
## Vincent Artero

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5338425/publications.pdf Version: 2024-02-01



VINCENT ADTEDO

| #  | Article                                                                                                                                                                                                                                                         | IF   | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | A bio-inspired heterodinuclear hydrogenase CoFe complex. Faraday Discussions, 2022, 234, 34-41.                                                                                                                                                                 | 3.2  | 2         |
| 2  | A covalent cobalt diimine-dioxime – fullerene assembly for photoelectrochemical hydrogen production from near-neutral aqueous media. Chemical Science, 2022, 13, 3857-3863.                                                                                     | 7.4  | 2         |
| 3  | A Bidirectional Bioinspired [FeFe]-Hydrogenase Model. Journal of the American Chemical Society, 2022, 144, 3614-3625.                                                                                                                                           | 13.7 | 31        |
| 4  | Water-Splitting Artificial Leaf Based on a Triple-Junction Silicon Solar Cell: One-Step Fabrication<br>through Photoinduced Deposition of Catalysts and Electrochemical Operando Monitoring. Journal<br>of the American Chemical Society, 2022, 144, 9651-9660. | 13.7 | 10        |
| 5  | Push–pull organic dyes and dye-catalyst assembly featuring a benzothiadiazole unit for photoelectrochemical hydrogen production. Sustainable Energy and Fuels, 2022, 6, 3565-3572.                                                                              | 4.9  | 3         |
| 6  | Artificial maturation of [FeFe] hydrogenase in a redox polymer film. Chemical Communications, 2021, 57, 1750-1753.                                                                                                                                              | 4.1  | 2         |
| 7  | Synthesis and Characterization of a Covalent Porphyrinâ€Cobalt Diimineâ€Dioxime Dyad for<br>Photoelectrochemical H 2 Evolution. European Journal of Inorganic Chemistry, 2021, 2021, 1122-1129.                                                                 | 2.0  | 10        |
| 8  | Spectroscopic Investigations Provide a Rationale for the Hydrogen-Evolving Activity of Dye-Sensitized Photocathodes Based on a Cobalt Tetraazamacrocyclic Catalyst. ACS Catalysis, 2021, 11, 3662-3678.                                                         | 11.2 | 19        |
| 9  | An [FeFe]â€Hydrogenase Mimic Immobilized through Simple Physiadsorption and Active for Aqueous<br>H <sub>2</sub> Production. ChemElectroChem, 2021, 8, 1674-1677.                                                                                               | 3.4  | 9         |
| 10 | Impact of ionomer structuration on the performance of bio-inspired noble-metal-free fuel cell anodes. Chem Catalysis, 2021, 1, 88-105.                                                                                                                          | 6.1  | 14        |
| 11 | Hydrogen Evolution Mediated by Cobalt Diimineâ€Dioxime Complexes: Insights into the Role of the<br>Ligand Acid/Base Functionalities ChemElectroChem, 2021, 8, 2671-2679.                                                                                        | 3.4  | 10        |
| 12 | Hydrogen Production at a NiO Photocathode Based on a Ruthenium Dye–Cobalt Diimine Dioxime<br>Catalyst Assembly: Insights from Advanced Spectroscopy and Post-operando Characterization. ACS<br>Applied Materials & Interfaces, 2021, 13, 49802-49815.           | 8.0  | 16        |
| 13 | Approaching Industrially Relevant Current Densities for Hydrogen Oxidation with a Bioinspired<br>Molecular Catalytic Material. Journal of the American Chemical Society, 2021, 143, 18150-18158.                                                                | 13.7 | 16        |
| 14 | Electrocatalytic reduction of protons to dihydrogen by the cobalt tetraazamacrocyclic complex<br>[Co(N <sub>4</sub> H)Cl <sub>2</sub> ] <sup>+</sup> : mechanism and benchmarking of performances.<br>Sustainable Energy and Fuels, 2021, 6, 143-149.           | 4.9  | 7         |
| 15 | How do H <sub>2</sub> oxidation molecular catalysts assemble onto carbon nanotube electrodes? A crosstalk between electrochemical and multi-physical characterization techniques. Chemical Science, 2021, 12, 15916-15927.                                      | 7.4  | 5         |
| 16 | Insights into the mechanism of photosynthetic H <sub>2</sub> evolution catalyzed by a heptacoordinate cobalt complex. Sustainable Energy and Fuels, 2020, 4, 589-599.                                                                                           | 4.9  | 18        |
| 17 | Noncovalent Integration of a Bioinspired Ni Catalyst to Graphene Acid for Reversible Electrocatalytic<br>Hydrogen Oxidation. ACS Applied Materials & Interfaces, 2020, 12, 5805-5811.                                                                           | 8.0  | 28        |
| 18 | Dye-Sensitized Photocathodes: Boosting Photoelectrochemical Performances with Polyoxometalate<br>Electron Transfer Mediators. ACS Applied Energy Materials, 2020, 3, 163-169.                                                                                   | 5.1  | 14        |

| #  | Article                                                                                                                                                                                                                                      | IF   | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Role of the Metal Ion in Bio-Inspired Hydrogenase Models: Investigation of a Homodinuclear FeFe<br>Complex vs Its Heterodinuclear NiFe Analogue. ACS Catalysis, 2020, 10, 177-186.                                                           | 11.2 | 19        |
