Rita Belen Barreiro List of Publications by Year in descending order Source: https://exaly.com/author-pdf/5333930/publications.pdf Version: 2024-02-01 239 papers 52,092 citations 95 h-index 226 g-index 241 all docs 241 docs citations times ranked 241 21013 citing authors | # | Article | IF | CITATIONS | |----|---|-----|-----------| | 1 | <i>Planck</i> 2015 results. Astronomy and Astrophysics, 2016, 594, A13. | 5.1 | 8,344 | | 2 | <i>Planck</i> 2018 results. Astronomy and Astrophysics, 2020, 641, A6. | 5.1 | 6,722 | | 3 | <i>Planck</i> 2013 results. XVI. Cosmological parameters. Astronomy and Astrophysics, 2014, 571, A16. | 5.1 | 4,703 | | 4 | <i>Planck</i> 2018 results. Astronomy and Astrophysics, 2020, 641, A10. | 5.1 | 1,261 | | 5 | <i>Planck</i> 2015 results. Astronomy and Astrophysics, 2016, 594, A20. | 5.1 | 1,233 | | 6 | <i>Planck</i> 2013 results. I. Overview of products and scientific results. Astronomy and Astrophysics, 2014, 571, A1. | 5.1 | 948 | | 7 | Joint Analysis of BICEP2/ <i>Keck Array</i> and <i>Planck</i> Data. Physical Review Letters, 2015, 114, 101301. | 7.8 | 819 | | 8 | <i>Planck</i> 2013 results. XXII. Constraints on inflation. Astronomy and Astrophysics, 2014, 571, A22. | 5.1 | 806 | | 9 | <i>Planck</i> 2018 results. Astronomy and Astrophysics, 2020, 641, A1. | 5.1 | 804 | | 10 | <i>Planck</i> 2015 results. Astronomy and Astrophysics, 2016, 594, A1. | 5.1 | 738 | | 11 | <i>Planck</i> 2018 results. Astronomy and Astrophysics, 2021, 652, C4. | 5.1 | 627 | | 12 | <i>Planck</i> 2015 results. Astronomy and Astrophysics, 2016, 594, A11. | 5.1 | 613 | | 13 | <i>Planck</i> 2015 results. Astronomy and Astrophysics, 2016, 594, A14. | 5.1 | 568 | | 14 | <i>Planck</i> 2013 results. XI. All-sky model of thermal dust emission. Astronomy and Astrophysics, 2014, 571, A11. | 5.1 | 566 | | 15 | <i>Planck</i> 2018 results. Astronomy and Astrophysics, 2020, 641, A5. | 5.1 | 558 | | 16 | <i>Planck</i> 2015 results. Astronomy and Astrophysics, 2016, 594, A27. | 5.1 | 535 | | 17 | <i>Planck</i> 2015 results. Astronomy and Astrophysics, 2016, 594, A24. | 5.1 | 525 | | 18 | <i>Planck</i> ≥2013 results. XX. Cosmology from Sunyaev–Zeldovich cluster counts. Astronomy and Astrophysics, 2014, 571, A20. | 5.1 | 465 | | # | Article | IF | Citations | |----|---|-------------|-----------| | 19 | <i>Planck</i> 2015 results. Astronomy and Astrophysics, 2016, 594, A17. | 5.1 | 440 | | 20 | Detection of Nonâ€Gaussianity in theWilkinson Microwave Anisotropy ProbeFirstâ€Year Data Using Spherical Wavelets. Astrophysical Journal, 2004, 609, 22-34. | 4. 5 | 401 | | 21 | <i>Planck</i> 2018 results. Astronomy and Astrophysics, 2020, 641, A8. | 5.1 | 400 | | 22 | <i>Planck</i> early results. I. The <i>Planck</i> mission. Astronomy and Astrophysics, 2011, 536, A1. | 5.1 | 394 | | 23 | <i>Planck</i> 2015 results. Astronomy and Astrophysics, 2016, 594, A10. | 5.1 | 384 | | 24 | <i>Planck</i> 2013 results. XXIX. The <i>Planck</i> catalogue of Sunyaev-Zeldovich sources. Astronomy and Astrophysics, 2014, 571, A29. | 5.1 | 380 | | 25 | <i>Planck</i> ii>intermediate results. Astronomy and Astrophysics, 2016, 596, A108. | 5.1 | 375 | | 26 | $\mbox{\sc i} \mbox{\sc Planck} \mbox{\sc /i} \mbox{\sc 2013}$ results. XXIII. Isotropy and statistics of the CMB. Astronomy and Astrophysics, 2014, 571, A23. | 5.1 | 367 | | 27 | <i>Planck</i> 2013 results. XV. CMB power spectra and likelihood. Astronomy and Astrophysics, 2014, 571, A15. | 5.1 | 364 | | 28 | <i>Planck</i> 2015 results. Astronomy and Astrophysics, 2016, 594, A15. | 5.1 | 360 | | 29 | <i>Planck</i> ii>intermediate results. Astronomy and Astrophysics, 2016, 596, A107. | 5.1 | 359 | | 30 | $\mbox{\sc i} \mbox{\sc Planck} \mbox{\sc /i} \mbox{\sc 2013}$ results. XXIV. Constraints on primordial non-Gaussianity. Astronomy and Astrophysics, 2014, 571, A24. | 5.1 | 350 | | 31 | <i>Planck</i> 2015 results. Astronomy and Astrophysics, 2016, 594, A16. | 5.1 | 338 | | 32 |
i>Planck
$$ /i>early results. VIII. The all-sky early Sunyaev-Zeldovich cluster sample. A
