
Satoko Arai

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5337002/publications.pdf Version: 2024-02-01

SATOKO ΔΡΑΙ

#	Article	IF	CITATIONS
1	AIM/CD5L attenuates DAMPs in the injured brain and thereby ameliorates ischemic stroke. Cell Reports, 2021, 36, 109693.	6.4	24
2	High salt exacerbates acute kidney injury by disturbing the activation of CD5L/apoptosis inhibitor of macrophage (AIM) protein. PLoS ONE, 2021, 16, e0260449.	2.5	5
3	Crucial Role of AIM/CD5L in the Development of Glomerular Inflammation in IgA Nephropathy. Journal of the American Society of Nephrology: JASN, 2020, 31, 2013-2024.	6.1	29
4	AIM-deficient mouse fed a high-trans fat, high-cholesterol diet: a new animal model for nonalcoholic fatty liver disease. Experimental Animals, 2019, 68, 147-158.	1.1	8
5	AIM associated with the IgM pentamer: attackers on stand-by at aircraft carrier. Cellular and Molecular Immunology, 2018, 15, 563-574.	10.5	27
6	Activation of apoptosis inhibitor of macrophage is a sensitive diagnostic marker for NASH-associated hepatocellular carcinoma. Journal of Gastroenterology, 2018, 53, 770-779.	5.1	22
7	The IgM pentamer is an asymmetric pentagon with an open groove that binds the AIM protein. Science Advances, 2018, 4, eaau1199.	10.3	85
8	A scavenging system against internal pathogens promoted by the circulating protein apoptosis inhibitor of macrophage (AIM). Seminars in Immunopathology, 2018, 40, 567-575.	6.1	23
9	Independent modes of disease repair by AIM protein distinguished in AIM-felinized mice. Scientific Reports, 2018, 8, 13157.	3.3	10
10	Association of apoptosis inhibitor of macrophage (AIM) expression with urinary protein and kidney dysfunction. Clinical and Experimental Nephrology, 2017, 21, 35-42.	1.6	5
11	Apoptosis inhibitor of macrophage ameliorates fungus-induced peritoneal injury model in mice. Scientific Reports, 2017, 7, 6450.	3.3	28
12	Inflammatory and anti-inflammatory states of adipose tissue in transgenic mice bearing a single TCR. International Immunology, 2017, 29, 21-30.	4.0	6
13	A proteolytic modification of AIM promotes its renal excretion. Scientific Reports, 2016, 6, 38762.	3.3	9
14	Dietary fructoseâ€induced hepatocellular carcinoma development manifested in mice lacking apoptosis inhibitor of macrophage (<scp>AIM</scp>). Genes To Cells, 2016, 21, 1320-1332.	1.2	29
15	Impact of feline AIM on the susceptibility of cats to renal disease. Scientific Reports, 2016, 6, 35251.	3.3	18
16	Apoptosis inhibitor of macrophage protein enhances intraluminal debris clearance and ameliorates acute kidney injury in mice. Nature Medicine, 2016, 22, 183-193.	30.7	161
17	Tricking an ancient immune function to eradicate hepatocellular carcinoma. Molecular and Cellular Oncology, 2015, 2, e985915.	0.7	6
18	A defense system against multiple diseases via biological garbage clearance mediated by soluble scavenger proteins. Inflammation and Regeneration, 2015, 35, 203-209.	3.7	1

