David Patiño

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5329414/publications.pdf Version: 2024-02-01

Ο+Διτα

#	Article	IF	CITATIONS
1	Experimental analysis of the ignition front propagation of several biomass fuels in a fixed-bed combustor. Fuel, 2010, 89, 26-35.	6.4	157
2	CFD modelling of thermal conversion and packed bed compaction in biomass combustion. Fuel, 2014, 117, 716-732.	6.4	118
3	Numerical modeling of the combustion of densified wood under fixed-bed conditions. Fuel, 2012, 93, 149-159.	6.4	108
4	Evolution of CO2 capture technology between 2007 and 2017 through the study of patent activity. Applied Energy, 2018, 211, 1282-1296.	10.1	95
5	Numerical Modeling of a Biomass Pellet Domestic Boiler. Energy & Fuels, 2009, 23, 1067-1075.	5.1	93
6	Review of the use of additives to mitigate operational problems associated with the combustion of biomass with high content in ash-forming species. Renewable and Sustainable Energy Reviews, 2021, 141, 110502.	16.4	71
7	A Model for the Combustion of Large Particles of Densified Wood. Energy & Fuels, 2007, 21, 3151-3159.	5.1	68
8	Study of a Fixed-Bed Biomass Combustor: Influential Parameters on Ignition Front Propagation Using Parametric Analysis. Energy & Fuels, 2010, 24, 3890-3897.	5.1	57
9	CFD simulation of a solar radiation absorber. International Journal of Heat and Mass Transfer, 2013, 57, 231-240.	4.8	55
10	Fast-solving thermally thick model of biomass particles embedded in a CFD code for the simulation of fixed-bed burners. Energy Conversion and Management, 2015, 105, 30-44.	9.2	54
11	Numerical simulation of the combustion process of a pellet-drop-feed boiler. Fuel, 2016, 184, 987-999.	6.4	54
12	Study of the reaction front thickness in a counter-current fixed-bed combustor of a pelletised biomass. Combustion and Flame, 2012, 159, 1296-1302.	5.2	51
13	Eulerian CFD modelling for biomass combustion. Transient simulation of an underfeed pellet boiler. Energy Conversion and Management, 2015, 101, 666-680.	9.2	51
14	Air staging strategies in biomass combustion-gaseous and particulate emission reduction potentials. Fuel Processing Technology, 2017, 157, 29-41.	7.2	50
15	Diesel engine condition monitoring using a multi-net neural network system with nonintrusive sensors. Applied Thermal Engineering, 2011, 31, 4097-4105.	6.0	49
16	Three-dimensional CFD simulation of a large-scale grate-fired biomass furnace. Fuel Processing Technology, 2020, 198, 106219.	7.2	39
17	Characterisation and comparison of biomass ashes with different thermal histories using TG-DSC. Journal of Thermal Analysis and Calorimetry, 2014, 118, 669-680.	3.6	36
18	Simulation and experimental validation of a methanol burner. Fuel, 2009, 88, 326-334.	6.4	28