stronomy and Astrophysics, 2011, 536, A8. | 5.1 | 335 | | 33 | <i>Planck</i> 2018 results. Astronomy and Astrophysics, 2020, 641, A9. | 5.1 | 319 | | 34 | <i>Planck</i> early results. XIX. All-sky temperature and dust optical depth from <i>Planck</i> and IRAS. Constraints on the "dark gas―in our Galaxy. Astronomy and Astrophysics, 2011, 536, A19. | 5.1 | 314 | | 35 | <i>Planck</i> intermediate results. XIX. An overview of the polarized thermal emission from Galactic dust. Astronomy and Astrophysics, 2015, 576, A104. | 5.1 | 296 | | 36 | <i>Planck</i> iiintermediate results. Astronomy and Astrophysics, 2013, 550, A131. | 5.1 | 276 | | # | Article | IF | CITATIONS | |----|---|-----|-----------| | 37 | <i>Planck</i> 2015 results. Astronomy and Astrophysics, 2016, 594, A22. | 5.1 | 274 | | 38 | <i>Planck</i> 2015 results. Astronomy and Astrophysics, 2016, 594, A19. | 5.1 | 273 | | 39 | <i>Planck</i> 2013 results. XVII. Gravitational lensing by large-scale structure. Astronomy and Astrophysics, 2014, 571, A17. | 5.1 | 272 | | 40 | <i>Planck</i> intermediate results. Astronomy and Astrophysics, 2016, 586, A138. | 5.1 | 270 | | 41 | <i>Planck</i> pre-launch status: The <i>Planck</i> mission. Astronomy and Astrophysics, 2010, 520, A1. | 5.1 | 268 | | 42 | <i>Planck</i> early results. VII. The Early Release Compact Source Catalogue. Astronomy and Astrophysics, 2011, 536, A7. | 5.1 | 224 | | 43 | <i>Planck</i> 2013 results. XXV. Searches for cosmic strings and other topological defects. Astronomy and Astrophysics, 2014, 571, A25. | 5.1 | 223 | | 44 | <i>Planck</i> 2018 results. Astronomy and Astrophysics, 2020, 641, A4. | 5.1 | 218 | | 45 | <i>Planck</i> 2013 results. XII. Diffuse component separation. Astronomy and Astrophysics, 2014, 571, A12. | 5.1 | 216 | | 46 | <i>Planck</i> 2013 results. XXX. Cosmic infrared background measurements and implications for star formation. Astronomy and Astrophysics, 2014, 571, A30. | 5.1 | 210 | | 47 | <i>Planck</i> 2015 results. Astronomy and Astrophysics, 2016, 594, A8. | 5.1 | 209 | | 48 | Component separation methods for the PLANCK mission. Astronomy and Astrophysics, 2008, 491, 597-615. | 5.1 | 189 | | 49 | <i>Planck</i> intermediate results. Astronomy and Astrophysics, 2016, 596, A109. | 5.1 | 185 | | 50 | <i>Planck</i> early results. XXV. Thermal dust in nearby molecular clouds. Astronomy and Astrophysics, 2011, 536, A25. | 5.1 | 184 | | 51 | <i>Planck</i> 2015 results. Astronomy and Astrophysics, 2016, 594, A9. | 5.1 | 182 | | 52 | <i>Planck</i> 2015 results. Astronomy and Astrophysics, 2016, 594, A26. | 5.1 | 182 | | 53 | <i>Planck</i> early results. XVIII. The power spectrum of cosmic infrared background anisotropies. Astronomy and Astrophysics, 2011, 536, A18. | 5.1 | 180 | | 54 | <i>Planck</i> early results. XXIV. Dust in the diffuse interstellar medium and the Galactic halo. Astronomy and Astrophysics, 2011, 536, A24. | 5.1 | 179 | | # | Article | IF | Citations | |----|--|-----|-----------| | 55 | <i>Planck</i> early results. XI. Calibration of the local galaxy cluster Sunyaev-Zeldovich scaling relations. Astronomy and Astrophysics, 2011, 536, A11. | 5.1 | 174 | | 56 | <i>Planck</i> iiintermediate results. Astronomy and Astrophysics, 2016, 586, A133. | 5.1 | 173 | | 57 | <i>Planck</i> 2018 results. Astronomy and Astrophysics, 2020, 641, A7. | 5.1 | 172 | | 58 |
'Planck
$$ /i > 2013 results. XXVII. Doppler boosting of the CMB: Eppur si muove. Astronomy and Astrophysics, 2014, 571, A27. | 5.1 | 170 | | 59 | <i>Planck</i> 2013 results. XXVIII. The <i>Planck</i> Catalogue of Compact Sources. Astronomy and Astrophysics, 2014, 571, A28. | 5.1 | 162 | | 60 | <i>Planck</i> 2018 results. Astronomy and Astrophysics, 2020, 641, A3. | 5.1 | 158 | | 61 | $\langle i \rangle$ Planck $\langle i \rangle$ early results. XX. New light on anomalous microwave emission from spinning dust grains. Astronomy and Astrophysics, 2011, 536, A20. | 5.1 | 155 | | 62 | <i>Planck</i> 2015 results. Astronomy and Astrophysics, 2016, 594, A25. | 5.1 | 153 | | 63 | <i>Planck</i> early results. XXIII. The first all-sky survey of Galactic cold clumps. Astronomy and Astrophysics, 2011, 536, A23. | 5.1 | 152 | | 64 | <i>Planck</i> 2013 results. XIII. Galactic CO emission. Astronomy and Astrophysics, 2014, 571, A13. | 5.1 | 144 | | 65 | <i>Planck</i> ii>intermediate results. Astronomy and Astrophysics, 2013, 557, A52. | 5.1 | 141 | | 66 | PRISM (Polarized Radiation Imaging and Spectroscopy Mission): an extended white paper. Journal of Cosmology and Astroparticle Physics, 2014, 2014, 006-006. | 5.4 | 138 | | 67 | Planck intermediate results. Astronomy and