

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5336757/publications.pdf Version: 2024-02-01

LVIVII

#	Article	IF	CITATIONS
1	Temperature-controlled fabrication of Co-Fe-based nanoframes for efficient oxygen evolution. Science China Materials, 2022, 65, 431-441.	6.3	35
2	High-capacity Bi2O3 anode for 2.4ÂV neutral aqueous sodium-ion battery-supercapacitor hybrid device through phase conversion mechanism. Journal of Energy Chemistry, 2022, 65, 605-615.	12.9	42
3	ZIF-67 grown on a fibrous substrate via a sacrificial template method for efficient PM2.5 capture and enhanced antibacterial performance. Separation and Purification Technology, 2022, 280, 119814.	7.9	11
4	Superaerophobic copper-based nanowires array for efficient nitrogen reduction. Journal of Colloid and Interface Science, 2022, 608, 1489-1496.	9.4	14
5	Temperature-controlled synthesis of heterostructured Ru-Ru2P nanoparticles embedded in carbon nanofibers for highly efficient hydrogen production. Science China Materials, 2022, 65, 2675-2684.	6.3	16
6	Multifunctional Textiles Based on Three-Dimensional Hierarchically Structured TiO ₂ Nanowires. ACS Applied Materials & Interfaces, 2021, 13, 27557-27566.	8.0	14
7	Three-dimensional porous ultrathin carbon networks reinforced PBAs-derived electrocatalysts for efficient oxygen evolution. Chemical Engineering Journal, 2021, 419, 129575.	12.7	27
8	Construction of S-scheme 0D/2D heterostructures for enhanced visible-light-driven CO2 reduction. Applied Catalysis B: Environmental, 2021, 298, 120521.	20.2	86
9	In/ZnO@C hollow nanocubes for efficient electrochemical reduction of CO ₂ to formate and rechargeable Zn–CO ₂ batteries. Materials Chemistry Frontiers, 2021, 5, 6618-6627.	5.9	19
10	Fabrication of complex, 3D, branched hollow carbonaceous structures and their applications for supercapacitors. Science Bulletin, 2021, , .	9.0	8
11	Heterointerface Engineering of Ni ₂ P–Co ₂ P Nanoframes for Efficient Water Splitting. Chemistry of Materials, 2021, 33, 9165-9173.	6.7	53
12	CoP Nanoframes as Bifunctional Electrocatalysts for Efficient Overall Water Splitting. ACS Catalysis, 2020, 10, 412-419.	11.2	361
13	Ultrafine Mo ₂ C nanoparticle decorated N-doped carbon nanofibers for efficient hydrogen production. Sustainable Energy and Fuels, 2020, 4, 4800-4806.	4.9	8
14	Designing Re-Entrant Geometry: Construction of a Superamphiphobic Surface with Large-Sized Particles. ACS Applied Materials & Interfaces, 2020, 12, 49155-49164.	8.0	21
15	Formation of cobalt phosphide nanodisks as a bifunctional electrocatalyst for enhanced water splitting. Sustainable Energy and Fuels, 2020, 4, 1616-1620.	4.9	14
16	Self-Growing NiFe-Based Hybrid Nanosheet Arrays on Ni Nanowires for Overall Water Splitting. ACS Applied Energy Materials, 2019, 2, 5465-5471.	5.1	22
17	Fabrication of Three-Dimensional Multiscale Porous Alloy Foams at a Planar Substrate for Efficient Water Splitting. ACS Sustainable Chemistry and Engineering, 2019, 7, 5412-5419.	6.7	22
18	Decoupling half-reactions of electrolytic water splitting by integrating a polyaniline electrode. Journal of Materials Chemistry A, 2019, 7, 13149-13153.	10.3	53

