Vincent Artero

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5338425/publications.pdf

Version: 2024-02-01

168 papers 17,169 citations

18482 62 h-index 128 g-index

181 all docs

181 docs citations

times ranked

181

13728 citing authors

#	Article	IF	Citations
1	Splitting Water with Cobalt. Angewandte Chemie - International Edition, 2011, 50, 7238-7266.	13.8	1,231
2	From Hydrogenases to Noble Metal–Free Catalytic Nanomaterials for H ⟨sub⟩2⟨ sub⟩ Production and Uptake. Science, 2009, 326, 1384-1387.	12.6	886
3	A Janus cobalt-based catalytic material for electro-splitting of water. Nature Materials, 2012, 11, 802-807.	27.5	784
4	Biomimetic assembly and activation of [FeFe]-hydrogenases. Nature, 2013, 499, 66-69.	27.8	597
5	Coordination polymer structure and revisited hydrogen evolution catalytic mechanism for amorphous molybdenumÂsulfide. Nature Materials, 2016, 15, 640-646.	27.5	490
6	Solar fuels generation and molecular systems: is it homogeneous or heterogeneous catalysis?. Chemical Society Reviews, 2013, 42, 2338-2356.	38.1	437
7	Mimicking hydrogenases: From biomimetics to artificial enzymes. Coordination Chemistry Reviews, 2014, 270-271, 127-150.	18.8	426
8	Cobaloximeâ€Based Photocatalytic Devices for Hydrogen Production. Angewandte Chemie - International Edition, 2008, 47, 564-567.	13.8	400
9	Proton Electroreduction Catalyzed by Cobaloximes:Â Functional Models for Hydrogenases. Inorganic Chemistry, 2005, 44, 4786-4795.	4.0	389
10	Cobalt and nickel diimine-dioxime complexes as molecular electrocatalysts for hydrogen evolution with low overvoltages. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 20627-20632.	7.1	388
11	H ₂ Evolution and Molecular Electrocatalysts: Determination of Overpotentials and Effect of Homoconjugation. Inorganic Chemistry, 2010, 49, 10338-10347.	4.0	380
12	Cobaloximes as Functional Models for Hydrogenases. 2. Proton Electroreduction Catalyzed by Difluoroborylbis(dimethylglyoximato)cobalt(II) Complexes in Organic Media. Inorganic Chemistry, 2007, 46, 1817-1824.	4.0	350
13	Molecular engineering of a cobalt-based electrocatalytic nanomaterial for H2 evolution under fully aqueous conditions. Nature Chemistry, 2013, 5, 48-53.	13.6	349
14	Some general principles for designing electrocatalysts with hydrogenase activity. Coordination Chemistry Reviews, 2005, 249, 1518-1535.	18.8	321
15	Spontaneous activation of [FeFe]-hydrogenases by an inorganic [2Fe] active site mimic. Nature Chemical Biology, 2013, 9, 607-609.	8.0	316
16	Copper molybdenum sulfide: a new efficient electrocatalyst for hydrogen production from water. Energy and Environmental Science, 2012, 5, 8912.	30.8	314
17	Artificial Photosynthesis: From Molecular Catalysts for Lightâ€driven Water Splitting to Photoelectrochemical Cells. Photochemistry and Photobiology, 2011, 87, 946-964.	2.5	273
18	Photoelectrochemical Reduction of CO ₂ Coupled to Water Oxidation Using a Photocathode with a Ru(II)–Re(I) Complex Photocatalyst and a CoO _{<i>x</i>} /TaON Photoanode. Journal of the American Chemical Society, 2016, 138, 14152-14158.	13.7	260