| 20 | Electrocatalytic Hydrogen Evolution with a Cobalt Complex Bearing Pendant Proton Relays: Acid<br>Strength and Applied Potential Govern Mechanism and Stability. Journal of the American Chemical<br>Society, 2020, 142, 274-282.             | 13.7 | 92        |
| 21 | Revisiting amorphous molybdenum sulfide's activity for the electro-driven reduction of dinitrogen and N-containing substrates. Chemical Communications, 2020, 56, 13975-13978.                                                               | 4.1  | 2         |
| 22 | Investigating Light-Induced Processes in Covalent Dye-Catalyst Assemblies for Hydrogen Production.<br>Catalysts, 2020, 10, 1340.                                                                                                             | 3.5  | 8         |
| 23 | Nonprecious Bimetallic Iron–Molybdenum Sulfide Electrocatalysts for the Hydrogen Evolution<br>Reaction in Proton Exchange Membrane Electrolyzers. ACS Catalysis, 2020, 10, 14336-14348.                                                      | 11.2 | 50        |
| 24 | Catalytic Reduction of Oxygen by a Copper Thiosemicarbazone Complex. European Journal of Inorganic<br>Chemistry, 2020, 2020, 4549-4555.                                                                                                      | 2.0  | 7         |
| 25 | Repurposing a Bio-Inspired NiFe Hydrogenase Model for CO <sub>2</sub> Reduction with Selective<br>Production of Methane as the Unique C-Based Product. ACS Energy Letters, 2020, 5, 3837-3842.                                               | 17.4 | 41        |
| 26 | Hydrogen evolution reaction mediated by an all-sulfur trinuclear nickel complex. Chemical Communications, 2020, 56, 11106-11109.                                                                                                             | 4.1  | 8         |
| 27 | Achieving visible light-driven hydrogen evolution at positive bias with a hybrid copper–iron<br>oxide TiO2-cobaloxime photocathode. Green Chemistry, 2020, 22, 3141-3149.                                                                    | 9.0  | 9         |
| 28 | A Nanotube-Supported Dicopper Complex Enhances Pt-free Molecular H2/Air Fuel Cells. Joule, 2019, 3, 2020-2029.                                                                                                                               | 24.0 | 28        |
| 29 | Tuning the Electron Storage Potential of a Chargeâ€Photoaccumulating Ru <sup>II</sup> Complex by a DFTâ€Guided Approach. Chemistry - A European Journal, 2019, 25, 13911-13920.                                                              | 3.3  | 5         |
| 30 | H <sub>2</sub> -Evolving Dye-Sensitized Photocathode Based on a Ruthenium–Diacetylide/Cobaloxime<br>Supramolecular Assembly. ACS Applied Energy Materials, 2019, 2, 4971-4980.                                                               | 5.1  | 26        |
| 31 | Investigating Light-Driven Hole Injection and Hydrogen Evolution Catalysis at Dye-Sensitized NiO<br>Photocathodes: A Combined Experimental–Theoretical Study. Journal of Physical Chemistry C, 2019,<br>123, 17176-17184.                    | 3.1  | 18        |
| 32 | Earth-Abundant Molecular Z-Scheme Photoelectrochemical Cell for Overall Water-Splitting. Journal of the American Chemical Society, 2019, 141, 9593-9602.                                                                                     | 13.7 | 84        |
| 33 | A Non-Heme Diiron Complex for (Electro)catalytic Reduction of Dioxygen: Tuning the Selectivity through Electron Delivery. Journal of the American Chemical Society, 2019, 141, 8244-8253.                                                    | 13.7 | 56        |
| 34 | A robust ALD-protected silicon-based hybrid photoelectrode for hydrogen evolution under aqueous conditions. Chemical Science, 2019, 10, 4469-4475.                                                                                           | 7.4  | 25        |
| 35 | Bioinspired Artificial [FeFe]-Hydrogenase with a Synthetic H-Cluster. ACS Catalysis, 2019, 9, 4495-4501.                                                                                                                                     | 11.2 | 17        |
| 36 | Synthesis of Ruthenium Trisâ€Ðiimine Photosensitizers Substituted by Four Methylphosphonate<br>Anchoring Groups for Dye‧ensitized Photoelectrochemical Cell Applications. European Journal of<br>Inorganic Chemistry, 2019, 2019, 2154-2161. | 2.0  | 9         |

| #  | Article                                                                                                                                                                                                                                                                 | IF   | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 37 | Structure of Ni(OH)2 intermediates determines the efficiency of NiO-based photocathodes – a case study using novel mesoporous NiO nanostars. RSC Advances, 2019, 9, 39422-39433.                                                                                        | 3.6  | 3         |
| 38 | CuO photoelectrodes synthesized by the sol–gel method for water splitting. Journal of Sol-Gel<br>Science and Technology, 2019, 89, 255-263.                                                                                                                             | 2.4  | 27        |
| 39 | Spectroscopic investigations of a semi-synthetic [FeFe] hydrogenase with propane di-selenol as<br>bridging ligand in the binuclear subsite: comparison to the wild type and propane di-thiol variants.<br>Journal of Biological Inorganic Chemistry, 2018, 23, 481-491. | 2.6  | 13        |