David Patiñ0

#	Article	IF	CITATIONS
19	An experimental study into the effect of air staging distribution and position on emissions in a laboratory scale biomass combustor. Energy, 2017, 118, 1243-1255.	8.8	28
20	Effect of freeboard deflectors in the fixed bed combustion of biomass. Applied Thermal Engineering, 2016, 103, 543-552.	6.0	27
21	Dynamic simulation of a biomass domestic boiler under thermally thick considerations. Energy Conversion and Management, 2017, 140, 260-272.	9.2	27
22	A Comparative Study of Fouling and Bottom Ash from Woody Biomass Combustion in a Fixed-Bed Small-Scale Boiler and Evaluation of the Analytical Techniques Used. Sustainability, 2015, 7, 5819-5837.	3.2	26
23	Experimental analysis of fouling rates in two small-scale domestic boilers. Applied Thermal Engineering, 2016, 100, 849-860.	6.0	26
24	Comprehensive CFD modeling of the ash deposition in a biomass packed bed burner. Fuel, 2018, 234, 1099-1122.	6.4	25
25	Improving the Cofiring Process of Wood Pellet and Refuse Derived Fuel in a Small-Scale Boiler Plant. Energy & Fuels, 2008, 22, 2121-2128.	5.1	23
26	Study of the feasibility of mixing Refuse Derived Fuels with wood pellets through the grey and Fuzzy theory. Renewable Energy, 2009, 34, 2607-2612.	8.9	22
27	Effect of Air Staging Ratios on the Burning Rate and Emissions in an Underfeed Fixed-Bed Biomass Combustor. Energies, 2016, 9, 940.	3.1	22
28	Experimental study on the fouling behaviour of an underfeed fixed-bed biomass combustor. Applied Thermal Engineering, 2017, 112, 523-533.	6.0	22
29	Low-Quality Fuels for Small-Scale Combustion Boilers: An Experimental Study. Energy & Fuels, 2015, 29, 3064-3081.	5.1	20
30	Experimental study of a tubular-type ESP for small-scale biomass boilers. Preliminary results in a diesel engine. Powder Technology, 2016, 288, 164-175.	4.2	19
31	Devolatilization behaviour and pyrolysis kinetic modelling of Spanish biomass fuels. Journal of Thermal Analysis and Calorimetry, 2013, 113, 569-578.	3.6	18
32	Three-dimensional model of electrostatic precipitators for the estimation of their particle collection efficiency. Fuel Processing Technology, 2016, 143, 86-99.	7.2	16
33	CFD study of fouling phenomena in small-scale biomass boilers: Experimental validation with two different boilers. Renewable Energy, 2019, 140, 552-562.	8.9	16
34	NSM solution for unsteady MHD Couette flow of a dusty conducting fluid with variable viscosity and electric conductivity. Applied Mathematical Modelling, 2011, 35, 303-316.	4.2	15
35	Unsteady MHD free convection of a micropolar fluid between two parallel porous vertical walls with convection from the ambient. International Communications in Heat and Mass Transfer, 2009, 36, 203-209.	5.6	14
36	Heterogenic Solid Biofuel Sampling Methodology and Uncertainty Associated with Prompt Analysis. International Journal of Molecular Sciences, 2010, 11, 2118-2133.	4.1	14

David Patiñ0

#	Article	IF	CITATIONS
37	Biological systems for CCS: Patent review as a criterion for technological development. Applied Energy, 2020, 257, 114032.	10.1	12
38	Novel Test Bench for the Active Reduction of Biomass Particulate Matter Emissions. Sustainability, 2020, 12, 422.	3.2	12
39	A practice for engineering students based on the control and monitoring an experimental biomass combustor using labview. Computer Applications in Engineering Education, 2017, 25, 392-403.	3.4	11
40	Experimental Study of the Viability of Low-Grade Biofuels in Small-Scale Appliances. Sustainability, 2017, 9, 1823.	3.2	11
41	Performance of a lab-scale tubular-type electrostatic precipitator using a diesel engine particle emission source. Energy, 2016, 116, 1444-1453.	8.8	10
42	Methodologies for Processing Fixed Bed Combustor Data. Combustion Science and Technology, 2017, 189, 79-102.	2.3	9
43	Influence of the Feeding Rate on the Transient Behavior of a Biomass Combustor. Chemical Engineering and Technology, 2019, 42, 2520-2529.	1.5	8
44	Viability Evaluation of Three Grass Biofuels: Experimental Study in a Small-Scale Combustor. Energies, 2019, 12, 1352.	3.1	8
45	Performance analysis of a small-scale electrostatic precipitator with biomass combustion. Biomass and Bioenergy, 2022, 162, 106500.	5.7	8
46	Multi-objective utilization of wood waste recycled from construction and demolition (C&D): Products and characterization. Waste Management, 2022, 149, 228-238.	7.4	8
47	PM reduction and flame confinement in biomass combustion using a porous inert material. Fuel, 2020, 280, 118496.	6.4	6
48	Available exhaust gas power in different configurations in a pellet stove plant. Renewable Energy, 2009, 34, 2852-2859.	8.9	5
49	TG/DSC and kinetic parametrization of the combustion of agricultural and forestry residues. Biomass and Bioenergy, 2022, 162, 106485.	5.7	4
50	Validation of a Fouling Measurement Procedure. IEEE Transactions on Instrumentation and Measurement, 2021, 70, 1-8.	4.7	3
51	The motion of discs and spherical fuel particles in combustion burners based on Monte Carlo simulation. Energy Conversion and Management, 2010, 51, 795-801.	9.2	1
52	Experimental analysis of several biomass fuels: The effect of the devolatilization rate on packed bed combustion. Journal of Renewable and Sustainable Energy, 2012, 4, 053104.	2.0	1
53	STUDY OF THE COMBUSTION OF PELLETS AND RDF IN A SMALL BOILER-STOVE PLANT. Clean Air, 2007, 8, 183-197.	0.0	1
54	Network numerical modelling of unsteady MHDâ€free convection flow with mass transfer, hall current and viscous dissipation effects. International Journal for Numerical Methods in Biomedical Engineering, 2010, 26, 1687-1699.	2.1	0