Astrophysics, 2014, 566, A55. | 5.1 | 134 | | 68 | <i>Planck</i> 2015 results. Astronomy and Astrophysics, 2016, 594, A28. | 5.1 | 134 | | 69 | <i>Planck</i> 2013 results. XXI. Power spectrum and high-order statistics of the <i>Planck</i> all-sky Compton parameter map. Astronomy and Astrophysics, 2014, 571, A21. | 5.1 | 133 | | 70 | <i>Planck </i> intermediate results. Astronomy and Astrophysics, 2017, 607, A95. | 5.1 | 131 | | 71 | <i>Planck</i> 2013 results. IX. HFI spectral response. Astronomy and Astrophysics, 2014, 571, A9. | 5.1 | 129 | <i>Planck</i>i>Planck</i>ii>intermediate results. XXII. Frequency dependence of thermal emission from Galactic dust in intensity and polarization. Astronomy and Astrophysics, 2015, 576, A107. | # | Article | IF | Citations | |----|--|-----|-----------| | 73 | <i>Planck</i> 2013 results. XIX. The integrated Sachs-Wolfe effect. Astronomy and Astrophysics, 2014, 571, A19. | 5.1 | 126 | | 74 | <i>Planck</i> early results. IX. <i>XMM-Newton</i> follow-up for validation of <i>Planck</i> cluster candidates. Astronomy and Astrophysics, 2011, 536, A9. | 5.1 | 126 | | 75 | <i>Planck</i> early results. X. Statistical analysis of Sunyaev-Zeldovich scaling relations for X-ray galaxy clusters. Astronomy and Astrophysics, 2011, 536, A10. | 5.1 | 124 | | 76 | <i>Planck</i> early results. XVII. Origin of the submillimetre excess dust emission in the Magellanic Clouds. Astronomy and Astrophysics, 2011, 536, A17. | 5.1 | 123 | | 77 | <i>Planck</i> intermediate results. Astronomy and Astrophysics, 2020, 643, A42. | 5.1 | 123 | | 78 | <i>Planck</i> early results. XXI. Properties of the interstellar medium in the Galactic plane. Astronomy and Astrophysics, 2011, 536, A21. | 5.1 | 119 | | 79 | <i>Planck</i> intermediate results. XX. Comparison of polarized thermal emission from Galactic dust with simulations of MHD turbulence. Astronomy and Astrophysics, 2015, 576, A105. | 5.1 | 119 | | 80 | <i>Planck</i> 2018 results. Astronomy and Astrophysics, 2020, 641, A11. | 5.1 | 118 | | 81 | <i>Planck</i> 2015 results. Astronomy and Astrophysics, 2016, 594, A12. | 5.1 | 117 | | 82 |
i>Planck
$$ /i> 2013 results. XVIII. The gravitational lensing-infrared background correlation. Astronomy and Astrophysics, 2014, 571, A18. | 5.1 | 116 | | 83 | <i>Planck</i> 2015 results. Astronomy and Astrophysics, 2016, 594, A21. | 5.1 | 114 | | 84 | Filtering techniques for the detection of Sunyaev-Zel'dovich clusters in multifrequency maps. Monthly Notices of the Royal Astronomical Society, 2002, 336, 1057-1068. | 4.4 | 112 | | 85 | <i>Planck</i> intermediate results. Astronomy and Astrophysics, 2016, 586, A132. | 5.1 | 109 | | 86 | <i>Planck</i> iiintermediate results. Astronomy and Astrophysics, 2016, 586, A135. | 5.1 | 109 | | 87 | <i>Planck</i> early results. III. First assessment of the Low Frequency Instrument in-flight performance. Astronomy and Astrophysics, 2011, 536, A3. | 5.1 | 108 | | 88 | <i>Planck</i> 2013 results. VIII. HFI photometric calibration and mapmaking. Astronomy and Astrophysics, 2014, 571, A8. | 5.1 | 107 | | 89 | <i>Planck</i> iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii | 5.1 | 106 | | 90 | <i>Planck</i> 2018 results. Astronomy and Astrophysics, 2020, 641, A12. | 5.1 | 105 | | # | Article | IF | Citations | |-----|---|-----|-----------| | 91 | <i>Planck</i> early results. XIII. Statistical properties of extragalactic radio sources in the <i>Planck</i> Early Release Compact Source Catalogue. Astronomy and Astrophysics, 2011, 536, A13. | 5.1 | 103 | | 92 | <i>Planck</i> 2013 results. VI. High Frequency Instrument data processing. Astronomy and Astrophysics, 2014, 571, A6. | 5.1 | 103 | | 93 | <i>Planck</i> intermediate results. Astronomy and Astrophysics, 2013, 554, A140. | 5.1 | 101 | | 94 | <i>Planck</i> early results. XII. Cluster Sunyaev-Zeldovich optical scaling relations. Astronomy and Astrophysics, 2011, 536, A12. | 5.1 | 100 | | 95 | <i>Planck</i> 2013 results. VII. HFI time response and beams. Astronomy and Astrophysics, 2014, 571, A7. | 5.1 | 99 | | 96 | <i>Planck</i> iiiitermediate results. Astronomy and Astrophysics, 2013, 550, A134. | 5.1 | 94 | | 97 | <i>Planck</i> 2015 results. Astronomy and Astrophysics, 2016, 594, A7. | 5.1 | 94 | | 98 | <i>Planck</i> early results. XV. Spectral energy distributions and radio continuum