| 40 | An artificial photosynthetic system for photoaccumulation of two electrons on a fused<br>dipyridophenazine (dppz)–pyridoquinolinone ligand. Chemical Science, 2018, 9, 4152-4159.                                                                                       | 7.4  | 48        |
| 41 | Engineering an [FeFe]-Hydrogenase: Do Accessory Clusters Influence O <sub>2</sub> Resistance and<br>Catalytic Bias?. Journal of the American Chemical Society, 2018, 140, 5516-5526.                                                                                    | 13.7 | 48        |
| 42 | A noble metal-free photocatalytic system based on a novel cobalt tetrapyridyl catalyst for hydrogen production in fully aqueous medium. Sustainable Energy and Fuels, 2018, 2, 553-557.                                                                                 | 4.9  | 37        |
| 43 | Tuning Reactivity of Bioinspired [NiFe]-Hydrogenase Models by Ligand Design and Modeling the CO<br>Inhibition Process. ACS Catalysis, 2018, 8, 10658-10667.                                                                                                             | 11.2 | 47        |
| 44 | Hydrogen Evolution from Aqueous Solutions Mediated by a Heterogenized [NiFe]â€Hydrogenase Model:<br>Low pH Enables Catalysis through an Enzymeâ€Relevant Mechanism. Angewandte Chemie - International<br>Edition, 2018, 57, 16001-16004.                                | 13.8 | 45        |
| 45 | Hydrogen Evolution from Aqueous Solutions Mediated by a Heterogenized [NiFe]â€Hydrogenase Model:<br>Low pH Enables Catalysis through an Enzymeâ€Relevant Mechanism. Angewandte Chemie, 2018, 130,<br>16233-16236.                                                       | 2.0  | 9         |
| 46 | Electron transfer in a covalent dye–cobalt catalyst assembly – a transient absorption spectroelectrochemistry perspective. Chemical Communications, 2018, 54, 10594-10597.                                                                                              | 4.1  | 29        |
| 47 | A protocol for quantifying hydrogen evolution by dye-sensitized molecular photocathodes and its<br>implementation for evaluating a new covalent architecture based on an optimized dye-catalyst dyad.<br>Dalton Transactions, 2018, 47, 10509-10516.                    | 3.3  | 17        |
| 48 | Insights into the mechanism and aging of a noble-metal free H <sub>2</sub> -evolving dye-sensitized photocathode. Chemical Science, 2018, 9, 6721-6738.                                                                                                                 | 7.4  | 31        |
| 49 | Hydrogen Evolution Reactions Catalyzed by a Bis(thiosemicarbazone) Cobalt Complex: An Experimental<br>and Theoretical Study. Chemistry - A European Journal, 2018, 24, 8779-8786.                                                                                       | 3.3  | 50        |
| 50 | Toward Platinum Group Metal-Free Catalysts for Hydrogen/Air Proton-Exchange Membrane Fuel Cells.<br>Johnson Matthey Technology Review, 2018, 62, 231-255.                                                                                                               | 1.0  | 97        |
| 51 | Pathways to electrochemical solar-hydrogen technologies. Energy and Environmental Science, 2018, 11, 2768-2783.                                                                                                                                                         | 30.8 | 238       |
| 52 | Mesoporous thin film WO <sub>3</sub> photoanode for photoelectrochemical water splitting: a sol–gel dip coating approach. Sustainable Energy and Fuels, 2017, 1, 145-153.                                                                                               | 4.9  | 65        |
| 53 | Carbonâ€Nanotubeâ€6upported Bioâ€Inspired Nickel Catalyst and Its Integration in Hybrid Hydrogen/Air Fuel<br>Cells. Angewandte Chemie - International Edition, 2017, 56, 1845-1849.                                                                                     | 13.8 | 87        |
| 54 | Carbonâ€Nanotubeâ€&upported Bioâ€Inspired Nickel Catalyst and Its Integration in Hybrid Hydrogen/Air Fuel<br>Cells. Angewandte Chemie, 2017, 129, 1871-1875.                                                                                                            | 2.0  | 17        |

| #  | Article                                                                                                                                                                                                   | IF        | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|-----------|
| 55 | Molecular Cobalt Complexes with Pendant Amines for Selective Electrocatalytic Reduction of Carbon<br>Dioxide to Formic Acid. Journal of the American Chemical Society, 2017, 139, 3685-3696.              | 13.7      | 256       |
| 56 | Protonâ€Reduction Reaction Catalyzed by Homoleptic Nickel–bisâ€1,2â€dithiolate Complexes: Experimental<br>and Theoretical Mechanistic Investigations. ChemCatChem, 2017, 9, 2308-2317.                    | 3.7       | 50        |
| 57 | Biological approaches to artificial photosynthesis, fundamental processes and theoretical approaches: general discussion. Faraday Discussions, 2017, 198, 147-168.                                        | 3.2       | 0         |
| 58 | Molecular catalysts for artificial photosynthesis: general discussion. Faraday Discussions, 2017, 198, 353-395.                                                                                           | 3.2       | 6         |
| 59 | Structural and functional characterization of the hydrogenase-maturation HydF protein. Nature Chemical Biology, 2017, 13, 779-784.                                                                        | 8.0       | 38        |
