Chong Xiao

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5331692/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Coexistence of large positive and negative magnetoresistance in Cr2Si2Te6 ferromagnetic semiconductor. Science China Materials, 2022, 65, 780-787.	6.3	9
2	Dual Nanoislands on Ni/C Hybrid Nanosheet Activate Superior Hydrazine Oxidationâ€Assisted Highâ€Efficiency H ₂ Production. Angewandte Chemie, 2022, 134, .	2.0	6
3	Dual Nanoislands on Ni/C Hybrid Nanosheet Activate Superior Hydrazine Oxidationâ€Assisted Highâ€Efficiency H ₂ Production. Angewandte Chemie - International Edition, 2022, 61, .	13.8	74
4	A record thermoelectric efficiency in tellurium-free modules for low-grade waste heat recovery. Nature Communications, 2022, 13, 237.	12.8	99
5	Layered thermoelectric materials: Structure, bonding, and performance mechanisms. Applied Physics Reviews, 2022, 9, .	11.3	25
6	Bulk Superlattice Analogues for Energy Conversion. Journal of the American Chemical Society, 2022, 144, 3298-3313.	13.7	11
7	Designing a Redox Heterojunction for Photocatalytic "Overall Nitrogen Fixation―under Mild Conditions. Advanced Materials, 2022, 34, e2200563.	21.0	71
8	Phonon Symphony of Stacked Multilayers and Weak Bonds Lowers Lattice Thermal Conductivity. Advanced Materials, 2022, 34, .	21.0	6
9	Efficient interlayer charge release for high-performance layered thermoelectrics. National Science Review, 2021, 8, nwaa085.	9.5	15
10	Artificial Heterointerfaces Achieve Delicate Reaction Kinetics towards Hydrogen Evolution and Hydrazine Oxidation Catalysis. Angewandte Chemie - International Edition, 2021, 60, 5984-5993.	13.8	234
11	Artificial Heterointerfaces Achieve Delicate Reaction Kinetics towards Hydrogen Evolution and Hydrazine Oxidation Catalysis. Angewandte Chemie, 2021, 133, 6049-6058.	2.0	42
12	Vacancy cluster-induced local disordered structure for the enhancement of thermoelectric property in Cu ₂ ZnSnSe ₄ . Journal of Materials Chemistry A, 2021, 9, 1006-1013.	10.3	15
13	Intrinsically Low Lattice Thermal Conductivity in Natural Superlattice (Bi ₂) _{<i>m</i>} (Bi ₂ Te ₃) _{<i>m</i>} Thermoelectric Materials. Chemistry of Materials, 2021, 33, 1140-1148.	6.7	25
14	Improved thermoelectric performance in n-type BiTe facilitated by defect engineering. Rare Metals, 2021, 40, 2829-2837.	7.1	24
15	One-Dimensional Frenkel Chain Defects in CsBi4Te6. Journal of Physical Chemistry Letters, 2021, 12, 5319-5323.	4.6	1
16	Constructing charge transfer channel between dopants and oxygen vacancies for enhanced visible-light-driven water oxidation. Nano Research, 2021, 14, 3365-3371.	10.4	24
17	Shedding Light on the Role of Chemical Bond in Catalysis of Nitrogen Fixation. Advanced Materials, 2021, 33, e2007891.	21.0	32
18	When thermoelectric materials come across with magnetism. Rare Metals, 2021, 40, 752-766.	7.1	21

#	Article	IF	CITATIONS
19	Enhanced syngas production from CO ₂ photoreduction over CoPd alloy modified NiAl-LDH under visible light. Chemical Communications, 2021, 57, 11629-11632.	4.1	6
20	Tuning the electric transport behavior of AgCrSe2 by intrinsic defects. Science China Chemistry, 2021, 64, 1970-1975.	8.2	3
21	Ce-Doped W ₁₈ O ₄₉ Nanowires for Tuning N ₂ Activation toward Direct Nitrate Photosynthesis. Journal of Physical Chemistry Letters, 2021, 12, 11295-11302.	4.6	20