spectra of northern extragalactic radio sources. Astronomy and Astrophysics, 2011, 536, A15. | 5.1 | 93 | | 99 | <i>Planck</i> early results. II. The thermal performance of <i>Planck</i> . Astronomy and Astrophysics, 2011, 536, A2. | 5.1 | 91 | | 100 | <i>Planck</i> 2013 results. XXVI. Background geometry and topology of the Universe. Astronomy and Astrophysics, 2014, 571, A26. | 5.1 | 91 | | 101 | <i>Planck</i> 2013 results. XIV. Zodiacal emission. Astronomy and Astrophysics, 2014, 571, A14. | 5.1 | 90 | | 102 | <i>Planck</i> iiiitermediate results. Astronomy and Astrophysics, 2016, 586, A140. | 5.1 | 89 | | 103 | <i>Planck</i> 2015 results. Astronomy and Astrophysics, 2016, 594, A23. | 5.1 | 89 | | 104 | <i>Planck</i> iiintermediate results. Astronomy and Astrophysics, 2016, 596, A103. | 5.1 | 89 | | 105 | <i>Planck</i> early results. XXII. The submillimetre properties of a sample of Galactic cold clumps. Astronomy and Astrophysics, 2011, 536, A22. | 5.1 | 88 | | 106 | Isotropic wavelets: a powerful tool to extract point sources from cosmic microwave background maps. Monthly Notices of the Royal Astronomical Society, 2000, 315, 757-761. | 4.4 | 82 | | 107 | <i>Planck</i> pre-launch status: The <i>Planck</i> LFI programme. Astronomy and Astrophysics, 2010, 520, A3. | 5.1 | 81 | | 108 | <i>Planck</i> iiintermediate results. Astronomy and Astrophysics, 2014, 566, A54. | 5.1 | 80 | | # | Article | IF | CITATIONS | |-----|--|--------------------------------------|-----------------------| | 109 | <i>Planck</i> intermediate results. Astronomy and Astrophysics, 2014, 561, A97. | 5.1 | 80 | | 110 | <i>Planck</i> iiintermediate results. Astronomy and Astrophysics, 2015, 580, A22. | 5.1 | 80 | | 111 | <i>Planck</i> 2013 results. XXXII. The updated <i>Planck</i> catalogue of Sunyaev-Zeldovich sources. Astronomy and Astrophysics, 2015, 581, A14. | 5.1 | 80 | | 112 | <i>Planck</i> 2015 results. Astronomy and Astrophysics, 2016, 594, A2. | 5.1 | 79 | | 113 | LiteBIRD satellite: JAXA's new strategic L-class mission for all-sky surveys of cosmic microwave background polarization. , 2020, , . | | 79 | | 114 | <i>Planck</i> constraints on the tensor-to-scalar ratio. Astronomy and Astrophysics, 2021, 647, A128. | 5.1 | 78 | | 115 | <i>Planck</i> early results. V. The Low Frequency Instrument data processing. Astronomy and Astrophysics, 2011, 536, A5. | 5.1 | 77 | | 116 | <i>Planck</i> early results. XVI. The <i>Planck</i> view of nearby galaxies. Astronomy and Astrophysics, 2011, 536, A16. | 5.1 | 74 | | 117 | <i>Planck</i> 2013 results. II. Low Frequency Instrument data processing. Astronomy and Astrophysics, 2014, 571, A2. | 5.1 | 74 | | 118 | <i>Planck</i> early results. XXVI. Detection with <i>Planck</i> and confirmation
by <i>XMM-Newton</i> of PLCKÂG266.6â€"27.3, an exceptionally X-ray luminous and massive galaxy cluster
at <i>z</i> Â-Â 1. Astronomy and Astrophysics, 2011, 536, A26. | 5.1 | 72 | | 119 | <i>Planck</i> intermediate results. Astronomy and Astrophysics, 2015, 582, A30. | 5.1 | 72 | | 120 | <i>Planck</i> ii>intermediate results. Astronomy and Astrophysics, 2016, 586, A136. | 5.1 | 72 | | 121 | <i>Planck</i> 2018 results. Astronomy and Astrophysics, 2020, 641, A2. | 5.1 | 72 | | 122 | Improved limits on the tensor-to-scalar ratio using BICEP and <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>P</mml:mi><mml:mi><mml:mi>a</mml:mi><mml:mi>n</mml:mi><mml:mi>data, Physical Review D, 2022, 105, .</mml:mi></mml:mi></mml:math> | i>c <td>mi><mml:mi></mml:mi></td> | mi> <mml:mi></mml:mi> | | 123 | <i>Planck</i> 2013 results. XXXI. Consistency of the <i>Planck</i> data. Astronomy and Astrophysics, 2014, 571, A31. | 5.1 | 69 | | 124 | <i>Planck</i> 2015 results. Astronomy and Astrophysics, 2016, 594, A18. | 5.1 | 69 | | 125 | <i>Planck</i> 2013 results. X. HFI energetic particle effects: characterization, removal, and simulation. Astronomy and Astrophysics, 2014, 571, A10. | 5.1 | 68 | | 126 | <i>Planck</i> intermediate results. XXI. Comparison of polarized thermal emission from Galactic dust at 353 GHz with interstellar polarization in the visible. Astronomy and Astrophysics, 2015, 576, A106. | 5.1 | 68 | | # | Article | IF | Citations | |-----|--|-----|-----------| | 127 | <i>Planck</i> 2013 results. V. LFI calibration. Astronomy and Astrophysics, 2014, 571, A5. | 5.1 | 67 | | 128 | <i>Planck</i> intermediate results. XV. A study of anomalous microwave emission in Galactic clouds. Astronomy and Astrophysics, 2014, 565, A103. | 5.1 | 67 | | 129 | Multiresolution internal template cleaning: an application to the Wilkinson Microwave Anisotropy