| 60 | Solarâ€Waterâ€ <b>5</b> plitting BiVO <sub>4</sub> Thinâ€Film Photoanodes Prepared By Using a Sol–Gel Dip oati<br>Technique. ChemPhotoChem, 2017, 1, 273-280.                                             | ng<br>3.0 | 31        |
| 61 | Aqueous Photocurrent Measurements Correlated to Ultrafast Electron Transfer Dynamics at<br>Ruthenium Tris Diimine Sensitized NiO Photocathodes. Journal of Physical Chemistry C, 2017, 121,<br>5891-5904. | 3.1       | 33        |
| 62 | CuAAC-based assembly and characterization of a ruthenium–copper dyad containing a diimine–dioxime<br>ligand framework. Faraday Discussions, 2017, 198, 251-261.                                           | 3.2       | 12        |
| 63 | Engineering n–p junction for photo-electrochemical hydrogen production. Physical Chemistry<br>Chemical Physics, 2017, 19, 30675-30682.                                                                    | 2.8       | 11        |
| 64 | Bioinspired catalytic materials for energy-relevant conversions. Nature Energy, 2017, 2, .                                                                                                                | 39.5      | 89        |
| 65 | Heterogenization of a [NiFe] Hydrogenase Mimic through Simple and Efficient Encapsulation into a Mesoporous MOF. Inorganic Chemistry, 2017, 56, 14801-14808.                                              | 4.0       | 28        |
| 66 | Porous dendritic copper: an electrocatalyst for highly selective CO <sub>2</sub> reduction to formate in water/ionic liquid electrolyte. Chemical Science, 2017, 8, 742-747.                              | 7.4       | 128       |
| 67 | A Thiosemicarbazone–Nickel(II) Complex as Efficient Electrocatalyst for Hydrogen Evolution.<br>ChemCatChem, 2017, 9, 2262-2268.                                                                           | 3.7       | 57        |
| 68 | Artificial Hydrogenases Based on Cobaloximes and Heme Oxygenase. ChemPlusChem, 2016, 81, 1083-1089.                                                                                                       | 2.8       | 25        |
| 69 | Photochemical hydrogen production and cobaloximes: the influence of the cobalt axial N-ligand on the system stability. Dalton Transactions, 2016, 45, 6732-6738.                                          | 3.3       | 84        |
| 70 | The Dark Side of Molecular Catalysis: Diimine–Dioxime Cobalt Complexes Are Not the Actual Hydrogen<br>Evolution Electrocatalyst in Acidic Aqueous Solutions. ACS Catalysis, 2016, 6, 3727-3737.           | 11.2      | 129       |
| 71 | European and International Initiatives in the Field of Artificial Photosynthesis. Advances in Botanical<br>Research, 2016, 79, 193-221.                                                                   | 1.1       | 1         |
| 72 | Covalent Design for Dye-Sensitized H <sub>2</sub> -Evolving Photocathodes Based on a Cobalt<br>Diimine–Dioxime Catalyst. Journal of the American Chemical Society, 2016, 138, 12308-12311.                | 13.7      | 142       |

| #  | Article                                                                                                                                                                                                                                                             | IF   | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 73 | Chemical assembly of multiple metal cofactors: The heterologously expressed multidomain<br>[FeFe]-hydrogenase from Megasphaera elsdenii. Biochimica Et Biophysica Acta - Bioenergetics, 2016,<br>1857, 1734-1740.                                                   | 1.0  | 26        |
| 74 | Molecular engineered nanomaterials for catalytic hydrogen evolution and oxidation. Chemical Communications, 2016, 52, 13728-13748.                                                                                                                                  | 4.1  | 98        |
| 75 | Photoelectrochemical Reduction of CO <sub>2</sub> Coupled to Water Oxidation Using a<br>Photocathode with a Ru(II)–Re(I) Complex Photocatalyst and a CoO <sub><i>x</i></sub> /TaON<br>Photoanode. Journal of the American Chemical Society, 2016, 138, 14152-14158. | 13.7 | 260       |
| 76 | Noble metal-free hydrogen-evolving photocathodes based on small molecule organic semiconductors. Nanotechnology, 2016, 27, 355401.                                                                                                                                  | 2.6  | 21        |
| 77 | CO <sub>2</sub> Reduction to CO in Water: Carbon Nanotube–Gold Nanohybrid as a Selective and Efficient Electrocatalyst. ChemSusChem, 2016, 9, 2317-2320.                                                                                                            | 6.8  | 45        |
| 78 | Cu/Cu <sub>2</sub> O Electrodes and CO <sub>2</sub> Reduction to Formic Acid: Effects of Organic Additives on Surface Morphology and Activity. Chemistry - A European Journal, 2016, 22, 14029-14035.                                                               | 3.3  | 33        |
| 79 | Reactivity of the Excited States of the H-Cluster of FeFe Hydrogenases. Journal of the American Chemical Society, 2016, 138, 13612-13618.                                                                                                                           | 13.7 | 25        |
| 80 | Supramolecular assembly of cobaloxime on nanoring-coated carbon nanotubes: addressing the<br>stability of the pyridine–cobalt linkage under hydrogen evolution turnover conditions. Chemical<br>Communications, 2016, 52, 11783-11786.                              | 4.1  | 28        |
| 81 | Nickel-centred proton reduction catalysis in a model of [NiFe] hydrogenase. Nature Chemistry, 2016, 8, 1054-1060.                                                                                                                                                   | 13.6 | 200       |