#	Article	IF	Citations
19	Molecular Cobalt Complexes with Pendant Amines for Selective Electrocatalytic Reduction of Carbon Dioxide to Formic Acid. Journal of the American Chemical Society, 2017, 139, 3685-3696.	13.7	256
20	Noncovalent Modification of Carbon Nanotubes with Pyreneâ€Functionalized Nickel Complexes: Carbon Monoxide Tolerant Catalysts for Hydrogen Evolution and Uptake. Angewandte Chemie - International Edition, 2011, 50, 1371-1374.	13.8	254
21	Toward the rational benchmarking of homogeneous H ₂ -evolving catalysts. Energy and Environmental Science, 2014, 7, 3808-3814.	30.8	241
22	Pathways to electrochemical solar-hydrogen technologies. Energy and Environmental Science, 2018, 11, 2768-2783.	30.8	238
23	Hydrogen Evolution Catalyzed by Cobalt Diimine–Dioxime Complexes. Accounts of Chemical Research, 2015, 48, 1286-1295.	15.6	228
24	Efficient H2-producing photocatalytic systems based on cyclometalated iridium- and tricarbonylrhenium-diimine photosensitizers and cobaloxime catalysts. Dalton Transactions, 2008, , 5567.	3.3	226
25	Recent developments in hydrogen evolving molecular cobalt(II)–polypyridyl catalysts. Coordination Chemistry Reviews, 2015, 304-305, 3-19.	18.8	205
26	Nickel-centred proton reduction catalysis in a model of [NiFe] hydrogenase. Nature Chemistry, 2016, 8, 1054-1060.	13.6	200
27	Water electrolysis and photoelectrolysis on electrodes engineered using biological and bio-inspired molecular systems. Energy and Environmental Science, 2010, 3, 727.	30.8	192
28	Novel cobalt/nickel–tungsten-sulfide catalysts for electrocatalytic hydrogen generation from water. Energy and Environmental Science, 2013, 6, 2452.	30.8	182
29	Terpyridine complexes of first row transition metals and electrochemical reduction of CO ₂ to CO. Physical Chemistry Chemical Physics, 2014, 16, 13635-13644.	2.8	154
30	Modelling NiFe hydrogenases: nickel-based electrocatalysts for hydrogen production. Dalton Transactions, 2008, , 315-325.	3. 3	142
31	Covalent Design for Dye-Sensitized H ₂ -Evolving Photocathodes Based on a Cobalt Diimine–Dioxime Catalyst. Journal of the American Chemical Society, 2016, 138, 12308-12311.	13.7	142
32	Charge photo-accumulation and photocatalytic hydrogen evolution under visible light at an iridium(iii)-photosensitized polyoxotungstate. Energy and Environmental Science, 2013, 6, 1504.	30.8	138
33	A comprehensive comparison of dye-sensitized NiO photocathodes for solar energy conversion. Physical Chemistry Chemical Physics, 2016, 18, 10727-10738.	2.8	135
34	The Dark Side of Molecular Catalysis: Diimine–Dioxime Cobalt Complexes Are Not the Actual Hydrogen Evolution Electrocatalyst in Acidic Aqueous Solutions. ACS Catalysis, 2016, 6, 3727-3737.	11.2	129
35	Porous dendritic copper: an electrocatalyst for highly selective CO ₂ reduction to formate in water/ionic liquid electrolyte. Chemical Science, 2017, 8, 742-747.	7.4	128
36	Synthesis and Characterization of the First Carbene Derivative of a Polyoxometalate. Journal of the American Chemical Society, 2003, 125, 11156-11157.	13.7	114

