
Yuichi Tominaga

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5331850/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Computational prediction of microstructures in αâ€alumina/ <scp>PMMA</scp> composites and its experimental verification. Polymer Composites, 2022, 43, 339-346.	4.6	4
2	A facile method to prepare layered solid fillers-based polymer composites with isotropic thermal conductivity. Composites Part A: Applied Science and Manufacturing, 2022, 154, 106776.	7.6	11
3	Deformation capability of poly(tetrafluoroethylene) materials: Estimation with X-ray diffraction measurements. Polymer Testing, 2022, 113, 107690.	4.8	6
4	Simultaneous attainment of particle dispersion and surface modification of Al2O3 nanoparticles via wet–jet milling. Journal of Composite Materials, 2021, 55, 521-530.	2.4	3
5	Improving thermal and mechanical properties of biomass-based polymers using structurally ordered polyesters from ricinoleic acid and 4-hydroxycinnamic acids. RSC Advances, 2020, 10, 36562-36570.	3.6	12
6	Nanocelluloses and Related Materials Applicable in Thermal Management of Electronic Devices: A Review. Nanomaterials, 2020, 10, 448.	4.1	27
7	Effect of resin chemical structure on the dispersibility of hexagonal boron nitride. Composite Interfaces, 2020, 27, 967-975.	2.3	2
8	Effect of wet-rotating disc milling process for preparation of stable dispersed Al2O3 slurries and dense green bodies. Materials Today: Proceedings, 2019, 16, 163-172.	1.8	0
9	Highâ€Throughput Dimensional Evaluation of Hexagonal Boron Nitride 2D Nanomaterials. Crystal Research and Technology, 2019, 54, 1800249.	1.3	6
10	Effect of the addition of Al2O3 and h-BN fillers on the thermal conductivity of a cellulose nanofiber/nanodiamond composite film. Cellulose, 2019, 26, 5281-5289.	4.9	23
11	Cellulose nanofiber/nanodiamond composite films: Thermal conductivity enhancement achieved by a tuned nanostructure. Advanced Powder Technology, 2018, 29, 972-976.	4.1	24
12	Curing Effects on Interfacial Adhesion between Recycled Carbon Fiber and Epoxy Resin Heated by Microwave Irradiation. Materials, 2018, 11, 493.	2.9	10
13	Improvement of thermal conductivity of composite film composed of cellulose nanofiber and nanodiamond by optimizing process parameters. Cellulose, 2018, 25, 3973-3983.	4.9	16
14	Investigation on the Stability of Plasma-modified Carbon Fiber Surface and Its Improved Interfacial Adhesion in a Polypropylene Matrix. Seikei-Kakou, 2018, 30, 475-478.	0.0	0
15	Exfoliation of non-swelling muscovite on dodecylammonium chloride intercalation between layers using wet-jet milling. Advanced Powder Technology, 2017, 28, 1911-1919.	4.1	8
16	Influence of Thermal Effusivity of Ceramic Dense Mold on Microwave-heating of Carbon Fiber Reinforced Plastic. Funtai Oyobi Fummatsu Yakin/Journal of the Japan Society of Powder and Powder Metallurgy, 2017, 64, 532-537.	0.2	0
17	Quantitative evaluation of interfacial adhesion between fiber and resin in carbon fiber/epoxy composite cured by semiconductor microwave device. Composite Interfaces, 2016, 23, 395-404.	2.3	9
18	Effect of microwave irradiation on carbon fiber/epoxy resin composite fabricated by vacuum assisted resin transfer molding. Advanced Composite Materials, 2016, 25, 71-79.	1.9	12

Υυιςμι Τομινασα

#	Article	IF	CITATIONS
19	Fiber orientation and flexural properties of short carbon fiber/epoxy composites. Journal of the Ceramic Society of Japan, 2016, 124, 125-128.	1.1	6
20	Improvement of thermal and mechanical properties of carbon fiber reinforced plastic composite with exfoliated hexagonal boron nitride particles. Journal of the Ceramic Society of Japan, 2016, 124, 808-812.	1.1	4
21	Exfoliation of hexagonal boron nitride using wet-rotating disc milling. Journal of the Ceramic Society of Japan, 2015, 123, 512-515.	1.1	8
22	Improvement of thermal propagation in carbon fiber/thermoplastic composite with hexagonal boron nitride powder. Journal of the Ceramic Society of Japan, 2015, 123, 1055-1058.	1.1	1
23	Wet-jet milling-assisted exfoliation of h-BN particles with lamination structure. Ceramics International, 2015, 41, 10512-10519.	4.8	20
24	Molecularly Imprinted Polymers for Selective Adsorption of Lysozyme and Cytochrome <i>c</i> Using a PEG-Based Hydrogel: Selective Recognition for Different Conformations Due to pH Conditions. Macromolecules, 2015, 48, 4081-4087.	4.8	49
25	Tunable Molecular Sieving in Gel Electrophoresis Using a Poly(ethylene glycol)-Based Hydrogel. Chromatography, 2014, 35, 81-86.	1.7	5
26	Effective determination of a pharmaceutical, sulpiride, in river water by online SPE-LC–MS using a molecularly imprinted polymer as a preconcentration medium. Journal of Pharmaceutical and Biomedical Analysis, 2014, 89, 111-117.	2.8	33
27	Development of a C60-fullerene bonded open-tubular capillary using a photo/thermal active agent for liquid chromatographic separations by π–π interactions. Journal of Chromatography A, 2014, 1323, 174-178.	3.7	27
28	Antibacterial activities effectuated by co-continuous epoxy-based polymer materials. Colloids and Surfaces B: Biointerfaces, 2013, 107, 53-58.	5.0	8
29	Synthesis of poly(ethylene glycol)â€based hydrogels and their swelling/shrinking response to molecular recognition. Journal of Polymer Science Part A, 2013, 51, 3153-3158.	2.3	11
30	Rapid separations by LC using ionâ€exchange media based on spongy monoliths. Journal of Separation Science, 2013, 36, 2813-2818.	2.5	2
31	Hybridization of a Macroporous Sponge and Spherical Microporous Adsorbents for High Throughput Separation of Ionic Solutes. Analytical Sciences, 2013, 29, 417-421.	1.6	0
32	Synthesis of novel polymer type sulfoxide solid phase combined with the porogen imprinting for enabling selective separation of polychlorinated biphenyls. Chemosphere, 2012, 89, 378-382.	8.2	4
33	Development of molecularly imprinted porous polymers for selective adsorption of gaseous compounds. Microporous and Mesoporous Materials, 2012, 156, 161-165.	4.4	14
34	Surface modification of TiO2 for selective photodegradation of toxic compounds. Catalysis Communications, 2011, 12, 785-789.	3.3	33
35	Spontaneous water cleanup using an epoxy-based polymer monolith. Analytical Methods, 2010, 2, 570.	2.7	8
36	Effective Recognition on the Surface of a Polymer Prepared by Molecular Imprinting Using Ionic Complex. Macromolecules, 2009, 42, 2911-2915.	4.8	34

#	Article	IF	CITATIONS
37	Selective Adsorption of Water-soluble Ionic Compounds by an Interval Immobilization Technique Based on Molecular Imprinting. Analytical Sciences, 2008, 24, 1633-1636.	1.6	11