
Gilles Salbert

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/533760/publications.pdf Version: 2024-02-01

CILLES SALREDT

#	Article	IF	CITATIONS
1	ETV6-RUNX1 and RUNX1 directly regulate RAG1 expression: one more step in the understanding of childhood B-cellÂacute lymphoblastic leukemia leukemogenesis. Leukemia, 2022, 36, 549-554.	7.2	11
2	The conundrum of the functional relationship between transcription factors and chromatin. Epigenomics, 2022, , .	2.1	0
3	The N-terminal domain of TET1 promotes the formation of dense chromatin regions refractory to transcription. Chromosoma, 2022, 131, 47-58.	2.2	3
4	TET2-mediated epigenetic reprogramming of breast cancer cells impairs lysosome biogenesis. Life Science Alliance, 2022, 5, e202101283.	2.8	2
5	Reduction of RUNX1 transcription factor activity by a CBFA2T3-mimicking peptide: application to B cell precursor acute lymphoblastic leukemia. Journal of Hematology and Oncology, 2021, 14, 47.	17.0	7
6	The hydroxymethylome of multiple myeloma identifies FAM72D as a 1q21 marker linked to proliferation. Haematologica, 2020, 105, 774-783.	3.5	23
7	Reading cytosine modifications within chromatin. Transcription, 2018, 9, 240-247.	3.1	8
8	Interplay between transcription regulators RUNX1 and FUBP1 activates an enhancer of the oncogenec-KITand amplifies cell proliferation. Nucleic Acids Research, 2018, 46, 11214-11228.	14.5	28
9	Coupling Exonuclease Digestion with Selective Chemical Labeling for Base-resolution Mapping of 5-Hydroxymethylcytosine in Genomic DNA. Bio-protocol, 2018, 8, e2747.	0.4	2
10	Cytosine hydroxymethylation by TET enzymes: From the control of gene expression to the regulation of DNA repair mechanisms, and back. AIMS Biophysics, 2018, 5, 182-193.	0.6	1
11	Inactivation of the Nuclear Orphan Receptor COUP-TFII by Small Chemicals. ACS Chemical Biology, 2017, 12, 654-663.	3.4	13
12	Cytosine modifications modulate the chromatin architecture of transcriptional enhancers. Genome Research, 2017, 27, 947-958.	5.5	34
13	Two hematopoietic transcription factors, RUNX1 and FUBP1, control the expression of KIT oncogene in pre-B lymphoblasts. Experimental Hematology, 2017, 53, S112.	0.4	0
14	5â€hydroxymethylcytosine marks postmitotic neural cells in the adult and developing vertebrate central nervous system. Journal of Comparative Neurology, 2017, 525, 478-497.	1.6	15
15	A Point Mutation in a lincRNA Upstream of GDNF Is Associated to a Canine Insensitivity to Pain: A Spontaneous Model for Human Sensory Neuropathies. PLoS Genetics, 2016, 12, e1006482.	3.5	31
16	Single-CpG resolution mapping of 5-hydroxymethylcytosine by chemical labeling and exonuclease digestion identifies evolutionarily unconserved CpGs as TET targets. Genome Biology, 2016, 17, 56.	8.8	14
17	Changes in Gene Expression and Estrogen Receptor Cistrome in Mouse Liver Upon Acute E2 Treatment. Molecular Endocrinology, 2016, 30, 709-732.	3.7	25
18	Cell-Cycle-Dependent Reconfiguration of the DNA Methylome during Terminal Differentiation of Human B Cells into Plasma Cells. Cell Reports, 2015, 13, 1059-1071.	6.4	65