3

#	Article	IF	CITATIONS
37	A structural and functional mimic of the active site of NiFe hydrogenases. Chemical Communications, 2010, 46, 5876.	4.1	101
38	Phosphine Coordination to a Cobalt Diimine–Dioxime Catalyst Increases Stability during Light-Driven H ₂ Production. Inorganic Chemistry, 2012, 51, 2115-2120.	4.0	98
39	Molecular engineered nanomaterials for catalytic hydrogen evolution and oxidation. Chemical Communications, 2016, 52, 13728-13748.	4.1	98
40	Toward Platinum Group Metal-Free Catalysts for Hydrogen/Air Proton-Exchange Membrane Fuel Cells. Johnson Matthey Technology Review, 2018, 62, 231-255.	1.0	97
41	Electrocatalytic Hydrogen Evolution with a Cobalt Complex Bearing Pendant Proton Relays: Acid Strength and Applied Potential Govern Mechanism and Stability. Journal of the American Chemical Society, 2020, 142, 274-282.	13.7	92
42	A Computational Study of the Mechanism of Hydrogen Evolution by Cobalt(Diimineâ€Dioxime) Catalysts. Chemistry - A European Journal, 2013, 19, 15166-15174.	3.3	91
43	Bioinspired catalytic materials for energy-relevant conversions. Nature Energy, 2017, 2, .	39.5	89
44	Facile and tunable functionalization of carbon nanotube electrodes with ferrocene by covalent coupling and π-stacking interactions and their relevance to glucose bio-sensing. Journal of Electroanalytical Chemistry, 2010, 641, 57-63.	3.8	87
45	Carbonâ€Nanotubeâ€Supported Bioâ€Inspired Nickel Catalyst and Its Integration in Hybrid Hydrogen/Air Fuel Cells. Angewandte Chemie - International Edition, 2017, 56, 1845-1849.	13.8	87
46	A nickel–manganese catalyst as a biomimic of the active site of NiFe hydrogenases: a combined electrocatalytical and DFT mechanistic study. Energy and Environmental Science, 2011, 4, 2417.	30.8	85
47	Synthesis, Characterization, and Photochemical Behavior of {Ru(arene)}2+ Derivatives of α-[PW11O39]7-:  An Organometallic Way to Ruthenium-Substituted Heteropolytungstates. Inorganic Chemistry, 2005, 44, 2826-2835.	4.0	84
48	Molecular cathode and photocathode materials for hydrogen evolution in photoelectrochemical devices. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 2015, 25, 90-105.	11.6	84
49	Photochemical hydrogen production and cobaloximes: the influence of the cobalt axial N-ligand on the system stability. Dalton Transactions, 2016, 45, 6732-6738.	3.3	84
50	Earth-Abundant Molecular Z-Scheme Photoelectrochemical Cell for Overall Water-Splitting. Journal of the American Chemical Society, 2019, 141, 9593-9602.	13.7	84
51	A H2-evolving photocathode based on direct sensitization of MoS3 with an organic photovoltaic cell. Energy and Environmental Science, 2013, 6, 2706.	30.8	83
52	Cobaloxime-Based Artificial Hydrogenases. Inorganic Chemistry, 2014, 53, 8071-8082.	4.0	78
53	Experimental and Theoretical Insight into Electrocatalytic Hydrogen Evolution with Nickel Bis(aryldithiolene) Complexes as Catalysts. Inorganic Chemistry, 2016, 55, 432-444.	4.0	76
54	Interplay of Cubic Building Blocks in (Î-6-arene)Ruthenium-Containing Tungsten and Molybdenum Oxides. Chemistry - A European Journal, 2001, 7, 3901-3910.	3.3	71

#	Article	IF	CITATIONS
55	Artificial hydrogenases: biohybrid and supramolecular systems for catalytic hydrogen production or uptake. Current Opinion in Chemical Biology, 2015, 25, 36-47.	6.1	71
56	From molecular copper complexes to composite electrocatalytic materials for selective reduction of CO ₂ to formic acid. Journal of Materials Chemistry A, 2015, 3, 3901-3907.	10.3	69
57	[Ni(xbsms)Ru(CO)2Cl2]: A Bioinspired Nickelâ^'Ruthenium Functional Model of [NiFe] Hydrogenase. Inorganic Chemistry, 2006, 45, 4334-4336.	4.0	66
58	A noble metal-free proton-exchange membrane fuel cell based on bio-inspired molecular catalysts. Chemical Science, 2015, 6, 2050-2053.	7.4	66
59	Mesoporous thin film WO ₃ photoanode for photoelectrochemical water splitting: a sol–gel dip coating approach. Sustainable Energy and Fuels, 2017, 1, 145-153.	4.9	65
60	Spectroscopic Characterization of the Bridging Amine in the Active Site of [FeFe] Hydrogenase Using Isotopologues of the H-Cluster. Journal of the American Chemical Society, 2015, 137, 12744-12747.	13.7	64
61	From Enzyme Maturation to Synthetic Chemistry: The Case of Hydrogenases. Accounts of Chemical Research, 2015, 48, 2380-2387.	15.6	63
62	Artificial Photosynthesis for Solar Fuels – an Evolving Research Field within AMPEA, a Joint Programme of the European Energy Research Alliance. Green, 2013, 3, .	0.4	62
63	Cyclopentadienyl Ruthenium–Nickel Catalysts for Biomimetic Hydrogen Evolution: Electrocatalytic Properties and Mechanistic DFT Studies. Chemistry - A European Journal, 2009, 15, 9350-9364.	3.3	61
64	Bio-inspired noble metal-free nanomaterials approaching platinum performances for H ₂ evolution and uptake. Energy and Environmental Science, 2016, 9, 940-947.	30.8	60
65	Dinuclear Nickel–Ruthenium Complexes as Functional Bio-Inspired Models of [NiFe] Hydrogenases. European Journal of Inorganic Chemistry, 2007, 2007, 2613-2626.	2.0	59
66	A Thiosemicarbazone–Nickel(II) Complex as Efficient Electrocatalyst for Hydrogen Evolution. ChemCatChem, 2017, 9, 2262-2268.	3.7	57
67	A Non-Heme Diiron Complex for (Electro)catalytic Reduction of Dioxygen: Tuning the Selectivity through Electron Delivery. Journal of the American Chemical Society, 2019, 141, 8244-8253.	13.7	56
68	Mesoporous α-Fe2O3 thin films synthesized via the sol–gel process for light-driven water oxidation. Physical Chemistry Chemical Physics, 2012, 14, 13224.	2.8	55
69	Combined Experimental–Theoretical Characterization of the Hydrido-Cobaloxime [HCo(dmgH) ₂ (P <i>n</i> Bu ₃)]. Inorganic Chemistry, 2012, 51, 7087-7093.	4.0	55
70	Catalytic hydrogen production by a Ni–Ru mimic of NiFe hydrogenases involves a proton-coupled electron transfer step. Chemical Communications, 2013, 49, 5004.	4.1	54
71	Tricarbonylmanganese(i)–lysozyme complex: a structurally characterized organometallic protein. Chemical Communications, 2007, , 2805-2807.	4.1	53
72	A Systematic Comparative Study of Hydrogenâ€Evolving Molecular Catalysts in Aqueous Solutions. ChemSusChem, 2015, 8, 3632-3638.	6.8	52