SATOKO ARAI

#	Article	IF	CITATIONS
19	Stabilization and Augmentation of Circulating AIM in Mice by Synthesized IgM-Fc. PLoS ONE, 2014, 9, e97037.	2.5	27
20	The macrophage soluble receptor AIM/Api6/CD5L displays a broad pathogen recognition spectrum and is involved in early response to microbial aggression. Cellular and Molecular Immunology, 2014, 11, 343-354.	10.5	39
21	Circulating AIM Prevents Hepatocellular Carcinoma through Complement Activation. Cell Reports, 2014, 9, 61-74.	6.4	60
22	Impacts of the apoptosis inhibitor of macrophage (AIM) on obesity-associated inflammatory diseases. Seminars in Immunopathology, 2014, 36, 3-12.	6.1	30
23	MafB promotes atherosclerosis by inhibiting foam-cell apoptosis. Nature Communications, 2014, 5, 3147.	12.8	92
24	Molecular Cloning and Gene Expression of Canine Apoptosis Inhibitor of Macrophage. Journal of Veterinary Medical Science, 2014, 76, 1641-1645.	0.9	5
25	Circulating AIM as an Indicator of Liver Damage and Hepatocellular Carcinoma in Humans. PLoS ONE, 2014, 9, e109123.	2.5	37
26	Apoptosis inhibitor of macrophage (AIM) expression in alveolar macrophages in COPD. Respiratory Research, 2013, 14, 30.	3.6	23
27	The nuclear receptor LXRα controls the functional specialization of splenic macrophages. Nature Immunology, 2013, 14, 831-839.	14.5	147
28	Obesity-Associated Autoantibody Production Requires AIM to Retain the Immunoglobulin M Immune Complex on Follicular Dendritic Cells. Cell Reports, 2013, 3, 1187-1198.	6.4	88
29	PAD4 regulates proliferation of multipotent haematopoietic cells by controlling c-myc expression. Nature Communications, 2013, 4, 1836.	12.8	63
30	Modification of <i>N</i> â€glycosylation modulates the secretion and lipolytic function of apoptosis inhibitor of macrophage (AIM). FEBS Letters, 2012, 586, 3569-3574.	2.8	15
31	Apoptosis inhibitor of macrophage (AIM) diminishes lipid droplet-coating proteins leading to lipolysis in adipocytes. Biochemical and Biophysical Research Communications, 2012, 422, 476-481.	2.1	35
32	AlMing at Metabolic Syndrome: Towards development of novel therapies for modern metabolic diseases via macrophageâ€derived AlM. FASEB Journal, 2012, 26, 570.9.	0.5	0
33	AlMing at Metabolic Syndrome - Towards the Development of Novel Therapies for Metabolic Diseases via Apoptosis Inhibitor of Macrophage (AIM) Circulation Journal, 2011, 75, 2522-2531.	1.6	35
34	Apoptosis inhibitor of macrophage (AIM) is required for obesity-associated recruitment of inflammatory macrophages into adipose tissue. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 12072-12077.	7.1	83
35	Death effector domain–containing protein (DEDD) is required for uterine decidualization during early pregnancy in mice. Journal of Clinical Investigation, 2011, 121, 318-327.	8.2	48
36	Rituximab was effective on refractory thrombotic thrombocytopenic purpura but induced a flare of hemophagocytic syndrome in a patient with systemic lupus erythematosus. Modern Rheumatology, 2010, 20, 81-85.	1.8	24

SATOKO ARAI

#	Article	IF	CITATIONS
37	The death effector domain-containing DEDD forms a complex with Akt and Hsp90, and supports their stability. Biochemical and Biophysical Research Communications, 2010, 391, 1708-1713.	2.1	9
38	Macrophage-Derived AIM Is Endocytosed into Adipocytes and Decreases Lipid Droplets via Inhibition of Fatty Acid Synthase Activity. Cell Metabolism, 2010, 11, 479-492.	16.2	127
39	Autoantibodies against platelet-derived growth factor receptor alpha in patients with systemic lupus erythematosus. Modern Rheumatology, 2010, 20, 458-465.	1.8	18
40	The Death Effector Domain-containing DEDD Supports S6K1 Activity via Preventing Cdk1-dependent Inhibitory Phosphorylation. Journal of Biological Chemistry, 2009, 284, 5050-5055.	3.4	12
41	Death-effector domain-containing protein DEDD is an inhibitor of mitotic Cdk1/cyclin B1. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 2289-2294.	7.1	27
42	Two Distinct Controls of Mitotic Cdk1/Cyclin B1 Activity Requisite for Cell Growth Prior to Cell Division. Cell Cycle, 2007, 6, 1418-1424.	2.6	59
43	Two distinct controls of mitotic cdk1/cyclin B1 activity requisite for cell growth prior to cell division. Cell Cycle, 2007, 6, 1419-25.	2.6	31
44	Impaired maturation of myeloid progenitors in mice lacking novel Polycomb group protein MBT-1. EMBO Journal, 2005, 24, 1863-1873.	7.8	45
45	A role for the apoptosis inhibitory factor AIM/Spα/Api6 in atherosclerosis development. Cell Metabolism, 2005, 1, 201-213.	16.2	257
46	Improved Experimental Procedures for Achieving Efficient Germ Line Transmission of Nonobese Diabetic (NOD)-Derived Embryonic Stem Cells. Experimental Diabesity Research, 2004, 5, 219-226.	1.0	11
47	Positive Selection by the Pre-TCR Yields Mature CD8+ T Cells. Journal of Immunology, 2002, 169, 4913.4919	0.8	4