Probe 7-yr polarization data. Monthly Notices of the Royal Astronomical Society, 2012, 420, 2162-2169. | 4.4 | 65 | | 130 | Testing the Gaussianity of the COBE DMR data with spherical wavelets. Monthly Notices of the Royal Astronomical Society, 2000, 318, 475-481. | 4.4 | 64 | | 131 | <i>Planck</i> intermediate results. Astronomy and Astrophysics, 2016, 596, A110. | 5.1 | 64 | | 132 | Updated Design of the CMB Polarization Experiment Satellite LiteBIRD. Journal of Low Temperature Physics, 2020, 199, 1107-1117. | 1.4 | 64 | | 133 | Comparison of filters for the detection of point sources in Planck simulations. Monthly Notices of the Royal Astronomical Society, 2006, 370, 2047-2063. | 4.4 | 63 | | 134 | <i>Planck</i> iiiitermediate results. Astronomy and Astrophysics, 2013, 550, A129. | 5.1 | 63 | | 135 | <i>Planck</i> 2015 results. Astronomy and Astrophysics, 2016, 594, A6. | 5.1 | 62 | | 136 | Planckearly results. XIV. ERCSC validation and extreme radio sources. Astronomy and Astrophysics, 2011, 536, A14. | 5.1 | 61 | | 137 | <i>Planck</i> intermediate results. Astronomy and Astrophysics, 2015, 582, A31. | 5.1 | 59 | | 138 | QUIJOTE scientific results $\hat{a} \in \mathbb{C}$ I. Measurements of the intensity and polarisation of the anomalous microwave emission in the Perseus molecular complex. Monthly Notices of the Royal Astronomical Society, 2015, 452, 4169-4182. | 4.4 | 58 | | 139 | <i>Planck</i> 2015 results. Astronomy and Astrophysics, 2016, 594, A4. | 5.1 | 56 | | 140 | <i>Planck</i> intermediate results. XIV. Dust emission at millimetre wavelengths in the Galactic plane. Astronomy and Astrophysics, 2014, 564, A45. | 5.1 | 55 | | 141 | <i>Planck</i> intermediate results. Astronomy and Astrophysics, 2016, 586, A141. | 5.1 | 55 | | 142 | <i>Planck</i> 2015 results. Astronomy and Astrophysics, 2016, 594, A5. | 5.1 | 55 | | 143 | <i>Planck</i> 2013 results. III. LFI systematic uncertainties. Astronomy and Astrophysics, 2014, 571, A3. | 5.1 | 54 | | 144 | Cosmic Birefringence from the <i>Planck </i> Data Release 4. Physical Review Letters, 2022, 128, 091302. | 7.8 | 54 | | # | Article | IF | CITATIONS | |-----|---|-----|-----------| | 145 | <i>Planck</i> 2015 results. Astronomy and Astrophysics, 2016, 594, A3. | 5.1 | 53 | | 146 | Combining maximum-entropy and the Mexican hat wavelet to reconstruct the microwave sky. Monthly Notices of the Royal Astronomical Society, 2001, 328, 1-16. | 4.4 | 52 | | 147 | Cosmological Applications of a Wavelet Analysis on the Sphere. Journal of Fourier Analysis and Applications, 2007, 13, 495-510. | 1.0 | 52 | | 148 | <i>Planck</i> iiitermediate results. Astronomy and Astrophysics, 2013, 550, A133. | 5.1 | 52 | | 149 | Scaleâ€adaptive Filters for the Detection/Separation of Compact Sources. Astrophysical Journal, 2002, 580, 610-625. | 4.5 | 50 | | 150 | A low cosmic microwave background variance in the Wilkinson Microwave Anisotropy Probe data. Monthly Notices of the Royal Astronomical Society, 2008, 387, 209-219. | 4.4 | 50 | | 151 | <i>Planck</i> iiitermediate results. Astronomy and Astrophysics, 2012, 543, A102. | 5.1 | 50 | | 152 | <i>Planck</i> iiintermediate results. Astronomy and Astrophysics, 2016, 586, A134. | 5.1 | 48 | | 153 | <i>Planck</i> intermediate results. Astronomy and Astrophysics, 2016, 596, A105. | 5.1 | 47 | | 154 | <i>Planck</i> ii>intermediate results. XXVI. Optical identification and redshifts of <i>Planck</i> clusters with the RTT150 telescope. Astronomy and Astrophysics, 2015, 582, A29. | 5.1 | 46 | | 155 | <i>Planck </i> intermediate results. Astronomy and Astrophysics, 2017, 599, A51. | 5.1 | 46 | | 156 | The effect of point sources on satellite observations of the cosmic microwave background. Monthly Notices of the Royal Astronomical Society, 1999, 306, 232-246. | 4.4 | 44 | | 157 | The discriminating power of wavelets to detect non-Gaussianity in the cosmic microwave background. Monthly Notices of the Royal Astronomical Society, 2001, 327, 813-828. | 4.4 | 44 | | 158 | The QUIJOTE-CMB experiment: studying the polarisation of