| 82 | Design and synthesis of novel organometallic dyes for NiO sensitization and photo-electrochemical applications. Dalton Transactions, 2016, 45, 12539-12547.                                                                                                         | 3.3  | 21        |
| 83 | A comprehensive comparison of dye-sensitized NiO photocathodes for solar energy conversion.<br>Physical Chemistry Chemical Physics, 2016, 18, 10727-10738.                                                                                                          | 2.8  | 135       |
| 84 | Experimental and Theoretical Insight into Electrocatalytic Hydrogen Evolution with Nickel<br>Bis(aryldithiolene) Complexes as Catalysts. Inorganic Chemistry, 2016, 55, 432-444.                                                                                    | 4.0  | 76        |
| 85 | Coordination polymer structure and revisited hydrogen evolution catalytic mechanism for amorphous molybdenumÂsulfide. Nature Materials, 2016, 15, 640-646.                                                                                                          | 27.5 | 490       |
| 86 | Bio-inspired noble metal-free nanomaterials approaching platinum performances for H <sub>2</sub><br>evolution and uptake. Energy and Environmental Science, 2016, 9, 940-947.                                                                                       | 30.8 | 60        |
| 87 | A Systematic Comparative Study of Hydrogenâ€Evolving Molecular Catalysts in Aqueous Solutions.<br>ChemSusChem, 2015, 8, 3632-3638.                                                                                                                                  | 6.8  | 52        |
| 88 | Microsecond Xâ€ray Absorption Spectroscopy Identification of Co <sup>I</sup> Intermediates in<br>Cobaloximeâ€Catalyzed Hydrogen Evolution. Chemistry - A European Journal, 2015, 21, 15158-15162.                                                                   | 3.3  | 35        |
| 89 | A noble metal-free proton-exchange membrane fuel cell based on bio-inspired molecular catalysts.<br>Chemical Science, 2015, 6, 2050-2053.                                                                                                                           | 7.4  | 66        |
| 90 | Oxygen Tolerance of a Molecular Engineered Cathode for Hydrogen Evolution Based on a Cobalt<br>Diimine–Dioxime Catalyst. Journal of Physical Chemistry B, 2015, 119, 13707-13713.                                                                                   | 2.6  | 41        |

| #   | Article                                                                                                                                                                                               | IF   | CITATIONS |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 91  | Artificial hydrogenases: biohybrid and supramolecular systems for catalytic hydrogen production or uptake. Current Opinion in Chemical Biology, 2015, 25, 36-47.                                      | 6.1  | 71        |
| 92  | From molecular copper complexes to composite electrocatalytic materials for selective reduction of CO <sub>2</sub> to formic acid. Journal of Materials Chemistry A, 2015, 3, 3901-3907.              | 10.3 | 69        |
| 93  | Artificially maturated [FeFe] hydrogenase from Chlamydomonas reinhardtii: a HYSCORE and ENDOR study of a non-natural H-cluster. Physical Chemistry Chemical Physics, 2015, 17, 5421-5430.             | 2.8  | 39        |
| 94  | Enhancing the Performances of P3HT:PCBM–MoS <sub>3</sub> -Based H <sub>2</sub> -Evolving<br>Photocathodes with Interfacial Layers. ACS Applied Materials & Interfaces, 2015, 7, 16395-16403.          | 8.0  | 51        |
| 95  | From Enzyme Maturation to Synthetic Chemistry: The Case of Hydrogenases. Accounts of Chemical Research, 2015, 48, 2380-2387.                                                                          | 15.6 | 63        |
| 96  | A simple method for the preparation of bio-inspired nickel bisdiphosphine hydrogen-evolving catalysts. Comptes Rendus Chimie, 2015, 18, 752-757.                                                      | 0.5  | 3         |
| 97  | Dye-sensitized PS- <i>b</i> -P2VP-templated nickel oxide films for photoelectrochemical applications.<br>Interface Focus, 2015, 5, 20140083.                                                          | 3.0  | 32        |
| 98  | Hydrogen Evolution Catalyzed by Cobalt Diimine–Dioxime Complexes. Accounts of Chemical Research, 2015, 48, 1286-1295.                                                                                 | 15.6 | 228       |
| 99  | Recent developments in hydrogen evolving molecular cobalt(II)–polypyridyl catalysts. Coordination<br>Chemistry Reviews, 2015, 304-305, 3-19.                                                          | 18.8 | 205       |
| 100 | Spectroscopic Characterization of the Bridging Amine in the Active Site of [FeFe] Hydrogenase Using Isotopologues of the H-Cluster. Journal of the American Chemical Society, 2015, 137, 12744-12747. | 13.7 | 64        |
| 101 | Carbon nanotubes-gold nanohybrid as potent electrocatalyst for oxygen reduction in alkaline media.<br>Nanoscale, 2015, 7, 17274-17277.                                                                | 5.6  | 22        |
| 102 | Molecular cathode and photocathode materials for hydrogen evolution in photoelectrochemical devices. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 2015, 25, 90-105.          | 11.6 | 84        |
| 103 | Forest of Pt–Au–Ag tri-metallic nanodendrites as an efficient electrocatalyst for methanol oxidation<br>reaction. RSC Advances, 2015, 5, 6940-6944.                                                   | 3.6  | 12        |