GILLES SALBERT

#	Article	IF	CITATIONS
19	DNA Demethylation by TET Proteins: A Potential Therapeutic Target in Cancer. Epigenetic Diagnosis & Therapy, 2015, 1, 49-59.	0.1	0
20	Peroxisome Proliferator-activated Receptor Î ³ Regulates Genes Involved in Insulin/Insulin-like Growth Factor Signaling and Lipid Metabolism during Adipogenesis through Functionally Distinct Enhancer Classes. Journal of Biological Chemistry, 2014, 289, 708-722.	3.4	39
21	Dynamic Estrogen Receptor Interactomes Control Estrogen-Responsive Trefoil Factor (TFF) Locus Cell-Specific Activities. Molecular and Cellular Biology, 2014, 34, 2418-2436.	2.3	20
22	Normal RUNX1 and Pathogenic ETV6/RUNX1 Compete Genome-Wide for Chromatin Binding in Pre-B Acute Lymphoblastic Leukemia. Blood, 2014, 124, 3544-3544.	1.4	4
23	The Elongation Complex Components BRD4 and MLLT3/AF9 Are Transcriptional Coactivators of Nuclear Retinoid Receptors. PLoS ONE, 2013, 8, e64880.	2.5	14
24	The Novel Antibacterial Compound Walrycin A Induces Human PXR Transcriptional Activity. Toxicological Sciences, 2012, 127, 225-235.	3.1	9
25	Tracking genomic hydroxymethylation by the base. Nature Methods, 2012, 9, 45-46.	19.0	6
26	Dynamic hydroxymethylation of deoxyribonucleic acid marks differentiation-associated enhancers. Nucleic Acids Research, 2012, 40, 8255-8265.	14.5	166
27	SORGOdb: Superoxide Reductase Gene Ontology curated DataBase. BMC Microbiology, 2011, 11, 105.	3.3	19
28	Epigenetic switch involved in activation of pioneer factor FOXA1-dependent enhancers. Genome Research, 2011, 21, 555-565.	5.5	196
29	Biological and Biophysical Properties of the Histone Deacetylase Inhibitor Suberoylanilide Hydroxamic Acid Are Affected by the Presence of Short Alkyl Groups on the Phenyl Ring. Journal of Medicinal Chemistry, 2010, 53, 1937-1950.	6.4	23
30	Defining specificity of transcription factor regulatory activities. Journal of Cell Science, 2009, 122, 4027-4034.	2.0	22
31	Identification of small molecule regulators of the nuclear receptor HNF4α based on naphthofuran scaffolds. Bioorganic and Medicinal Chemistry, 2009, 17, 7021-7030.	3.0	66
32	Cyclical DNA methylation of a transcriptionally active promoter. Nature, 2008, 452, 45-50.	27.8	830
33	Dynamics of Estrogen Receptor-mediated Transcriptional Activation of Responsive Genes In Vivo: Apprehending Transcription in Four Dimensions. Advances in Experimental Medicine and Biology, 2008, 617, 129-138.	1.6	18
34	Deoxyribonucleic Acid Methyl Transferases 3a and 3b Associate with the Nuclear Orphan Receptor COUP-TFI during Gene Activation. Molecular Endocrinology, 2007, 21, 2085-2098.	3.7	23
35	A neuralâ€specific splicing event generates an active form of the Wiskottâ€Aldrich syndrome protein. EMBO Reports, 2004, 5, 895-900.	4.5	4
36	Multiple Phosphorylation Events Control Chicken Ovalbumin Upstream Promoter Transcription Factor I Orphan Nuclear Receptor Activity. Molecular Endocrinology, 2002, 16, 1332-1351.	3.7	18

GILLES SALBERT

#	Article	IF	CITATIONS
37	Strategies for the purification and on-column cleavage of glutathione-S-transferase fusion target proteins. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2002, 769, 133-144.	2.3	32
38	Formation of an hERalpha-COUP-TFI complex enhances hERalpha AF-1 through Ser118 phosphorylation by MAPK. EMBO Journal, 2002, 21, 3443-3453.	7.8	35
39	Multiple Phosphorylation Events Control Chicken Ovalbumin Upstream Promoter Transcription Factor I Orphan Nuclear Receptor Activity. Molecular Endocrinology, 2002, 16, 1332-1351.	3.7	6
40	COUP-TFI (Chicken Ovalbumin Upstream Promoter-Transcription Factor I) Regulates Cell Migration and Axogenesis in Differentiating P19 Embryonal Carcinoma Cells. Molecular Endocrinology, 2000, 14, 1918-1933.	3.7	32
41	The LIM/Homeodomain Protein Islet-1 Modulates Estrogen Receptor Functions. Molecular Endocrinology, 2000, 14, 1627-1648.	3.7	40
42	The LIM/Homeodomain Protein Islet-1 Modulates Estrogen Receptor Functions. Molecular Endocrinology, 2000, 14, 1627-1648.	3.7	12
43	COUP-TFI (Chicken Ovalbumin Upstream Promoter-Transcription Factor I) Regulates Cell Migration and Axogenesis in Differentiating P19 Embryonal Carcinoma Cells. Molecular Endocrinology, 2000, 14, 1918-1933.	3.7	9
44	A Complex Regulatory Unit Mediates Estrogen Receptor Gene Autoregulation in Fish. Annals of the New York Academy of Sciences, 1998, 839, 129-132.	3.8	1
45	Distribution of Estrogen Receptor-Immunoreactive Cells in the Brain of the Rainbow Trout (Oncorhynchus mykiss). Journal of Neuroendocrinology, 1994, 6, 573-583.	2.6	62
46	Nuclear Retinoid Receptors and Their Mechanism of Action. Vitamins and Hormones, 1994, 49, 327-382.	1.7	51
47	Differential regulation of the estrogen receptor mRNA by estradiol in the trout hypothalamus and pituitary. Molecular and Cellular Endocrinology, 1993, 96, 177-182.	3.2	31
48	Cloning and Sequencing of Two POMC cDNAs in Rainbow Trout (Oncorhynchus mykiss) Annals of the New York Academy of Sciences, 1993, 680, 476-477.	3.8	2
49	Serotonin and dopamine turnover in the female rainbow trout (Oncorhynchus mykiss) brain and pituitary: Changes during the annual reproductive cycle. General and Comparative Endocrinology, 1992, 85, 261-268.	1.8	66
50	Effects of estradiol on brain aminergic turnover of the female rainbow trout (Oncorhynchus mykiss) at the beginning of vitellogenesis. General and Comparative Endocrinology, 1992, 88, 209-216.	1.8	32
51	Localization of the estradiol receptor mRNA in the forebrain of the rainbow trout. Molecular and Cellular Endocrinology, 1991, 76, 173-180.	3.2	52