
Lucas Joppa

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5334197/publications.pdf Version: 2024-02-01

LUCASLODDA

#	Article	IF	CITATIONS
1	The biodiversity of species and their rates of extinction, distribution, and protection. Science, 2014, 344, 1246752.	12.6	2,295
2	High and Far: Biases in the Location of Protected Areas. PLoS ONE, 2009, 4, e8273.	2.5	749
3	A Global Deal For Nature: Guiding principles, milestones, and targets. Science Advances, 2019, 5, eaaw2869.	10.3	477
4	Expansion of the global terrestrial protected area system. Biological Conservation, 2009, 142, 2166-2174.	4.1	446
5	Estimating the normal background rate of species extinction. Conservation Biology, 2015, 29, 452-462.	4.7	410
6	On the protection of "protected areas― Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 6673-6678.	7.1	385
7	Shortfalls and Solutions for Meeting National and Global Conservation Area Targets. Conservation Letters, 2015, 8, 329-337.	5.7	350
8	Global protected area impacts. Proceedings of the Royal Society B: Biological Sciences, 2011, 278, 1633-1638.	2.6	331
9	What we know and don't know about Earth's missing biodiversity. Trends in Ecology and Evolution, 2012, 27, 501-510.	8.7	321
10	More than a meal… integrating nonâ€feeding interactions into food webs. Ecology Letters, 2012, 15, 291-300.	6.4	320
11	Understanding movement data and movement processes: current and emerging directions. Ecology Letters, 2008, 11, 1338-1350.	6.4	317
12	Emerging Technologies to Conserve Biodiversity. Trends in Ecology and Evolution, 2015, 30, 685-696.	8.7	240
13	Biodiversity hotspots house most undiscovered plant species. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 13171-13176.	7.1	214
14	Filling in biodiversity threat gaps. Science, 2016, 352, 416-418.	12.6	194
15	How many species of flowering plants are there?. Proceedings of the Royal Society B: Biological Sciences, 2011, 278, 554-559.	2.6	191
16	Mapping Change in Human Pressure Globally on Land and within Protected Areas. Conservation Biology, 2014, 28, 1604-1616.	4.7	186
17	Projecting Global Biodiversity Indicators under Future Development Scenarios. Conservation Letters, 2016, 9, 5-13.	5.7	182
18	Measuring Terrestrial Area of Habitat (AOH) and Its Utility for the IUCN Red List. Trends in Ecology and Evolution, 2019, 34, 977-986.	8.7	181

LUCAS JOPPA

#	Article	IF	CITATIONS
19	Remaining natural vegetation in the global biodiversity hotspots. Biological Conservation, 2014, 177, 12-24.	4.1	171
20	Reassessing the forest impacts of protection. Annals of the New York Academy of Sciences, 2010, 1185, 135-149.	3.8	170
21	Network structure beyond food webs: mapping nonâ€ŧrophic and trophic interactions on Chilean rocky shores. Ecology, 2015, 96, 291-303.	3.2	168
22	Troubling Trends in Scientific Software Use. Science, 2013, 340, 814-815.	12.6	151
23	Achieving the Convention on Biological Diversity's Goals for Plant Conservation. Science, 2013, 341, 1100-1103.	12.6	119
24	Using species distribution models to inform IUCN Red List assessments. Biological Conservation, 2014, 177, 174-184.	4.1	116
25	On Population Growth Near Protected Areas. PLoS ONE, 2009, 4, e4279.	2.5	101
26	Constraints to Species' Elevational Range Shifts as Climate Changes. Conservation Biology, 2011, 25, 163-171.	4.7	98
27	The population ecology and social behaviour of taxonomists. Trends in Ecology and Evolution, 2011, 26, 551-553.	8.7	96
28	Scenarios of future land use change around United States' protected areas. Biological Conservation, 2015, 184, 446-455.	4.1	89
29	The IPBES Global Assessment: Pathways to Action. Trends in Ecology and Evolution, 2020, 35, 407-414.	8.7	77
30	Government: Plan for ecosystem services. Science, 2016, 351, 1037-1037.	12.6	71
31	Representation of Global and National Conservation Priorities by Colombia's Protected Area Network. PLoS ONE, 2010, 5, e13210.	2.5	68
32	Impact of alternative metrics on estimates of extent of occurrence for extinction risk assessment. Conservation Biology, 2016, 30, 362-370.	4.7	67
33	The architecture of mutualistic networks as an evolutionary spandrel. Nature Ecology and Evolution, 2018, 2, 94-99.	7.8	63
34	A metric for spatially explicit contributions to science-based species targets. Nature Ecology and Evolution, 2021, 5, 836-844.	7.8	61
35	Scientists and software – surveying the species distribution modelling community. Diversity and Distributions, 2015, 21, 258-267.	4.1	58
36	Threatened or Data Deficient: assessing the conservation status of poorly known species. Diversity and Distributions, 2016, 22, 558-565.	4.1	55