22	Defect Compensation Weakening Induced Mobility Enhancement in Thermoelectric BiTeI by Iodine Deficiency. Chemistry - an Asian Journal, 2020, 15, 4124-4129.	3.3	3
23	Parasitic Ferromagnetism in Few-Layered Transition-Metal Chalcogenophosphate. Journal of the American Chemical Society, 2020, 142, 10849-10855.	13.7	16
24	Natural Soft/Rigid Superlattices as Anodes for Highâ€Performance Lithiumâ€Ion Batteries. Angewandte Chemie - International Edition, 2020, 59, 17494-17498.	13.8	20
25	Natural Soft/Rigid Superlattices as Anodes for Highâ€Performance Lithiumâ€Ion Batteries. Angewandte Chemie, 2020, 132, 17647-17651.	2.0	2
26	Defects Engineering with Multiple Dimensions in Thermoelectric Materials. Research, 2020, 2020, 9652749.	5.7	56
27	Potholeâ€rich Ultrathin WO ₃ Nanosheets that Trigger N≡N Bond Activation of Nitrogen for Direct Nitrate Photosynthesis. Angewandte Chemie, 2019, 131, 741-745.	2.0	21
28	Photocatalytic nitrogen fixation: the role of defects in photocatalysts. Journal of Materials Chemistry A, 2019, 7, 19616-19633.	10.3	198
29	Charge Compensation Modulation of the Thermoelectric Properties in AgSbTe ₂ via Mn Amphoteric Doping. Inorganic Chemistry, 2019, 58, 9205-9212.	4.0	12
30	Single Mo atom realized enhanced CO2 electro-reduction into formate on N-doped graphene. Nano Energy, 2019, 61, 428-434.	16.0	106
31	Intrinsic Negative Magnetoresistance in Van Der Waals FeNbTe ₂ Single Crystals. Advanced Materials, 2019, 31, e1900246.	21.0	16
32	Potholeâ€rich Ultrathin WO ₃ Nanosheets that Trigger N≡N Bond Activation of Nitrogen for Direct Nitrate Photosynthesis. Angewandte Chemie - International Edition, 2019, 58, 731-735.	13.8	202
33	Regulating the Charge and Spin Ordering of Two-Dimensional Ultrathin Solids for Electrocatalytic Water Splitting. CheM, 2018, 4, 1263-1283.	11.7	219
34	Monolayer Behavior of NbS ₂ in Natural van der Waals Heterostructures. Journal of Physical Chemistry Letters, 2018, 9, 6421-6425.	4.6	8
35	Design of Highly Efficient Thermoelectric Materials: Tailoring Reciprocalâ€&pace Properties by Realâ€&pace Modification. Advanced Materials, 2018, 30, e1802000.	21.0	51
36	Strategies for discovery and optimization of thermoelectric materials: Role of real objects and local fields. Frontiers of Physics, 2018, 13, 1.	5.0	6

#	Article	IF	CITATIONS
37	Single atom accelerates ammonia photosynthesis. Science China Chemistry, 2018, 61, 1187-1196.	8.2	107
38	Evidence for Itinerant Carriers in an Anisotropic Narrowâ€Gap Semiconductor by Angleâ€Resolved Photoemission Spectroscopy. Advanced Materials, 2018, 30, 1704733.	21.0	8
39	The Expanding Energy Prospects of Metal Organic Frameworks. Joule, 2017, 1, 25-28.	24.0	13
40	Local Electric Field Facilitates High-Performance Li-Ion Batteries. ACS Nano, 2017, 11, 8519-8526.	14.6	155
41	A Thresholdless Tunable Raman Nanolaser using a ZnO–Graphene Superlattice. Advanced Materials, 2017, 29, 1604351.	21.0	19
42	Two Metal Ion Exchange Realizing Efficient Thermoelectric Properties and p–n–p Conduction Type Transition. Springer Theses, 2016, , 51-64.	0.1	0
43	Magnetic Ions Fully Substituted Wide Band-Gap Semiconductor Nanocrystals for Decoupled Optimization of Thermoelectric Properties. Springer Theses, 2016, , 91-102.	0.1	0