the galactic and cosmological microwave emissions. Proceedings of SPIE, 2012, , . | 0.8 | 44 | | 159 | <i>Planck</i> iiintermediate results. Astronomy and Astrophysics, 2016, 596, A100. | 5.1 | 44 | | 160 | <i>Planck</i> >2013 results. IV. Low Frequency Instrument beams and window functions. Astronomy and Astrophysics, 2014, 571, A4. | 5.1 | 41 | | 161 | All-sky component separation in the presence of anisotropic noise and dust temperature variations. Monthly Notices of the Royal Astronomical Society, 0, 357, 145-155. | 4.4 | 38 | | 162 | An ultradeep submillimetre map: beneath the SCUBA confusion limit with lensing and robust source extraction. Monthly Notices of the Royal Astronomical Society, 2006, 368, 487-496. | 4.4 | 38 | | # | Article | IF | CITATIONS | |-----|---|-----|-----------| | 163 | <i>Planck</i> iiiitermediate results. Astronomy and Astrophysics, 2015, 580, A13. | 5.1 | 37 | | 164 | Wavelets applied to cosmic microwave background maps: a multiresolution analysis for denoising. Monthly Notices of the Royal Astronomical Society, 1999, 309, 672-680. | 4.4 | 36 | | 165 | <i>Planck</i> intermediate results. Astronomy and Astrophysics, 2013, 550, A130. | 5.1 | 36 | | 166 | <i>Planck</i> iiintermediate results. Astronomy and Astrophysics, 2016, 596, A104. | 5.1 | 36 | | 167 | Anomalous variance in the WMAP data and Galactic foreground residuals. Monthly Notices of the Royal Astronomical Society, 2011, 412, 2383-2390. | 4.4 | 35 | | 168 | IMPROVED CONSTRAINTS ON PRIMORDIAL NON-GAUSSIANITY FOR THEWILKINSON MICROWAVE ANISOTROPY PROBE5-YEAR DATA. Astrophysical Journal, 2009, 706, 399-403. | 4.5 | 34 | | 169 | <i>Planck</i> intermediate results. Astronomy and Astrophysics, 2015, 582, A28. | 5.1 | 33 | | 170 | Searching for a dipole modulation in the large-scale structure of the Universe. Monthly Notices of the Royal Astronomical Society, 2014, 441, 2392-2397. | 4.4 | 32 | | 171 | <i>Planck</i> intermediate results. Astronomy and Astrophysics, 2016, 586, A139. | 5.1 | 32 | | 172 | Wilkinson Microwave Anisotropy Probe5-yr constraints onfolwith wavelets. Monthly Notices of the Royal Astronomical Society, 2009, 393, 615-622. | 4.4 | 31 | | 173 | The Jubilee ISW project – I. Simulated ISW and weak lensing maps and initial power spectra results.
Monthly Notices of the Royal Astronomical Society, 2014, 438, 412-425. | 4.4 | 28 | | 174 | Comparing filters for the detection of point sources. Monthly Notices of the Royal Astronomical Society, 2003, 342, 119-133. | 4.4 | 27 | | 175 | Non-Gaussianity analysis on local morphological measures of WMAP data. Monthly Notices of the Royal Astronomical Society, 2008, 385, 939-947. | 4.4 | 27 | | 176 | <i>Planck</i> iiintermediate results. Astronomy and Astrophysics, 2016, 586, A137. | 5.1 | 27 | | 177 | Geometrical estimators as a test of Gaussianity in the cosmic microwave background. Monthly Notices of the Royal Astronomical Society, 2001, 322, 411-418. | 4.4 | 26 | | 178 | The very bright SCUBA galaxy count: looking for SCUBA galaxies with the Mexican hat wavelet. Monthly Notices of the Royal Astronomical Society, 2004, 352, 961-974. | 4.4 | 26 | | 179 | <i>Planck</i> intermediate results. Astronomy and Astrophysics, 2016, 596, A102. | 5.1 | 25 | | 180 | <i>Planck</i> iiitermediate results. Astronomy and Astrophysics, 2016, 596, A101. | 5.1 | 24 | | # | Article | IF | Citations | |-----|---|------|-----------| | 181 | <i>Planck</i> iiitermediate results. Astronomy and Astrophysics, 2017, 607, A122. | 5.1 | 24 | | 182 | Planckintermediate results. Astronomy and Astrophysics, 2016, 596, A106. | 5.1 | 23 | | 183 | Peaks in the Cosmic Microwave Background: Flat versus Open Models. Astrophysical Journal, 1997, 478, 1-6. | 4.5 | 22 | | 184 | <i>Planck</i> intermediate results. Astronomy and Astrophysics, 2018, 617, A48. | 5.1 | 22 | | 185 | Foreground separation using a flexible maximum-entropy algorithm: an application to COBE data. Monthly Notices of the Royal Astronomical Society, 2004, 351, 515-540. | 4.4 | 21 | | 186 | An optimal estimator for the CMB-LSS angular power spectrum and its application to WMAP and NVSS data. Monthly Notices of the Royal Astronomical Society, 2012, 427, 3044-3054. | 4.4 | 21 | | 187 | Constraints on the non-linear coupling parameter <i>f</i> _{nl} with Archeops data. Astronomy and Astrophysics, 2008, 