#	Article	IF	Citations
73	Enhancing the Performances of P3HT:PCBM–MoS ₃ -Based H ₂ -Evolving Photocathodes with Interfacial Layers. ACS Applied Materials & Interfaces, 2015, 7, 16395-16403.	8.0	51
74	Protonâ€Reduction Reaction Catalyzed by Homoleptic Nickel–bisâ€1,2â€dithiolate Complexes: Experimental and Theoretical Mechanistic Investigations. ChemCatChem, 2017, 9, 2308-2317.	3.7	50
7 5	Hydrogen Evolution Reactions Catalyzed by a Bis(thiosemicarbazone) Cobalt Complex: An Experimental and Theoretical Study. Chemistry - A European Journal, 2018, 24, 8779-8786.	3.3	50
76	Nonprecious Bimetallic Iron–Molybdenum Sulfide Electrocatalysts for the Hydrogen Evolution Reaction in Proton Exchange Membrane Electrolyzers. ACS Catalysis, 2020, 10, 14336-14348.	11.2	50
77	Catalytic Hydrogen Oxidation: Dawn of a New Iron Age. Angewandte Chemie - International Edition, 2013, 52, 6143-6145.	13.8	48
78	An artificial photosynthetic system for photoaccumulation of two electrons on a fused dipyridophenazine (dppz)–pyridoquinolinone ligand. Chemical Science, 2018, 9, 4152-4159.	7.4	48
79	Engineering an [FeFe]-Hydrogenase: Do Accessory Clusters Influence O ₂ Resistance and Catalytic Bias?. Journal of the American Chemical Society, 2018, 140, 5516-5526.	13.7	48
80	Immobilization of FeFe hydrogenase mimics onto carbon and gold electrodes by controlled aryldiazonium salt reduction: an electrochemical, XPS and ATR-IR study. International Journal of Hydrogen Energy, 2010, 35, 10790-10796.	7.1	47
81	Tuning Reactivity of Bioinspired [NiFe]-Hydrogenase Models by Ligand Design and Modeling the CO Inhibition Process. ACS Catalysis, 2018, 8, 10658-10667.	11.2	47
82	Hydrogenase enzymes: Application in biofuel cells and inspiration for the design of noble-metal free catalysts for H2 oxidation. Comptes Rendus Chimie, 2013, 16, 491-505.	0.5	46
83	CO ₂ Reduction to CO in Water: Carbon Nanotube–Gold Nanohybrid as a Selective and Efficient Electrocatalyst. ChemSusChem, 2016, 9, 2317-2320.	6.8	45
84	Hydrogen Evolution from Aqueous Solutions Mediated by a Heterogenized [NiFe]â€Hydrogenase Model: Low pH Enables Catalysis through an Enzymeâ€Relevant Mechanism. Angewandte Chemie - International Edition, 2018, 57, 16001-16004.	13.8	45
85	Oxygen Tolerance of a Molecular Engineered Cathode for Hydrogen Evolution Based on a Cobalt Diimine–Dioxime Catalyst. Journal of Physical Chemistry B, 2015, 119, 13707-13713.	2.6	41
86	Repurposing a Bio-Inspired NiFe Hydrogenase Model for CO ₂ Reduction with Selective Production of Methane as the Unique C-Based Product. ACS Energy Letters, 2020, 5, 3837-3842.	17.4	41
87	Mechanism of hydrogen evolution catalyzed by NiFe hydrogenases: insights from a Ni–Ru model compound. Dalton Transactions, 2010, 39, 3043-3049.	3.3	39
88	Artificially maturated [FeFe] hydrogenase from Chlamydomonas reinhardtii: a HYSCORE and ENDOR study of a non-natural H-cluster. Physical Chemistry Chemical Physics, 2015, 17, 5421-5430.	2.8	39
89	(î-6-Arene)ruthenium oxomolybdenum and oxotungsten clusters. Stereochemical non-rigidity of $[\{Ru(\hat{l}-6-p-MeC6H4Pri)\}4Mo4O16]$ and crystal structure of $[\{Ru(\hat{l}-6-p-MeC6H4Pri)\}4W2O10]$. Chemical Communications, 2000, , 883-884.	4.1	38
90	Structural and functional characterization of the hydrogenase-maturation HydF protein. Nature Chemical Biology, 2017, 13, 779-784.	8.0	38

