Fumiko Itoh

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5331654/publications.pdf

Version: 2024-02-01

40 papers

2,870 citations

257450
24
h-index

302126 39 g-index

40 all docs

40 docs citations

40 times ranked

3469 citing authors

#	Article	IF	CITATIONS
1	Signaling of transforming growth factorâ€Î² family members through Smad proteins. FEBS Journal, 2000, 267, 6954-6967.	0.2	466
2	Regulation of cell proliferation by Smad proteins. Journal of Cellular Physiology, 2002, 191, 1-16.	4.1	418
3	Synergy and antagonism between Notch and BMP receptor signaling pathways in endothelial cells. EMBO Journal, 2004, 23, 541-551.	7.8	222
4	Transforming Growth Factor \hat{I}^21 Induces Nuclear Export of Inhibitory Smad7. Journal of Biological Chemistry, 1998, 273, 29195-29201.	3.4	218
5	Elucidation of Smad Requirement in Transforming Growth Factor-Î ² Type I Receptor-induced Responses. Journal of Biological Chemistry, 2003, 278, 3751-3761.	3.4	189
6	The FYVE domain in Smad anchor for receptor activation (SARA) is sufficient for localization of SARA in early endosomes and regulates TGFâ€Î²/Smad signalling. Genes To Cells, 2002, 7, 321-331.	1.2	137
7	TMEPAI, a Transmembrane TGF-Î ² -Inducible Protein, Sequesters Smad Proteins from Active Participation in TGF-Î ² Signaling. Molecular Cell, 2010, 37, 123-134.	9.7	136
8	Compensatory signalling induced in the yolk sac vasculature by deletion of $TGF\hat{l}^2$ receptors in mice. Journal of Cell Science, 2007, 120, 4269-4277.	2.0	104
9	Xenopus Smad $4\hat{l}^2$ Is the Co-Smad Component of Developmentally Regulated Transcription Factor Complexes Responsible for Induction of Early Mesodermal Genes. Developmental Biology, 1999, 214, 354-369.	2.0	88
10	Roles of TGF- \hat{l}^2 family signals in the fate determination of pluripotent stem cells. Seminars in Cell and Developmental Biology, 2014, 32, 98-106.	5.0	69
11	Preventive Effect of Dipeptidyl Peptidase-4 Inhibitor on Atherosclerosis Is Mainly Attributable to Incretin's Actions in Nondiabetic and Diabetic Apolipoprotein E-Null Mice. PLoS ONE, 2013, 8, e70933.	2.5	65
12	Smad2/Smad3 in endothelium is indispensable for vascular stability via S1PR1 and N-cadherin expressions. Blood, 2012, 119, 5320-5328.	1.4	62
13	Smad7 and protein phosphatase 1alpha are critical determinants in the duration of TGF-beta/ALK1 signaling in endothelial cells. BMC Cell Biology, 2006, 7, 16.	3.0	50
14	C18 ORF1, a Novel Negative Regulator of Transforming Growth Factor- \hat{l}^2 Signaling. Journal of Biological Chemistry, 2014, 289, 12680-12692.	3.4	48
15	The roles of salusins in atherosclerosis and related cardiovascular diseases. Journal of the American Society of Hypertension, 2011, 5, 359-365.	2.3	47
16	Requirement of TCF7L2 for TGF-β-dependent Transcriptional Activation of the TMEPAI Gene. Journal of Biological Chemistry, 2010, 285, 38023-38033.	3.4	44
17	Salusins: Potential Use as a Biomarker for Atherosclerotic Cardiovascular Diseases. International Journal of Hypertension, 2013, 2013, 1-8.	1.3	43
18	Flk1-GFP BAC Tg Mice: An Animal Model for the Study of Blood Vessel Development. Experimental Animals, 2010, 59, 615-622.	1.1	42