486, 383-391. | 5.1 | 20 | | 188 | <i>Planck</i> iiitermediate results. Astronomy and Astrophysics, 2013, 550, A128. | 5.1 | 20 | | 189 | <i>Planck</i> intermediate results. Astronomy and Astrophysics, 2020, 644, A100. | 5.1 | 20 | | 190 | Filter design for the detection of compact sources based on the Neyman-Pearson detector. Monthly Notices of the Royal Astronomical Society, 2005, 359, 993-1006. | 4.4 | 19 | | 191 | Size magnification as a complement to cosmic shear. Monthly Notices of the Royal Astronomical Society, 2013, 430, 2844-2853. | 4.4 | 19 | | 192 | <i>Planck</i> Âintermediate results. XII: Diffuse Galactic components in the Gould Belt system. Astronomy and Astrophysics, 2013, 557, A53. | 5.1 | 19 | | 193 | <i>Planck</i> intermediate results. Astronomy and Astrophysics, 2018, 619, A94. | 5.1 | 18 | | 194 | The estimation of the Sunyaev-Zel'dovich effects with unbiased multifilters. Monthly Notices of the Royal Astronomical Society, 2005, 356, 944-954. | 4.4 | 17 | | 195 | Detection of spectral variations of Anomalous Microwave Emission with QUIJOTE and C-BASS. Monthly Notices of the Royal Astronomical Society, 2021, 503, 2927-2943. | 4.4 | 17 | | 196 | Correlation of excursion sets for non-Gaussian cosmic microwave background temperature distributions. Monthly Notices of the Royal Astronomical Society, 1998, 296, 693-700. | 4.4 | 16 | | 197 | A Linear Filter to Reconstruct the ISW Effect From CMB and LSS Observations. IEEE Journal on Selected Topics in Signal Processing, 2008, 2, 747-754. | 10.8 | 16 | | 198 | Constraints on general primordial non-Gaussianity using wavelets for the Wilkinson Microwave Anisotropy Probe 7-year data. Monthly Notices of the Royal Astronomical Society, 2011, 417, 488-494. | 4.4 | 15 | | # | Article | IF | CITATIONS | |-----|--|------|-----------| | 199 | The status of the QUIJOTE multi-frequency instrument. Proceedings of SPIE, 2012, , . | 0.8 | 15 | | 200 | <i>Planck</i> iiitermediate results. Astronomy and Astrophysics, 2013, 550, A132. | 5.1 | 15 | | 201 | Scalar statistics on the sphere: application to the cosmic microwave background. Monthly Notices of the Royal Astronomical Society, 2005, 360, 9-26. | 4.4 | 14 | | 202 | Testing Gaussianity on Archeops data. Astronomy and Astrophysics, 2007, 474, 23-33. | 5.1 | 14 | | 203 | Cosmic microwave background polarization as a probe of the anomalous nature of the cold spot. Monthly Notices of the Royal Astronomical Society, 2011, 410, 33-38. | 4.4 | 14 | | 204 | Non-Gaussianity in the Very Small Array cosmic microwave background maps with smooth goodness-of-fit tests. Monthly Notices of the Royal Astronomical Society, 2006, 369, 909-920. | 4.4 | 13 | | 205 | <i>Planck</i> intermediate results. XVIII. The millimetre and sub-millimetre emission from planetary nebulae. Astronomy and Astrophysics, 2015, 573, A6. | 5.1 | 13 | | 206 | Analysis of CMB maps with 2D wavelets. Astronomy and Astrophysics, 1999, 140, 99-105. | 2.1 | 13 | | 207 | Comparison of delensing methodologies and assessment of the delensing capabilities of future experiments. Journal of Cosmology and Astroparticle Physics, 2020, 2020, 058-058. | 5.4 | 13 | | 208 | Integrated Sachs-Wolfe effect map recovery from NVSS and WMAP 7-yr data. Monthly Notices of the Royal Astronomical Society, 2013, 430, 259-263. | 4.4 | 11 | | 209 | On the optimality of the spherical Mexican hat wavelet estimator for the primordial non-Gaussianity. Monthly Notices of the Royal Astronomical Society, 2010, , no-no. | 4.4 | 10 | | 210 | Wilkinson Microwave Anisotropy Probe 7-yr constraints on fNL with a fast wavelet estimator. Monthly Notices of the Royal Astronomical Society, 2011, 411, 2019-2025. | 4.4 | 10 | | 211 | Exploring two-spin internal linear combinations for the recovery of the CMB polarization. Monthly Notices of the Royal Astronomical Society, 2016, 459, 441-454. | 4.4 | 10 | | 212 | Statistical analysis of undetected point sources in cosmic microwave background maps. Monthly Notices of the Royal Astronomical Society, 2006, 373, 311-320. | 4.4 | 9 | | 213 | The effect of the linear term on the wavelet estimator of primordial non-Gaussianity. Monthly Notices of the Royal Astronomical Society, 2012, 426, 1361-1368. | 4.4 | 8 | | 214 | On the detection of CMB B-modes from ground at low frequency. Journal of Cosmology and Astroparticle