#	Article	IF	Citations
91	X-ray absorption spectroscopy with time-tagged photon counting: application to study the structure of a Co(i) intermediate of H2 evolving photo-catalyst. Faraday Discussions, 2014, 171, 259-273.	3.2	37
92	A noble metal-free photocatalytic system based on a novel cobalt tetrapyridyl catalyst for hydrogen production in fully aqueous medium. Sustainable Energy and Fuels, 2018, 2, 553-557.	4.9	37
93	Microsecond Xâ€ray Absorption Spectroscopy Identification of Co ^I Intermediates in Cobaloximeâ€Catalyzed Hydrogen Evolution. Chemistry - A European Journal, 2015, 21, 15158-15162.	3.3	35
94	Adamantane Selective Hydroxylation by 2,6-Dichloropyridine N-Oxide and Organoruthenium(II) Polyoxometalates as Catalyst Precursors. Advanced Synthesis and Catalysis, 2002, 344, 841-844.	4.3	33
95	Synthesis, crystal structure, magnetic properties and reactivity of a Ni–Ru model of NiFe hydrogenases with a pentacoordinated triplet (S=1) Nill center. Journal of Organometallic Chemistry, 2009, 694, 2866-2869.	1.8	33
96	Dye-sensitized nanostructured crystalline mesoporous tin-doped indium oxide films with tunable thickness for photoelectrochemical applications. Journal of Materials Chemistry A, 2013, 1, 8217.	10.3	33
97	Cu/Cu ₂ O Electrodes and CO ₂ Reduction to Formic Acid: Effects of Organic Additives on Surface Morphology and Activity. Chemistry - A European Journal, 2016, 22, 14029-14035.	3.3	33
98	Aqueous Photocurrent Measurements Correlated to Ultrafast Electron Transfer Dynamics at Ruthenium Tris Diimine Sensitized NiO Photocathodes. Journal of Physical Chemistry C, 2017, 121, 5891-5904.	3.1	33
99	Dye-sensitized PS- $\langle i \rangle$ b $\langle i \rangle$ -P2VP-templated nickel oxide films for photoelectrochemical applications. Interface Focus, 2015, 5, 20140083.	3.0	32
100	Pump-Flow-Probe X-ray Absorption Spectroscopy as a Tool for Studying Intermediate States of Photocatalytic Systems. Journal of Physical Chemistry C, 2013, 117, 17367-17375.	3.1	31
101	Tuning the electrocatalytic hydrogen evolution reaction promoted by [Mo2O2S2]-based molybdenum cycles in aqueous medium. Dalton Transactions, 2013, 42, 4848.	3.3	31
102	Solarâ€Waterâ€5plitting BiVO ₄ Thinâ€Film Photoanodes Prepared By Using a Sol–Gel Dipâ€Coatin Technique. ChemPhotoChem, 2017, 1, 273-280.	¹ g.0	31
103	Insights into the mechanism and aging of a noble-metal free H ₂ -evolving dye-sensitized photocathode. Chemical Science, 2018, 9, 6721-6738.	7.4	31
104	A Bidirectional Bioinspired [FeFe]-Hydrogenase Model. Journal of the American Chemical Society, 2022, 144, 3614-3625.	13.7	31
105	Cp* ^{â€"} â€Rutheniumâ€"Nickelâ€Based H ₂ â€Evolving Electrocatalysts as Bioâ€inspired Models of NiFe Hydrogenases. European Journal of Inorganic Chemistry, 2011, 2011, 1094-1099.	2.0	30
106	Capture of the Complex [Ni(dto) ₂] ^{2â€"} (dto ^{2â€"} = Dithiooxalato) Tj ETQc Reduction of Protons. Inorganic Chemistry, 2011, 50, 9031-9038.	10 0 0 rgBT 4.0	「/Overlock 29
107	Bioinspired catalysis at the crossroads between biology and chemistry: A remarkable example of an electrocatalytic material mimicking hydrogenases. Comptes Rendus Chimie, 2011, 14, 362-371.	0.5	29
108	Electron transfer in a covalent dye–cobalt catalyst assembly – a transient absorption spectroelectrochemistry perspective. Chemical Communications, 2018, 54, 10594-10597.	4.1	29