#	Article	IF	Citations
19	Identification of the Minimum Peptide from Mouse Myostatin Prodomain for Human Myostatin Inhibition. Journal of Medicinal Chemistry, 2015, 58, 1544-1549.	6.4	40
20	Inhibition of endothelial cell activation by bHLH protein E2-2 and its impairment of angiogenesis. Blood, 2010, 115, 4138-4147.	1.4	34
21	Stimulatory Effects of Cardiotrophin 1 on Atherosclerosis. Hypertension, 2013, 62, 942-950.	2.7	34
22	PDZK1-interacting protein 1 (PDZK1IP1) traps Smad4 protein and suppresses transforming growth factor-Î ² (TGF-Î ²) signaling. Journal of Biological Chemistry, 2019, 294, 4966-4980.	3.4	31
23	The Inhibitory Core of the Myostatin Prodomain: Its Interaction with Both Type I and II Membrane Receptors, and Potential to Treat Muscle Atrophy. PLoS ONE, 2015, 10, e0133713.	2.5	30
24	Transforming growth factorâ€Î² signaling enhancement by longâ€term exposure to hypoxia in a tumor microenvironment composed of <scp>L</scp> ewis lung carcinoma cells. Cancer Science, 2015, 106, 1524-1533.	3.9	29
25	TMED10 Protein Interferes with Transforming Growth Factor (TGF)- \hat{l}^2 Signaling by Disrupting TGF- \hat{l}^2 Receptor Complex Formation. Journal of Biological Chemistry, 2017, 292, 4099-4112.	3.4	25
26	Inhibitory machinery for the TGF- \hat{l}^2 family signaling pathway. Growth Factors, 2011, 29, 163-173.	1.7	23
27	Endogenous Bioactive Peptides as Potential Biomarkers for Atherosclerotic Coronary Heart Disease. Sensors, 2012, 12, 4974-4985.	3.8	23
28	TMEPAI family: involvement in regulation of multiple signalling pathways. Journal of Biochemistry, 2018, 164, 195-204.	1.7	22
29	Poor vessel formation in embryos from knock-in mice expressing ALK5 with L45 loop mutation defective in Smad activation. Laboratory Investigation, 2009, 89, 800-810.	3.7	19
30	Blood and lymphatic systems are segregated by the FLCN tumor suppressor. Nature Communications, 2020, 11, 6314.	12.8	17
31	Emerging Roles for Vasoactive Peptides in Diagnostic and Therapeutic Strategies Against Atherosclerotic Cardiovascular Diseases. Current Protein and Peptide Science, 2013, 14, 472-480.	1.4	16
32	Implication of TGF-Â as a survival factor during tumour development. Journal of Biochemistry, 2012, 151, 559-562.	1.7	14
33	TAL1/SCL Relieves the E2-2-Mediated Repression of VEGFR2 Promoter Activity. Journal of Biochemistry, 2008, 145, 129-135.	1.7	12
34	Systemic administration of monovalent follistatin-like 3-Fc-fusion protein increases muscle mass in mice. IScience, 2021, 24, 102488.	4.1	12
35	The evolutionarily conserved deubiquitinase UBH1/UCH-L1 augments DAF7/TGF- \hat{l}^2 signaling, inhibits dauer larva formation, and enhances lung tumorigenesis. Journal of Biological Chemistry, 2020, 295, 9105-9120.	3.4	9
36	Interference of E2â€2â€mediated effect in endothelial cells by FAM96B through its limited expression of E2â€2. Cancer Science, 2011, 102, 1808-1814.	3.9	8

Fиміко Ітон

#	Article	IF	CITATION
37	Pathogenic involvement of heregulin-Î ² 1 in anti-atherogenesis. Regulatory Peptides, 2012, 175, 11-14.	1.9	8
38	Peptideâ€2 from mouse myostatin precursor protein alleviates muscle wasting in cancerâ€associated cachexia. Cancer Science, 2020, 111, 2954-2964.	3.9	8
39	Endothelial-specific depletion of TGF- \hat{l}^2 signaling affects lymphatic function. Inflammation and Regeneration, 2021, 41, 35.	3.7	8
40	Negative Regulation of the TGF- \hat{l}^2 Family Signal Pathway by Inhibitory Smads and Their Involvement in Cancer and Fibrosis., 2008,, 649-661.		0