44	Vacancy Engineering for Tuning Electron and Phonon Structures of Twoâ€Dimensional Materials. Advanced Energy Materials, 2016, 6, 1600436.	19.5	198
45	Promoting Photogenerated Holes Utilization in Poreâ€Rich WO ₃ Ultrathin Nanosheets for Efficient Oxygenâ€Evolving Photoanode. Advanced Energy Materials, 2016, 6, 1600437.	19.5	150
46	Defect Chemistry for Thermoelectric Materials. Journal of the American Chemical Society, 2016, 138, 14810-14819.	13.7	161
47	Heterogeneous Spin States in Ultrathin Nanosheets Induce Subtle Lattice Distortion To Trigger Efficient Hydrogen Evolution. Journal of the American Chemical Society, 2016, 138, 5087-5092.	13.7	351
48	Magnetic Ions Dope Wide Band-Gap Semiconductor Nanocrystals Realizing Decoupled Optimization of Thermoelectric Properties. Springer Theses, 2016, , 79-90.	0.1	0
49	Ultrathin Co ₃ S ₄ Nanosheets that Synergistically Engineer Spin States and Exposed Polyhedra that Promote Water Oxidation under Neutral Conditions. Angewandte Chemie - International Edition, 2015, 54, 11231-11235.	13.8	283
50	Vacancy Associates-Rich Ultrathin Nanosheets for High Performance and Flexible Nonvolatile Memory Device. Journal of the American Chemical Society, 2015, 137, 3102-3108.	13.7	141
51	Dual Vacancies: An Effective Strategy Realizing Synergistic Optimization of Thermoelectric Property in BiCuSeO. Journal of the American Chemical Society, 2015, 137, 6587-6593.	13.7	183
52	Electric-Field-Driven Dual Vacancies Evolution in Ultrathin Nanosheets Realizing Reversible Semiconductor to Half-Metal Transition. Journal of the American Chemical Society, 2015, 137, 15043-15048.	13.7	43
53	Ultrathin Two-Dimensional Inorganic Materials: New Opportunities for Solid State Nanochemistry. Accounts of Chemical Research, 2015, 48, 3-12.	15.6	255
54	Defect evolution during the phase transition of hexagonal nickel sulfide studied by positron annihilation spectroscopy. Solid State Communications, 2015, 202, 64-68.	1.9	3

#	Article	IF	CITATIONS
55	Spatial Location Engineering of Oxygen Vacancies for Optimized Photocatalytic H ₂ Evolution Activity. Small, 2014, 10, 2820-2825.	10.0	139
56	Decoupling Interrelated Parameters for Designing High Performance Thermoelectric Materials. Accounts of Chemical Research, 2014, 47, 1287-1295.	15.6	122
57	Low Overpotential in Vacancy-Rich Ultrathin CoSe ₂ Nanosheets for Water Oxidation. Journal of the American Chemical Society, 2014, 136, 15670-15675.	13.7	970
58	Magnetic ions in wide band gap semiconductor nanocrystals for optimized thermoelectric properties. Materials Horizons, 2014, 1, 81-86.	12.2	87
59	The dominant {001} facet-dependent enhanced visible-light photoactivity of ultrathin BiOBr nanosheets. Physical Chemistry Chemical Physics, 2014, 16, 20909-20914.	2.8	101
60	Magnetocaloric effects in a freestanding and flexible graphene-based superlattice synthesized with a spatially confined reaction. Nature Communications, 2014, 5, 3960.	12.8	79
61	Ultrathin Nanosheets of Halfâ€Metallic Monoclinic Vanadium Dioxide with a Thermally Induced Phase Transition. Angewandte Chemie - International Edition, 2013, 52, 7554-7558.	13.8	52