#	Article	IF	CITATIONS
109	Supramolecular assembly of cobaloxime on nanoring-coated carbon nanotubes: addressing the stability of the pyridine–cobalt linkage under hydrogen evolution turnover conditions. Chemical Communications, 2016, 52, 11783-11786.	4.1	28
110	Heterogenization of a [NiFe] Hydrogenase Mimic through Simple and Efficient Encapsulation into a Mesoporous MOF. Inorganic Chemistry, 2017, 56, 14801-14808.	4.0	28
111	A Nanotube-Supported Dicopper Complex Enhances Pt-free Molecular H2/Air Fuel Cells. Joule, 2019, 3, 2020-2029.	24.0	28
112	Noncovalent Integration of a Bioinspired Ni Catalyst to Graphene Acid for Reversible Electrocatalytic Hydrogen Oxidation. ACS Applied Materials & Samp; Interfaces, 2020, 12, 5805-5811.	8.0	28
113	Organometallic polyoxometalates: synthesis and structural analysis of (Î-6-arene) ruthenium-containing polyoxomolybdates. Journal of Molecular Structure, 2003, 656, 67-77.	3.6	27
114	CuO photoelectrodes synthesized by the sol–gel method for water splitting. Journal of Sol-Gel Science and Technology, 2019, 89, 255-263.	2.4	27
115	Chemical assembly of multiple metal cofactors: The heterologously expressed multidomain [FeFe]-hydrogenase from Megasphaera elsdenii. Biochimica Et Biophysica Acta - Bioenergetics, 2016, 1857, 1734-1740.	1.0	26
116	H ₂ -Evolving Dye-Sensitized Photocathode Based on a Ruthenium–Diacetylide/Cobaloxime Supramolecular Assembly. ACS Applied Energy Materials, 2019, 2, 4971-4980.	5.1	26
117	Reduction of the Phosphododecamolybdate Ion by Phosphonium Ylides and Phosphanes. European Journal of Inorganic Chemistry, 2000, 2000, 2393-2400.	2.0	25
118	Artificial Hydrogenases Based on Cobaloximes and Heme Oxygenase. ChemPlusChem, 2016, 81, 1083-1089.	2.8	25
119	Reactivity of the Excited States of the H-Cluster of FeFe Hydrogenases. Journal of the American Chemical Society, 2016, 138, 13612-13618.	13.7	25
120	A robust ALD-protected silicon-based hybrid photoelectrode for hydrogen evolution under aqueous conditions. Chemical Science, 2019, 10, 4469-4475.	7.4	25
121	Hydrogen evolution catalyzed by {CpFe(CO)2}-based complexes. Comptes Rendus Chimie, 2008, 11, 926-931.	0.5	24
122	Carbon nanotubes-gold nanohybrid as potent electrocatalyst for oxygen reduction in alkaline media. Nanoscale, 2015, 7, 17274-17277.	5.6	22
123	The unexpected reactivity of p-tolylisocyanate towards the Keggin anion α-[PMo12O40]3–. Chemical Communications, 1996, , 2195-2196.	4.1	21
124	Noble metal-free hydrogen-evolving photocathodes based on small molecule organic semiconductors. Nanotechnology, 2016, 27, 355401.	2.6	21
125	Design and synthesis of novel organometallic dyes for NiO sensitization and photo-electrochemical applications. Dalton Transactions, 2016, 45, 12539-12547.	3.3	21
126	Light-driven bioinspired water splitting: Recent developments in photoelectrode materials. Comptes Rendus Chimie, 2011, 14, 799-810.	0.5	20

