines—exquisite collaboration of Argonaute proteins with small RNAs for germline survival. Current Opinion in Cell Biology, 2009, 21, 426-434.                            | 5.4  | 35        |
| 45 | Essential roles of Windei and nuclear monoubiquitination of Eggless/ <scp>SETDB</scp> 1 in transposon silencing. EMBO Reports, 2019, 20, e48296.                                               | 4.5  | 34        |
| 46 | Gender-Specific Hierarchy in Nuage Localization of PIWI-Interacting RNA Factors in Drosophila.<br>Frontiers in Genetics, 2011, 2, 55.                                                          | 2.3  | 33        |
| 47 | piRNA―and siRNAâ€mediated transcriptional repression in <i>Drosophila</i> , mice, and yeast: new insights and biodiversity. EMBO Reports, 2021, 22, e53062.                                    | 4.5  | 31        |
| 48 | Loss of <i>l(3)mbt</i> leads to acquisition of the ping-pong cycle in <i>Drosophila</i> ovarian somatic cells. Genes and Development, 2016, 30, 1617-1622.                                     | 5.9  | 30        |
| 49 | The Mi-2 nucleosome remodeler and the Rpd3 histone deacetylase are involved in piRNA-guided heterochromatin formation. Nature Communications, 2020, 11, 2818.                                  | 12.8 | 30        |
| 50 | Hamster PIWI proteins bind to piRNAs with stage-specific size variations during oocyte maturation.<br>Nucleic Acids Research, 2021, 49, 2700-2720.                                             | 14.5 | 26        |
| 51 | Functional and structural insights into the piRNA factor Maelstrom. FEBS Letters, 2015, 589, 1688-1693.                                                                                        | 2.8  | 25        |
| 52 | Requirements for multivalent Yb body assembly in transposon silencing in <i>Drosophila</i> . EMBO<br>Reports, 2019, 20, e47708.                                                                | 4.5  | 25        |
| 53 | Immuno-Electron Microscopy and Electron Microscopic In Situ Hybridization for Visualizing piRNA<br>Biogenesis Bodies in Drosophila Ovaries. Methods in Molecular Biology, 2015, 1328, 163-178. | 0.9  | 21        |
| 54 | The PIWIâ€Interacting RNA Molecular Pathway: Insights From Cultured Silkworm Germline Cells.<br>BioEssays, 2018, 40, 1700068.                                                                  | 2.5  | 21        |

Μικικό C Siomi

| #  | Article                                                                                                                                                            | IF   | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 55 | Two distinct transcriptional controls triggered by nuclear Piwi-piRISCs in the Drosophila piRNA pathway. Current Opinion in Structural Biology, 2018, 53, 69-76.   | 5.7  | 20        |
| 56 | Armitage determines Piwiâ^piRISC processing from precursor formation and quality control to<br>interâ€organelle translocation. EMBO Reports, 2020, 21, e48769.     | 4.5  | 19        |
| 57 | Piwi suppresses transcription of Brahma-dependent transposons via Maelstrom in ovarian somatic cells. Science Advances, 2020, 6, .                                 | 10.3 | 18        |
| 58 | DEADâ€box polypeptide 43 facilitates piRNA amplification by actively liberating RNA from Ago3â€piRISC.<br>EMBO Reports, 2021, 22, e51313.                          | 4.5  | 14        |
| 59 | Tudor-domain containing proteins act to make the piRNA pathways more robust in Drosophila. Fly, 2015, 9, 86-90.                                                    | 1.7  | 13        |
| 60 | Siwi levels reversibly regulate secondary pi <scp>RISC</scp> biogenesis by affecting Ago3 body morphology in <i>Bombyx mori</i> . EMBO Journal, 2020, 39, e105130. | 7.8  | 13        |
| 61 | Phased piRNAs tackle transposons. Science, 2015, 348, 756-757.                                                                                                     | 12.6 | 12        |
| 62 | Use of the CRISPR-Cas9 system for genome editing in cultured Drosophila ovarian somatic cells.<br>Methods, 2017, 126, 186-192.                                     | 3.8  | 8         |
| 63 | Assembly and Function of Gonad-Specific Non-Membranous Organelles in Drosophila piRNA Biogenesis.<br>Non-coding RNA, 2019, 5, 52.                                  | 2.6  | 5         |
| 64 | Maelstrom functions in the production of Siwi-piRISC capable of regulating transposons in Bombyx germ cells. IScience, 2022, 25, 103914.                           | 4.1  | 5         |
| 65 | T-hairpin structure found in the RNA element involved in piRNA biogenesis. Rna, 2022, 28, 541-550.                                                                 | 3.5  | 4         |
| 66 | Japan: prize diversity, not conformity, to boost research. Nature, 2021, 599, 201-201.                                                                             | 27.8 | 1         |
| 67 | Siwi cooperates with Par-1 kinase to resolve the autoinhibitory effect of Papi for Siwi-piRISC biogenesis. Nature Communications, 2022, 13, 1518.                  | 12.8 | 1         |