Else Marit Inderberg

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5337726/publications.pdf

Version: 2024-02-01

58 1,581 19
papers citations h-index

62 62 62 2661 all docs docs citations times ranked citing authors

38

g-index

#	Article	IF	CITATIONS
1	Longâ€term firstâ€inâ€man Phase I/II study of an adjuvant dendritic cell vaccine in patients with highâ€risk prostate cancer after radical prostatectomy. Prostate, 2022, 82, 245-253.	2.3	13
2	In vivo experimental mouse model to test CD19CAR T cells generated with different methods. Methods in Cell Biology, 2022, 167, 149-161.	1.1	3
3	Emerging Biomarkers for Immunotherapy in Glioblastoma. Cancers, 2022, 14, 1940.	3.7	6
4	Durable and dynamic hTERT immune responses following vaccination with the long-peptide cancer vaccine UV1: long-term follow-up of three phase I clinical trials., 2022, 10, e004345.		15
5	Targeting Telomerase with an HLA Class II-Restricted TCR for Cancer Immunotherapy. Molecular Therapy, 2021, 29, 1199-1213.	8.2	16
6	Combinatorial CAR design improves target restriction. Journal of Biological Chemistry, 2021, 296, 100116.	3.4	7
7	Targeting KRAS mutations with HLA class II-restricted TCRs for the treatment of solid tumors. Oncolmmunology, 2021, 10, 1936757.	4.6	10
8	Combining a Universal Telomerase Based Cancer Vaccine With Ipilimumab in Patients With Metastatic Melanoma - Five-Year Follow Up of a Phase I/IIa Trial. Frontiers in Immunology, 2021, 12, 663865.	4.8	17
9	Circulating Tumor Cell Persistence Associates with Long-Term Clinical Outcome to a Therapeutic Cancer Vaccine in Prostate Cancer. Journal of Personalized Medicine, 2021, 11, 605.	2.5	3
10	"Builtâ€in―PDâ€1 blocker to rescue NKâ€92 activity from PDâ€L1–mediated tumor escape mechanisms. F Journal, 2021, 35, e21750.	FASEB 0.5	5
11	Peptide vaccine targeting mutated <i>GNAS</i> : a potential novel treatment for pseudomyxoma peritonei., 2021, 9, e003109.		8
12	Long-term surviving cancer patients as a source of therapeutic TCR. Cancer Immunology, Immunotherapy, 2020, 69, 859-865.	4.2	16
13	Immune stimulatory effect of anti-EpCAM immunotoxin – improved overall survival of metastatic colorectal cancer patients. Acta Oncológica, 2020, 59, 404-409.	1.8	9
14	T cell receptor therapy against melanomaâ€"Immunotherapy for the future?. Scandinavian Journal of Immunology, 2020, 92, e12927.	2.7	8
15	Long-Term Outcomes of a Phase I Study With UV1, a Second Generation Telomerase Based Vaccine, in Patients With Advanced Non-Small Cell Lung Cancer. Frontiers in Immunology, 2020, 11, 572172.	4.8	21
16	Colorectal cysts as a validating tool for CAR therapy. BMC Biotechnology, 2020, 20, 30.	3.3	3
17	SJI 2020 special issue: A catalogue of Ovarian Cancer targets for CAR therapy. Scandinavian Journal of Immunology, 2020, 92, e12917.	2.7	5
18	Posttransplantation Lymphoproliferative Disease Treated by Retransplantation. Case Reports in Immunology, 2020, 2020, 1-4.	0.4	2

#	Article	IF	CITATIONS
19	Sympathetic improvement of cancer vaccine efficacy. Human Vaccines and Immunotherapeutics, 2020, 16, 1888-1890.	3.3	2
20	A phase I/IIa clinical trial investigating the therapeutic cancer vaccine UV1 in combination with ipilimumab in patients with malignant melanoma: Four-year survival update Journal of Clinical Oncology, 2020, 38, 62-62.	1.6	2
21	Circulating mitochondrial DNA (mtDNA) variants to predict metastatic progression of rectal cancer Journal of Clinical Oncology, 2020, 38, e16132-e16132.	1.6	O
22	Predicting long-term results with circulating tumor cells in patients with de novo androgen sensitive prostate cancer treated with hTERT peptides vaccine Journal of Clinical Oncology, 2020, 38, 98-98.	1.6	0
23	Treating osteosarcoma with CAR T cells. Scandinavian Journal of Immunology, 2019, 89, e12741.	2.7	36
24	NK cells specifically TCR-dressed to kill cancer cells. EBioMedicine, 2019, 40, 106-117.	6.1	56
25	Preclinical assessment of transiently TCR redirected T cells for solid tumour immunotherapy. Cancer Immunology, Immunotherapy, 2019, 68, 1235-1243.	4.2	11
26	Chimeric antigen receptor preparation from hybridoma to T-cell expression. Antibody Therapeutics, 2019, 2, 56-63.	1.9	5
27	Preclinical development of CD37CAR T-cell therapy for treatment of B-cell lymphoma. Blood Advances, 2019, 3, 1230-1243.	5.2	43
28	Simultaneous defeat of MCF7 and MDA-MB-231 resistances by a hypericin PDT–tamoxifen hybrid therapy. Npj Breast Cancer, 2019, 5, 13.	5.2	78
29	Antigen-delivery through invariant chain (CD74) boosts CD8 and CD4 T cell immunity. Oncolmmunology, 2019, 8, 1558663.	4.6	20
30	Abstract A035: Combinatorial IGK-CD19 CAR primarily targets IgK+ malignant B-cells and is less prone to serum IgG inhibition. , 2019, , .		0
31	Abstract 1422: Preclinical development of CD37CAR T-cell therapy for treatment of B-cell lymphoma. , 2019, , .		0
32	Abstract 2318: Combinatorial IGK-CD19 CAR primarily targets IgK+ malignant B-cells and is less prone to serum IgG inhibition. , 2019, , .		0
33	Human c-SRC kinase (CSK) overexpression makes T cells dummy. Cancer Immunology, Immunotherapy, 2018, 67, 525-536.	4.2	8
34	Artesunate shows potent anti-tumor activity in B-cell lymphoma. Journal of Hematology and Oncology, 2018, 11, 23.	17.0	67
35	T Cells Expressing Checkpoint Receptor TIGIT Are Enriched in Follicular Lymphoma Tumors and Characterized by Reversible Suppression of T-cell Receptor Signaling. Clinical Cancer Research, 2018, 24, 870-881.	7.0	75
36	A Spheroid Killing Assay by CAR T Cells. Journal of Visualized Experiments, 2018, , .	0.3	17