Physics, 2020, 2020, 006-006. | 5.4 | 8 | | 215 | Effect of component separation on the temperature distribution of the cosmic microwave background. Monthly Notices of the Royal Astronomical Society, 2006, 368, 226-246. | 4.4 | 7 | | 216 | Goodness-of-fit tests of Gaussianity: constraints on the cumulants of the MAXIMA data. New Astronomy Reviews, 2003, 47, 821-826. | 12.8 | 6 | | # | Article | IF | Citations | |-----|---|------|-----------| | 217 | A Bayesian approach to filter design: detection of compact sources. , 2004, 5299, 145. | | 6 | | 218 | Gaussianity of the cosmic microwave background: smooth goodness-of-fit tests applied to interferometric data. Monthly Notices of the Royal Astronomical Society, 2005, 356, 1559-1570. | 4.4 | 6 | | 219 | Endocytosis as a Biological Response in Receptor Pharmacology: Evaluation by Fluorescence Microscopy. PLoS ONE, 2015, 10, e0122604. | 2.5 | 6 | | 220 | The <scp>picasso</scp> map-making code: application to a simulation of the QUIJOTE northern sky survey. Monthly Notices of the Royal Astronomical Society, 2021, 507, 3707-3725. | 4.4 | 6 | | 221 | The cosmic microwave background. Physica Scripta, 1991, T36, 16-21. | 2.5 | 5 | | 222 | Scalar quantities as detectors of non-Gaussianity in cosmic microwave background maps. Monthly Notices of the Royal Astronomical Society, 2006, 371, 312-322. | 4.4 | 5 | | 223 | On the recovery of ISW fluctuations using large-scale structure tracers and CMB temperature and polarization anisotropies. Monthly Notices of the Royal Astronomical Society, 2016, 459, 657-672. | 4.4 | 5 | | 224 | <i>Planck</i> intermediate results. Astronomy and Astrophysics, 2018, 610, C1. | 5.1 | 5 | | 225 | Tests of Gaussianity. New Astronomy Reviews, 2003, 47, 907-913. | 12.8 | 4 | | 226 | Constraints onâ€,fNL fromâ€,Wilkinson Microwave Anisotropy Probeâ€,7-year data using a neural network classifier. Monthly Notices of the Royal Astronomical Society, 2011, , no-no. | 4.4 | 4 | | 227 | Exploring local fNL estimators based on the binned bispectrum. Monthly Notices of the Royal Astronomical Society, 2013, 434, 796-805. | 4.4 | 4 | | 228 | <i>Planck</i> iiintermediate results <ii>(Corrigendum)iiintermediate results<ii>(Corrigendum)iintermediate results<ii>(Corrigendum)iintermediate results<ii>(Corrigendum)iintermediate results<ii>(Corrigendum)iintermediate results<ii>(Corrigendum)iintermediate results<ii>(Corrigendum)iintermediate results<ii>(Corrigendum)iintermediate results<ii>(Corrigendum)</ii>iintermediate results<ii>(Corrigendum)</ii>iintermediate results<ii>(Corrigendum)</ii>iintermediate results<ii>(Corrigendum)</ii>iintermediate results<ii>(Corrigendum)</ii>iintermediate results<ii>(Corrigendum)</ii>iintermediate results<ii>(Corrigendum)</ii>iintermediate results<ii>(Corrigendum)</ii>iintermediate results<ii>(Corrigendum)</ii>iintermediate results</ii>iintermediate results</ii>iintermediate results</ii>iintermediate resultsiintermediate results<td>5.1</td><td>4</td></ii></ii></ii></ii></ii> | 5.1 | 4 | | 229 | <i>Planck</i> intermediate results. Astronomy and Astrophysics, 2020, 644, A99. | 5.1 | 4 | | 230 | Regularization and Inverse Problems. , 0, , 15-32. | | 3 | | 231 | Detection of compact sources with multifilters. , 2002, 4847, 50. | | 3 | | 232 | Detection of Point Sources on Two-Dimensional Images Based on Peaks. Eurasip Journal on Advances in Signal Processing, 2005, 2005, 1. | 1.7 | 3 | | 233 | On the regularity of the covariance matrix of a discretized scalar field on the sphere. Journal of Cosmology and Astroparticle Physics, 2017, 2017, 022-022. | 5.4 | 3 | | 234 | Overview of the medium and high frequency telescopes of the LiteBIRD space mission. , 2020, , . | | 3 | | # | ARTICLE | IF | CITATIONS | |-----|---|-----|-----------| | 235 | Techniques for Compact Source Extraction in CMB Maps. Lecture Notes in Physics, 2008, , 207-235. | 0.7 | 2 | | 236 | Reconstructing the Microwave Sky Using a Combined Maximum-Entropy and Mexican Hat Wavelet Analysis., 0,, 465-472. | | 1 | | 237 | Gaussian Analysis of the CMB with the Smooth Tests of Goodness of Fit. , 2007, , 177-184. | | 1 | | 238 | An Overview of the Current Status of CMB Observations. Thirty Years of Astronomical Discovery With UKIRT, 2010, , 93-102. | 0.3 | 0 | | 239 | THE QUIJOTE CMB EXPERIMENT: PROGRESS REPORT. , 2012, , . | | 0 |