| 104 | X-ray absorption spectroscopy with time-tagged photon counting: application to study the structure of a Co(i) intermediate of H2 evolving photo-catalyst. Faraday Discussions, 2014, 171, 259-273.    | 3.2  | 37        |
| 105 | Mimicking hydrogenases: From biomimetics to artificial enzymes. Coordination Chemistry Reviews, 2014, 270-271, 127-150.                                                                               | 18.8 | 426       |
| 106 | Terpyridine complexes of first row transition metals and electrochemical reduction of CO <sub>2</sub> to CO. Physical Chemistry Chemical Physics, 2014, 16, 13635-13644.                              | 2.8  | 154       |
| 107 | Electronic Structure and Hydration of Tetramine Cobalt Hydride Complexes. Journal of Physical Chemistry B, 2014, 118, 5551-5561.                                                                      | 2.6  | 10        |
| 108 | Theoretical Modeling of Lowâ€Energy Electronic Absorption Bands in Reduced Cobaloximes.<br>ChemPhysChem, 2014, 15, 2951-2958.                                                                         | 2.1  | 11        |

| #   | Article                                                                                                                                                                                          | IF   | CITATIONS |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 109 | Toward the rational benchmarking of homogeneous H <sub>2</sub> -evolving catalysts. Energy and Environmental Science, 2014, 7, 3808-3814.                                                        | 30.8 | 241       |
| 110 | Cobaloxime-Based Artificial Hydrogenases. Inorganic Chemistry, 2014, 53, 8071-8082.                                                                                                              | 4.0  | 78        |
| 111 | Novel cobalt/nickel–tungsten-sulfide catalysts for electrocatalytic hydrogen generation from water.<br>Energy and Environmental Science, 2013, 6, 2452.                                          | 30.8 | 182       |
| 112 | A H2-evolving photocathode based on direct sensitization of MoS3 with an organic photovoltaic cell.<br>Energy and Environmental Science, 2013, 6, 2706.                                          | 30.8 | 83        |
| 113 | Pump-Flow-Probe X-ray Absorption Spectroscopy as a Tool for Studying Intermediate States of Photocatalytic Systems. Journal of Physical Chemistry C, 2013, 117, 17367-17375.                     | 3.1  | 31        |
| 114 | Spontaneous activation of [FeFe]-hydrogenases by an inorganic [2Fe] active site mimic. Nature Chemical Biology, 2013, 9, 607-609.                                                                | 8.0  | 316       |
| 115 | A Computational Study of the Mechanism of Hydrogen Evolution by Cobalt(Diimineâ€Đioxime) Catalysts.<br>Chemistry - A European Journal, 2013, 19, 15166-15174.                                    | 3.3  | 91        |
| 116 | Catalytic hydrogen production by a Ni–Ru mimic of NiFe hydrogenases involves a proton-coupled electron transfer step. Chemical Communications, 2013, 49, 5004.                                   | 4.1  | 54        |
| 117 | Solar fuels generation and molecular systems: is it homogeneous or heterogeneous catalysis?.<br>Chemical Society Reviews, 2013, 42, 2338-2356.                                                   | 38.1 | 437       |
| 118 | Molecular engineering of a cobalt-based electrocatalytic nanomaterial for H2 evolution under fully aqueous conditions. Nature Chemistry, 2013, 5, 48-53.                                         | 13.6 | 349       |
| 119 | Artificial Photosynthesis for Solar Fuels – an Evolving Research Field within AMPEA, a Joint<br>Programme of the European Energy Research Alliance. Green, 2013, 3, .                            | 0.4  | 62        |
| 120 | Tuning the electrocatalytic hydrogen evolution reaction promoted by [Mo2O2S2]-based molybdenum cycles in aqueous medium. Dalton Transactions, 2013, 42, 4848.                                    | 3.3  | 31        |
| 121 | Charge photo-accumulation and photocatalytic hydrogen evolution under visible light at an iridium(iii)-photosensitized polyoxotungstate. Energy and Environmental Science, 2013, 6, 1504.        | 30.8 | 138       |
| 122 | Biomimetic assembly and activation of [FeFe]-hydrogenases. Nature, 2013, 499, 66-69.                                                                                                             | 27.8 | 597       |
| 123 | Dye-sensitized nanostructured crystalline mesoporous tin-doped indium oxide films with tunable thickness for photoelectrochemical applications. Journal of Materials Chemistry A, 2013, 1, 8217. | 10.3 | 33        |
| 124 | Hydrogenase enzymes: Application in biofuel cells and inspiration for the design of noble-metal free catalysts for H2 oxidation. Comptes Rendus Chimie, 2013, 16, 491-505.                       | 0.5  | 46        |
| 125 | Catalytic Hydrogen Oxidation: Dawn of a New Iron Age. Angewandte Chemie - International Edition, 2013, 52, 6143-6145.                                                                            | 13.8 | 48        |
| 126 | Mesoporous α-Fe2O3 thin films synthesized via the sol–gel process for light-driven water oxidation.<br>Physical Chemistry Chemical Physics, 2012, 14, 13224.                                     | 2.8  | 55        |

| #   | Article                                                                                                                                                                                                                                        | IF                            | CITATIONS         |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|-------------------|
| 127 | A Janus cobalt-based catalytic material for electro-splitting of water. Nature Materials, 2012, 11, 802-807.                                                                                                                                   | 27.5                          | 784               |