3

#	Article	IF	Citations
37	Abstract 3586: A universal killer T-cell for adoptive cell therapy of cancer. , 2018, , .		О
38	Abstract 2745: EpCAM targeted immunotoxin prolongs survival of metastatic colorectal cancer patients by a previously unknown immunostimulatory mechanism. , $2018, \ldots$		0
39	Phase I/IIa clinical trial of a novel hTERT peptide vaccine in men with metastatic hormone-naive prostate cancer. Cancer Immunology, Immunotherapy, 2017, 66, 891-901.	4.2	71
40	T cell therapy targeting a public neoantigen in microsatellite instable colon cancer reduces <i>in vivo </i> tumor growth. Oncolmmunology, 2017, 6, e1302631.	4.6	57
41	A TCR-based Chimeric Antigen Receptor. Scientific Reports, 2017, 7, 10713.	3.3	76
42	Telomerase peptide vaccine combined with ipilimumab in metastatic melanoma: Reports from a phase I trial. Annals of Oncology, 2017, 28, v410.	1.2	0
43	Abstract 3773: Tapping CD4 T cells for cancer immunotherapy. , 2017, , .		1
44	Enhancing Antitumor Immune Responses by Optimized Combinations of Cell-penetrating Peptide-based Vaccines and Adjuvants. Molecular Therapy, 2016, 24, 1675-1685.	8.2	29
45	T-helper cell receptors from long-term survivors after telomerase cancer vaccination for use in adoptive cell therapy. Oncolmmunology, 2016, 5, e1249090.	4.6	16
46	Immune response and long-term clinical outcome in advanced melanoma patients vaccinated with tumor-mRNA-transfected dendritic cells. Oncolmmunology, 2016, 5, e1232237.	4.6	38
47	Abstract 2306: Treatment with hTERT/survivin mRNA-loaded dendritic cells combined with autologousex vivoexpanded T cells improves progression free survival in stage IV melanoma patients when compared to dendritic cell vaccines alone. , 2016, , .		0
48	Abstract 2310: With a little help from CD4 T cells in adoptive T-cell transfer., 2016,,.		0
49	A universal killer T-cell for adoptive cell therapy of cancer. Annals of Oncology, 2015, 26, viii1.	1.2	0
50	Inclusion of an IgG1-Fc spacer abrogates efficacy of CD19 CAR T cells in a xenograft mouse model. Gene Therapy, 2015, 22, 391-403.	4.5	97
51	Therapeutic vaccination against autologous cancer stem cells with mRNA-transfected dendritic cells in patients with glioblastoma. Cancer Immunology, Immunotherapy, 2013, 62, 1499-1509.	4.2	236
52	Widespread CD4+ T-cell reactivity to novel hTERT epitopes following vaccination of cancer patients with a single hTERT peptide GV1001. Oncolmmunology, 2012, 1, 670-686.	4.6	95
53	Minimal Tolerance to a Tumor Antigen Encoded by a Cancer-Germline Gene. Journal of Immunology, 2012, 188, 111-121.	0.8	25
54	hTERT mRNA dendritic cell vaccination: complete response in a pancreatic cancer patient associated with response against several hTERT epitopes. Cancer Immunology, Immunotherapy, 2011, 60, 809-818.	4.2	85

#	Article	IF	CITATIONS
55	T Cell Responses in Patients Vaccinated with Telomerase (hTERT)-mRNA Transfected Dendritic Cells Blood, 2009, 114, 373-373.	1.4	1
56	CD8 T Cell Help for Innate Antitumor Immunity. Journal of Immunology, 2007, 179, 6651-6662.	0.8	94
57	An Inducible Mouse Model of Melanoma Expressing a Defined Tumor Antigen. Cancer Research, 2006, 66, 3278-3286.	0.9	47
58	CD8+ immunoregulatory cells in the graft-versus-host reaction: CD8 T cells activate dendritic cells to secrete interleukin-12/interleukin-18 and induce T helper 1 autoantibody. Immunology, 2003, 109, 476-486.	4.4	24