#	Article	IF	Citations
127	Role of the Metal Ion in Bio-Inspired Hydrogenase Models: Investigation of a Homodinuclear FeFe Complex vs Its Heterodinuclear NiFe Analogue. ACS Catalysis, 2020, 10, 177-186.	11.2	19
128	Spectroscopic Investigations Provide a Rationale for the Hydrogen-Evolving Activity of Dye-Sensitized Photocathodes Based on a Cobalt Tetraazamacrocyclic Catalyst. ACS Catalysis, 2021, 11, 3662-3678.	11.2	19
129	Investigating Light-Driven Hole Injection and Hydrogen Evolution Catalysis at Dye-Sensitized NiO Photocathodes: A Combined Experimental–Theoretical Study. Journal of Physical Chemistry C, 2019, 123, 17176-17184.	3.1	18
130	Insights into the mechanism of photosynthetic H ₂ evolution catalyzed by a heptacoordinate cobalt complex. Sustainable Energy and Fuels, 2020, 4, 589-599.	4.9	18
131	Carbonâ€Nanotubeâ€Supported Bioâ€Inspired Nickel Catalyst and Its Integration in Hybrid Hydrogen/Air Fuel Cells. Angewandte Chemie, 2017, 129, 1871-1875.	2.0	17
132	A protocol for quantifying hydrogen evolution by dye-sensitized molecular photocathodes and its implementation for evaluating a new covalent architecture based on an optimized dye-catalyst dyad. Dalton Transactions, 2018, 47, 10509-10516.	3.3	17
133	Bioinspired Artificial [FeFe]-Hydrogenase with a Synthetic H-Cluster. ACS Catalysis, 2019, 9, 4495-4501.	11.2	17
134	Hydrogen Production at a NiO Photocathode Based on a Ruthenium Dye–Cobalt Diimine Dioxime Catalyst Assembly: Insights from Advanced Spectroscopy and Post-operando Characterization. ACS Applied Materials & Diterfaces, 2021, 13, 49802-49815.	8.0	16
135	Approaching Industrially Relevant Current Densities for Hydrogen Oxidation with a Bioinspired Molecular Catalytic Material. Journal of the American Chemical Society, 2021, 143, 18150-18158.	13.7	16
136	Dye-Sensitized Photocathodes: Boosting Photoelectrochemical Performances with Polyoxometalate Electron Transfer Mediators. ACS Applied Energy Materials, 2020, 3, 163-169.	5.1	14
137	Impact of ionomer structuration on the performance of bio-inspired noble-metal-free fuel cell anodes. Chem Catalysis, 2021, 1, 88-105.	6.1	14
138	Spectroscopic investigations of a semi-synthetic [FeFe] hydrogenase with propane di-selenol as bridging ligand in the binuclear subsite: comparison to the wild type and propane di-thiol variants. Journal of Biological Inorganic Chemistry, 2018, 23, 481-491.	2.6	13
139	Forest of Pt–Au–Ag tri-metallic nanodendrites as an efficient electrocatalyst for methanol oxidation reaction. RSC Advances, 2015, 5, 6940-6944.	3.6	12
140	CuAAC-based assembly and characterization of a rutheniumâ€"copper dyad containing a diimineâ€"dioxime ligand framework. Faraday Discussions, 2017, 198, 251-261.	3.2	12
141	Theoretical Modeling of Lowâ€Energy Electronic Absorption Bands in Reduced Cobaloximes. ChemPhysChem, 2014, 15, 2951-2958.	2.1	11
142	Engineering n–p junction for photo-electrochemical hydrogen production. Physical Chemistry Chemical Physics, 2017, 19, 30675-30682.	2.8	11
143	Electronic Structure and Hydration of Tetramine Cobalt Hydride Complexes. Journal of Physical Chemistry B, 2014, 118, 5551-5561.	2.6	10
144	Synthesis and Characterization of a Covalent Porphyrinâ€Cobalt Diimineâ€Dioxime Dyad for Photoelectrochemical H 2 Evolution. European Journal of Inorganic Chemistry, 2021, 2021, 1122-1129.	2.0	10