LUCAS JOPPA

#	Article	IF	CITATIONS
37	Reciprocal specialization in ecological networks. Ecology Letters, 2009, 12, 961-969.	6.4	42
38	The effect of dreissenid invasions on chlorophyll and the chlorophyll : total phosphorus ratio in north-temperate lakes. Canadian Journal of Fisheries and Aquatic Sciences, 2011, 68, 319-329.	1.4	42
39	Microsoft's million-tonne CO2-removal purchase — lessons for net zero. Nature, 2021, 597, 629-632.	27.8	42
40	Changing How Earth System Modeling is Done to Provide More Useful Information for Decision Making, Science, and Society. Bulletin of the American Meteorological Society, 2014, 95, 1453-1464.	3.3	34
41	The case for technology investments in the environment. Nature, 2017, 552, 325-328.	27.8	33
42	Functional traits, landâ€use change and the structure of present and future bird communities in tropical forests. Global Ecology and Biogeography, 2014, 23, 1073-1084.	5.8	31
43	Quantifying the relative irreplaceability of important bird and biodiversity areas. Conservation Biology, 2016, 30, 392-402.	4.7	24
44	A Call for International Leadership and Coordination to Realize the Potential of Conservation Technology. BioScience, 2019, 69, 823-832.	4.9	21
45	Deep Reinforcement Learning for Green Security Games with Real-Time Information. Proceedings of the AAAI Conference on Artificial Intelligence, 2019, 33, 1401-1408.	4.9	20
46	Further evidence of more taxonomists discovering new species, and that most species have been named: response to Bebber <i>etÂal</i> . (2014). New Phytologist, 2014, 202, 739-740.	7.3	18
47	Introduction: Human migration to protected area edges in Africa and Latin America: Questioning large-scale statistical analysis. Conservation and Society, 2011, 9, 1.	0.8	17
48	Toward a national, sustained U.S. ecosystem assessment. Science, 2016, 354, 838-839.	12.6	15
49	Counting complete? Finalising the plant inventory of a global biodiversity hotspot. PeerJ, 2017, 5, e2984.	2.0	15
50	A Network Extension of Species Occupancy Models in a Patchy Environment Applied to the Yosemite Toad (Anaxyrus canorus). PLoS ONE, 2013, 8, e72200.	2.5	14
51	Identifying technology solutions to bring conservation into the innovation era. Frontiers in Ecology and the Environment, 2019, 17, 591-598.	4.0	13
52	Biophysical suitability, economic pressure and land-cover change: a global probabilistic approach and insights for REDD+. Sustainability Science, 2014, 9, 129-141.	4.9	11
53	Digitizing a sustainable future. One Earth, 2021, 4, 768-771.	6.8	11
54	Taxonomy that matters: response to Bacher. Trends in Ecology and Evolution, 2012, 27, 66.	8.7	10

LUCAS JOPPA

#	Article	IF	CITATIONS
55	Modeling the Building Blocks of Biodiversity. PLoS ONE, 2013, 8, e56277.	2.5	9
56	Building robust conservation plans. Conservation Biology, 2015, 29, 503-512.	4.7	9
57	Measuring Population Growth around Tropical Protected Areas: Current Issues and Solutions. Tropical Conservation Science, 2010, 3, 117-121.	1.2	8
58	Population Change in and around Protected Areas. Journal of Ecological Anthropology, 2012, 15, 58-64.	0.2	8
59	The influence of single elements on nested community structure. Methods in Ecology and Evolution, 2011, 2, 541-549.	5.2	6
60	Sentiment Analysis of Conservation Studies Captures Successes of Species Reintroductions. Patterns, 2020, 1, 100005.	5.9	5
61	Data Science for Earth. SIGKDD Explorations: Newsletter of the Special Interest Group (SIG) on Knowledge Discovery & Data Mining, 2020, 22, 4-7.	4.0	2
62	Journal club. Nature, 2009, 459, 619-619.	27.8	0
63	Thermal Tolerance, Range Expansion, and Status of Tropical Amphibians: Reply to Catenazzi. Conservation Biology, 2011, 25, 426-427.	4.7	0