ένιν Ji

#	Article	IF	CITATIONS
19	Ni nanotube array-based electrodes by electrochemical alloying and de-alloying for efficient water splitting. Nanoscale, 2018, 10, 9276-9285.	5.6	48
20	N,P-Doped Molybdenum Carbide Nanofibers for Efficient Hydrogen Production. ACS Applied Materials & Interfaces, 2018, 10, 14632-14640.	8.0	105
21	Highly Dispersed Mo ₂ C Nanoparticles Embedded in Ordered Mesoporous Carbon for Efficient Hydrogen Evolution. ACS Applied Energy Materials, 2018, 1, 736-743.	5.1	44
22	Nickelâ€Based (Photo)Electrocatalysts for Hydrogen Production. Advanced Materials, 2018, 30, e1705653.	21.0	66
23	Preparation of nanostructured Cu(OH) ₂ and CuO electrocatalysts for water oxidation by electrophoresis deposition. Journal of Materials Research, 2018, 33, 581-589.	2.6	33
24	Hierarchically Structured Ni Nanotube Array-Based Integrated Electrodes for Water Splitting. ACS Sustainable Chemistry and Engineering, 2018, 6, 2069-2077.	6.7	34
25	Walnut-like Transition Metal Carbides with Three-Dimensional Networks by a Versatile Electropolymerization-Assisted Method for Efficient Hydrogen Evolution. ACS Applied Materials & Interfaces, 2018, 10, 36824-36833.	8.0	18
26	Multiscale porous molybdenum phosphide of honeycomb structure for highly efficient hydrogen evolution. Nanoscale, 2018, 10, 14594-14599.	5.6	42
27	In situ O ₂ -emission assisted synthesis of molybdenum carbide nanomaterials as an efficient electrocatalyst for hydrogen production in both acidic and alkaline media. Journal of Materials Chemistry A, 2017, 5, 5178-5186.	10.3	62
28	In Situ Preparation of Pt Nanoparticles Supported on N-Doped Carbon as Highly Efficient Electrocatalysts for Hydrogen Production. Journal of Physical Chemistry C, 2017, 121, 8923-8930.	3.1	32
29	Hierarchically Structured 3D Integrated Electrodes by Galvanic Replacement Reaction for Highly Efficient Water Splitting. Advanced Energy Materials, 2017, 7, 1700107.	19.5	116
30	Self-supported CuS nanowire array: an efficient hydrogen-evolving electrode in neutral media. Electrochimica Acta, 2017, 252, 516-522.	5.2	33
31	In Situ Rapid Formation of a Nickel–Iron-Based Electrocatalyst for Water Oxidation. ACS Catalysis, 2016, 6, 6987-6992.	11.2	103
32	A fast electrochromic polymer based on TEMPO substituted polytriphenylamine. Scientific Reports, 2016, 6, 30068.	3.3	22
33	A Highly Active and Robust Copper-Based Electrocatalyst toward Hydrogen Evolution Reaction with Low Overpotential in Neutral Solution. ACS Applied Materials & Interfaces, 2016, 8, 30205-30211.	8.0	36
34	Differentiation of biothiols from other sulfur-containing biomolecules using iodide-capped gold nanoparticles. RSC Advances, 2016, 6, 25101-25109.	3.6	6
35	A novel nitroxide radical polymer-containing conductive polyaniline as molecular skeleton: its synthesis and electrochemical properties as organic cathode. Ionics, 2016, 22, 1377-1385.	2.4	11
36	A polytriphenylamine derivative exhibiting a four-electron redox center as a high free radical density organic cathode. RSC Advances, 2016, 6, 22989-22995.	3.6	15

ένιν Ji

#	Article	IF	CITATIONS
37	Crystal structure of dibromidotetrakis(propan-2-ol-κO)nickel(II). Acta Crystallographica Section E: Crystallographic Communications, 2015, 71, m263-m264.	0.5	0
38	A novel ferrocene-containing aniline copolymer: its synthesis and electrochemical performance. RSC Advances, 2015, 5, 14053-14060.	3.6	20
39	Polytriphenylamine derivative with high free radical density as the novel organic cathode for lithium ion batteries. Journal of Materials Chemistry A, 2014, 2, 20083-20088.	10.3	71