#	Article	IF	CITATIONS
145	Hydrogen Evolution Mediated by Cobalt Diimineâ€Dioxime Complexes: Insights into the Role of the Ligand Acid/Base Functionalities ChemElectroChem, 2021, 8, 2671-2679.	3.4	10
146	Water-Splitting Artificial Leaf Based on a Triple-Junction Silicon Solar Cell: One-Step Fabrication through Photoinduced Deposition of Catalysts and Electrochemical Operando Monitoring. Journal of the American Chemical Society, 2022, 144, 9651-9660.	13.7	10
147	Hydrogen Evolution from Aqueous Solutions Mediated by a Heterogenized [NiFe]â€Hydrogenase Model: Low pH Enables Catalysis through an Enzymeâ€Relevant Mechanism. Angewandte Chemie, 2018, 130, 16233-16236.	2.0	9
148	Synthesis of Ruthenium Trisâ€Diimine Photosensitizers Substituted by Four Methylphosphonate Anchoring Groups for Dyeâ€Sensitized Photoelectrochemical Cell Applications. European Journal of Inorganic Chemistry, 2019, 2019, 2154-2161.	2.0	9
149	Achieving visible light-driven hydrogen evolution at positive bias with a hybrid copper–iron oxide TiO2-cobaloxime photocathode. Green Chemistry, 2020, 22, 3141-3149.	9.0	9
150	An [FeFe]â€Hydrogenase Mimic Immobilized through Simple Physiadsorption and Active for Aqueous H ₂ Production. ChemElectroChem, 2021, 8, 1674-1677.	3.4	9
151	Investigating Light-Induced Processes in Covalent Dye-Catalyst Assemblies for Hydrogen Production. Catalysts, 2020, 10, 1340.	3.5	8
152	Hydrogen evolution reaction mediated by an all-sulfur trinuclear nickel complex. Chemical Communications, 2020, 56, 11106-11109.	4.1	8
153	Catalytic Reduction of Oxygen by a Copper Thiosemicarbazone Complex. European Journal of Inorganic Chemistry, 2020, 2020, 4549-4555.	2.0	7
154	Electrocatalytic reduction of protons to dihydrogen by the cobalt tetraazamacrocyclic complex [Co(N ₄ H)Cl ₂] ⁺ : mechanism and benchmarking of performances. Sustainable Energy and Fuels, 2021, 6, 143-149.	4.9	7
155	Molecular catalysts for artificial photosynthesis: general discussion. Faraday Discussions, 2017, 198, 353-395.	3.2	6
156	Tuning the Electron Storage Potential of a Chargeâ€Photoaccumulating Ru ^{II} Complex by a DFTâ€Guided Approach. Chemistry - A European Journal, 2019, 25, 13911-13920.	3.3	5
157	How do H ₂ oxidation molecular catalysts assemble onto carbon nanotube electrodes? A crosstalk between electrochemical and multi-physical characterization techniques. Chemical Science, 2021, 12, 15916-15927.	7.4	5
158	A simple method for the preparation of bio-inspired nickel bisdiphosphine hydrogen-evolving catalysts. Comptes Rendus Chimie, 2015, 18, 752-757.	0.5	3
159	Structure of Ni(OH)2 intermediates determines the efficiency of NiO-based photocathodes – a case study using novel mesoporous NiO nanostars. RSC Advances, 2019, 9, 39422-39433.	3.6	3
160	Push–pull organic dyes and dye-catalyst assembly featuring a benzothiadiazole unit for photoelectrochemical hydrogen production. Sustainable Energy and Fuels, 2022, 6, 3565-3572.	4.9	3
161	Revisiting amorphous molybdenum sulfide's activity for the electro-driven reduction of dinitrogen and N-containing substrates. Chemical Communications, 2020, 56, 13975-13978.	4.1	2
162	Artificial maturation of [FeFe] hydrogenase in a redox polymer film. Chemical Communications, 2021, 57, 1750-1753.	4.1	2

#	ARTICLE	IF	CITATION
163	A bio-inspired heterodinuclear hydrogenase CoFe complex. Faraday Discussions, 2022, 234, 34-41.	3.2	2
164	A covalent cobalt diimine-dioxime – fullerene assembly for photoelectrochemical hydrogen production from near-neutral aqueous media. Chemical Science, 2022, 13, 3857-3863.	7.4	2
165	European and International Initiatives in the Field of Artificial Photosynthesis. Advances in Botanical Research, 2016, 79, 193-221.	1.1	1
166	Dynamics of Organometallic Oxides: From Synthesis and Reactivity to DFT Calculations. Nanostructure Science and Technology, 2002, , 83-95.	0.1	0
167	Biological approaches to artificial photosynthesis, fundamental processes and theoretical approaches: general discussion. Faraday Discussions, 2017, 198, 147-168.	3.2	0
168	Chimie bio-inspirée et nanosciencesÂ: vers de nouveaux catalyseurs pour la production et l'oxydation de l'hydrogène. La Lettre Du Collège De France, 2010, , 14.	0.0	0