| 128 | Copper molybdenum sulfide: a new efficient electrocatalyst for hydrogen production from water.<br>Energy and Environmental Science, 2012, 5, 8912.                                                                                             | 30.8                          | 314               |
| 129 | Phosphine Coordination to a Cobalt Diimine–Dioxime Catalyst Increases Stability during Light-Driven<br>H <sub>2</sub> Production. Inorganic Chemistry, 2012, 51, 2115-2120.                                                                    | 4.0                           | 98                |
| 130 | Combined Experimental–Theoretical Characterization of the Hydrido-Cobaloxime<br>[HCo(dmgH) <sub>2</sub> (P <i>n</i> Bu <sub>3</sub> )]. Inorganic Chemistry, 2012, 51, 7087-7093.                                                              | 4.0                           | 55                |
| 131 | A nickel–manganese catalyst as a biomimic of the active site of NiFe hydrogenases: a combined electrocatalytical and DFT mechanistic study. Energy and Environmental Science, 2011, 4, 2417.                                                   | 30.8                          | 85                |
| 132 | Capture of the Complex [Ni(dto) <sub>2</sub> ] <sup>2–</sup> (dto <sup>2–</sup> = Dithiooxalato) Tj ETQo<br>Reduction of Protons. Inorganic Chemistry, 2011, 50, 9031-9038.                                                                    | 0 0 0 rgB <sup>-</sup><br>4.0 | T /Overlock<br>29 |
| 133 | Artificial Photosynthesis: From Molecular Catalysts for Lightâ€driven Water Splitting to<br>Photoelectrochemical Cells. Photochemistry and Photobiology, 2011, 87, 946-964.                                                                    | 2.5                           | 273               |
| 134 | Light-driven bioinspired water splitting: Recent developments in photoelectrode materials. Comptes<br>Rendus Chimie, 2011, 14, 799-810.                                                                                                        | 0.5                           | 20                |
| 135 | Bioinspired catalysis at the crossroads between biology and chemistry: A remarkable example of an electrocatalytic material mimicking hydrogenases. Comptes Rendus Chimie, 2011, 14, 362-371.                                                  | 0.5                           | 29                |
| 136 | Cp* <sup>–</sup> â€Ruthenium–Nickelâ€Based H <sub>2</sub> â€Evolving Electrocatalysts as Bioâ€inspired<br>Models of NiFe Hydrogenases. European Journal of Inorganic Chemistry, 2011, 2011, 1094-1099.                                         | 2.0                           | 30                |
| 137 | Noncovalent Modification of Carbon Nanotubes with Pyreneâ€Functionalized Nickel Complexes: Carbon<br>Monoxide Tolerant Catalysts for Hydrogen Evolution and Uptake. Angewandte Chemie - International<br>Edition, 2011, 50, 1371-1374.         | 13.8                          | 254               |
| 138 | Splitting Water with Cobalt. Angewandte Chemie - International Edition, 2011, 50, 7238-7266.                                                                                                                                                   | 13.8                          | 1,231             |
| 139 | Water electrolysis and photoelectrolysis on electrodes engineered using biological and bio-inspired molecular systems. Energy and Environmental Science, 2010, 3, 727.                                                                         | 30.8                          | 192               |
| 140 | Mechanism of hydrogen evolution catalyzed by NiFe hydrogenases: insights from a Ni–Ru model<br>compound. Dalton Transactions, 2010, 39, 3043-3049.                                                                                             | 3.3                           | 39                |
| 141 | Facile and tunable functionalization of carbon nanotube electrodes with ferrocene by covalent<br>coupling and π-stacking interactions and their relevance to glucose bio-sensing. Journal of<br>Electroanalytical Chemistry, 2010, 641, 57-63. | 3.8                           | 87                |
| 142 | Immobilization of FeFe hydrogenase mimics onto carbon and gold electrodes by controlled<br>aryldiazonium salt reduction: an electrochemical, XPS and ATR-IR study. International Journal of<br>Hydrogen Energy, 2010, 35, 10790-10796.         | 7.1                           | 47                |
| 143 | H <sub>2</sub> Evolution and Molecular Electrocatalysts: Determination of Overpotentials and Effect of Homoconjugation. Inorganic Chemistry, 2010, 49, 10338-10347.                                                                            | 4.0                           | 380               |
| 144 | A structural and functional mimic of the active site of NiFe hydrogenases. Chemical Communications, 2010, 46, 5876.                                                                                                                            | 4.1                           | 101               |

| #   | Article                                                                                                                                                                                                                          | IF   | CITATIONS |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 145 | Chimie bio-inspirée et nanosciencesÂ: vers de nouveaux catalyseurs pour la production et l'oxydation<br>de l'hydrogène. La Lettre Du Collège De France, 2010, , 14.                                                              | 0.0  | 0         |
| 146 | Cyclopentadienyl Ruthenium–Nickel Catalysts for Biomimetic Hydrogen Evolution: Electrocatalytic<br>Properties and Mechanistic DFT Studies. Chemistry - A European Journal, 2009, 15, 9350-9364.                                  | 3.3  | 61        |