62	Vacancy Associates Promoting Solar-Driven Photocatalytic Activity of Ultrathin Bismuth Oxychloride Nanosheets. Journal of the American Chemical Society, 2013, 135, 10411-10417.	13.7	1,091
63	General Formation of Complex Tubular Nanostructures of Metal Oxides for the Oxygen Reduction Reaction and Lithiumâ€lon Batteries. Angewandte Chemie - International Edition, 2013, 52, 8643-8647.	13.8	194
64	Rücktitelbild: General Formation of Complex Tubular Nanostructures of Metal Oxides for the Oxygen Reduction Reaction and Lithium-Ion Batteries (Angew. Chem. 33/2013). Angewandte Chemie, 2013, 125, 8916-8916.	2.0	2
65	Atomically Thick Bismuth Selenide Freestanding Single Layers Achieving Enhanced Thermoelectric Energy Harvesting. Journal of the American Chemical Society, 2012, 134, 20294-20297.	13.7	279
66	High Thermoelectric and Reversible <i>p-n-p</i> Conduction Type Switching Integrated in Dimetal Chalcogenide. Journal of the American Chemical Society, 2012, 134, 18460-18466.	13.7	164
67	Solid-Solutioned Homojunction Nanoplates with Disordered Lattice: A Promising Approach toward "Phonon Glass Electron Crystal―Thermoelectric Materials. Journal of the American Chemical Society, 2012, 134, 7971-7977.	13.7	71
68	Quantum Tunneling of Magnetization in Ultrasmall Half-Metallic V3O4 Quantum Dots: Displaying Quantum Superparamagnetic State. Scientific Reports, 2012, 2, 755.	3.3	25
69	Superionic Phase Transition in Silver Chalcogenide Nanocrystals Realizing Optimized Thermoelectric Performance. Journal of the American Chemical Society, 2012, 134, 4287-4293.	13.7	188
70	Preparation and Characterization of Silica-Coated Magnetic–Fluorescent Bifunctional Microspheres. Nanoscale Research Letters, 2009, 4, 1078-1084.	5.7	29
71	Surface-defect-states photoluminescence in CdS nanocrystals prepared by one-step aqueous synthesis method. Applied Surface Science, 2009, 255, 7111-7114.	6.1	65
72	Photoinduced hydroxyl radical and photocatalytic activity of samarium-doped TiO2 nanocrystalline. Journal of Hazardous Materials, 2008, 150, 62-67.	12.4	322

#	Article	IF	CITATIONS
73	Strong enhancement of band-edge photoluminescence in CdS nanocrystals prepared by one-step aqueous synthesis method. Journal of Luminescence, 2008, 128, 1942-1947.	3.1	37
74	Synthesis and photoluminescence of water-soluble Mn2+-doped ZnS quantum dots. Applied Surface Science, 2008, 254, 6432-6435.	6.1	70
75	Solar photocatalytic degradation of methylene blue in carbon-doped TiO2 nanoparticles suspension. Solar Energy, 2008, 82, 706-713.	6.1	196
76	Synthesis and photoluminescence of water-soluble Mn:ZnS/ZnS core/shell quantum dots using nucleation-doping strategy. Optical Materials, 2008, 31, 455-460.	3.6	33
77	Photocatalytic degradation of methylene blue over Co3O4/Bi2WO6 composite under visible light irradiation. Catalysis Communications, 2008, 9, 1247-1253.	3.3	233
78	Sonochemical synthesis of ZnO nanosheet. Journal of Alloys and Compounds, 2008, 459, L18-L22.	5.5	62
79	Photocatalytic decolorization of methylene blue over Zn1â^'xCoxO under visible light irradiation. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2007, 142, 121-125.	3.5	107
80	Effects of samarium dopant on photocatalytic activity of TiO2 nanocrystallite for methylene blue degradation. Journal of Materials Science, 2007, 42, 9194-9199.	3.7	28