| 147 | Synthesis, crystal structure, magnetic properties and reactivity of a Ni–Ru model of NiFe<br>hydrogenases with a pentacoordinated triplet (S=1) Nill center. Journal of Organometallic Chemistry,<br>2009, 694, 2866-2869.       | 1.8  | 33        |
| 148 | Cobalt and nickel diimine-dioxime complexes as molecular electrocatalysts for hydrogen evolution with low overvoltages. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 20627-20632. | 7.1  | 388       |
| 149 | From Hydrogenases to Noble Metal–Free Catalytic Nanomaterials for H <sub>2</sub> Production and<br>Uptake. Science, 2009, 326, 1384-1387.                                                                                        | 12.6 | 886       |
| 150 | Cobaloximeâ€Based Photocatalytic Devices for Hydrogen Production. Angewandte Chemie -<br>International Edition, 2008, 47, 564-567.                                                                                               | 13.8 | 400       |
| 151 | Hydrogen evolution catalyzed by {CpFe(CO)2}-based complexes. Comptes Rendus Chimie, 2008, 11, 926-931.                                                                                                                           | 0.5  | 24        |
| 152 | Modelling NiFe hydrogenases: nickel-based electrocatalysts for hydrogen production. Dalton Transactions, 2008, , 315-325.                                                                                                        | 3.3  | 142       |
| 153 | Efficient H2-producing photocatalytic systems based on cyclometalated iridium- and tricarbonylrhenium-diimine photosensitizers and cobaloxime catalysts. Dalton Transactions, 2008, , 5567.                                      | 3.3  | 226       |
| 154 | Cobaloximes as Functional Models for Hydrogenases. 2. Proton Electroreduction Catalyzed by<br>Difluoroborylbis(dimethylglyoximato)cobalt(II) Complexes in Organic Media. Inorganic Chemistry,<br>2007, 46, 1817-1824.            | 4.0  | 350       |
| 155 | Tricarbonylmanganese(i)–lysozyme complex: a structurally characterized organometallic protein.<br>Chemical Communications, 2007, , 2805-2807.                                                                                    | 4.1  | 53        |
| 156 | Dinuclear Nickel–Ruthenium Complexes as Functional Bio-Inspired Models of [NiFe] Hydrogenases.<br>European Journal of Inorganic Chemistry, 2007, 2007, 2613-2626.                                                                | 2.0  | 59        |
| 157 | [Ni(xbsms)Ru(CO)2Cl2]: A Bioinspired Nickelâ^'Ruthenium Functional Model of [NiFe] Hydrogenase.<br>Inorganic Chemistry, 2006, 45, 4334-4336.                                                                                     | 4.0  | 66        |
| 158 | Some general principles for designing electrocatalysts with hydrogenase activity. Coordination Chemistry Reviews, 2005, 249, 1518-1535.                                                                                          | 18.8 | 321       |
| 159 | Proton Electroreduction Catalyzed by Cobaloximes:Â Functional Models for Hydrogenases. Inorganic<br>Chemistry, 2005, 44, 4786-4795.                                                                                              | 4.0  | 389       |
| 160 | Synthesis, Characterization, and Photochemical Behavior of {Ru(arene)}2+ Derivatives of α-[PW11O39]7-:<br>An Organometallic Way to Ruthenium-Substituted Heteropolytungstates. Inorganic Chemistry, 2005,<br>44, 2826-2835.      | 4.0  | 84        |
| 161 | Organometallic polyoxometalates: synthesis and structural analysis of (η6-arene)<br>ruthenium-containing polyoxomolybdates. Journal of Molecular Structure, 2003, 656, 67-77.                                                    | 3.6  | 27        |
| 162 | Synthesis and Characterization of the First Carbene Derivative of a Polyoxometalate. Journal of the<br>American Chemical Society, 2003, 125, 11156-11157.                                                                        | 13.7 | 114       |

| #   | Article                                                                                                                                                                                                                         | IF  | CITATIONS |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 163 | Dynamics of Organometallic Oxides: From Synthesis and Reactivity to DFT Calculations.<br>Nanostructure Science and Technology, 2002, , 83-95.                                                                                   | 0.1 | Ο         |
| 164 | Adamantane Selective Hydroxylation by 2,6-Dichloropyridine N-Oxide and Organoruthenium(II)<br>Polyoxometalates as Catalyst Precursors. Advanced Synthesis and Catalysis, 2002, 344, 841-844.                                    | 4.3 | 33        |
| 165 | Interplay of Cubic Building Blocks in (η6-arene)Ruthenium-Containing Tungsten and Molybdenum<br>Oxides. Chemistry - A European Journal, 2001, 7, 3901-3910.                                                                     | 3.3 | 71        |
| 166 | Reduction of the Phosphododecamolybdate Ion by Phosphonium Ylides and Phosphanes. European<br>Journal of Inorganic Chemistry, 2000, 2000, 2393-2400.                                                                            | 2.0 | 25        |
| 167 | (η6-Arene)ruthenium oxomolybdenum and oxotungsten clusters. Stereochemical non-rigidity of<br>[{Ru(η6-p-MeC6H4Pri)}4Mo4O16] and crystal structure of [{Ru(η6-p-MeC6H4Pri)}4W2O10]. Chemical<br>Communications, 2000, , 883-884. | 4.1 | 38        |
| 168 | The unexpected reactivity of p-tolylisocyanate towards the Keggin anion α-[PMo12O40]3–. Chemical<br>Communications, 1996, , 2195-2196.                                                                                          | 4.1 | 21        |