
Paul O Wennberg

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5327726/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Emission factors for open and domestic biomass burning for use in atmospheric models. Atmospheric Chemistry and Physics, 2011, 11, 4039-4072.	1.9	1,527
2	An atmospheric perspective on North American carbon dioxide exchange: CarbonTracker. Proceedings of the United States of America, 2007, 104, 18925-18930.	3.3	895
3	The Total Carbon Column Observing Network. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2011, 369, 2087-2112.	1.6	884
4	Reactive intermediates revealed in secondary organic aerosol formation from isoprene. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 6640-6645.	3.3	854
5	Unexpected Epoxide Formation in the Gas-Phase Photooxidation of Isoprene. Science, 2009, 325, 730-733.	6.0	837
6	The Orbiting Carbon Observatory (OCO) mission. Advances in Space Research, 2004, 34, 700-709.	1.2	596
7	The ACOS CO ₂ retrieval algorithm – Part 1: Description and validation against synthetic observations. Atmospheric Measurement Techniques, 2012, 5, 99-121.	1.2	530
8	Highly Oxygenated Organic Molecules (HOM) from Gas-Phase Autoxidation Involving Peroxy Radicals: A Key Contributor to Atmospheric Aerosol. Chemical Reviews, 2019, 119, 3472-3509.	23.0	460
9	Isoprene photooxidation: new insights into the production of acids and organic nitrates. Atmospheric Chemistry and Physics, 2009, 9, 1479-1501.	1.9	450
10	Autoxidation of Organic Compounds in the Atmosphere. Journal of Physical Chemistry Letters, 2013, 4, 3513-3520.	2.1	444
11	Calibration of the Total Carbon Column Observing Network using aircraft profile data. Atmospheric Measurement Techniques, 2010, 3, 1351-1362.	1.2	441
12	Emissions from biomass burning in the Yucatan. Atmospheric Chemistry and Physics, 2009, 9, 5785-5812.	1.9	433
13	Effect of NO _x level on secondary organic aerosol (SOA) formation from the photooxidation of terpenes. Atmospheric Chemistry and Physics, 2007, 7, 5159-5174.	1.9	423
14	Fast airborne aerosol size and chemistry measurements above Mexico City and Central Mexico during the MILAGRO campaign. Atmospheric Chemistry and Physics, 2008, 8, 4027-4048.	1.9	411
15	Removal of Stratospheric O3 by Radicals: In Situ Measurements of OH, HO2, NO, NO2, ClO, and BrO. Science, 1994, 266, 398-404.	6.0	384
16	Toward accurate CO ₂ and CH ₄ observations from GOSAT. Geophysical Research Letters, 2011, 38, n/a-n/a.	1.5	355
17	Gas-Phase Reactions of Isoprene and Its Major Oxidation Products. Chemical Reviews, 2018, 118, 3337-3390.	23.0	339
18	Hydrogen Radicals, Nitrogen Radicals, and the Production of O3 in the Upper Troposphere. Science, 1998, 279, 49-53.	6.0	329

#	Article	IF	CITATIONS
19	Investigation of the sources and processing of organic aerosol over the Central Mexican Plateau from aircraft measurements during MILAGRO. Atmospheric Chemistry and Physics, 2010, 10, 5257-5280.	1.9	325
20	Precision requirements for space-based data. Journal of Geophysical Research, 2007, 112, .	3.3	322
21	The ACOS CO ₂ retrieval algorithm – Part II: Global X _{CO₂} data characterization. Atmospheric Measurement Techniques, 2012, 5, 687-707.	1.2	320
22	Why do models overestimate surface ozone in the Southeast United States?. Atmospheric Chemistry and Physics, 2016, 16, 13561-13577.	1.9	320
23	Secondary organic aerosol (SOA) formation from reaction of isoprene with nitrate radicals (NO ₃). Atmospheric Chemistry and Physics, 2008, 8, 4117-4140.	1.9	317
24	Measurement of Gas-Phase Hydroperoxides by Chemical Ionization Mass Spectrometry. Analytical Chemistry, 2006, 78, 6726-6732.	3.2	307
25	Peroxy radical isomerization in the oxidation of isoprene. Physical Chemistry Chemical Physics, 2011, 13, 13607.	1.3	302
26	Secondary organic aerosol formation from photooxidation of naphthalene and alkylnaphthalenes: implications for oxidation of intermediate volatility organic compounds (IVOCs). Atmospheric Chemistry and Physics, 2009, 9, 3049-3060.	1.9	300
27	The Detection of Large HNO3-Containing Particles in the Winter Arctic Stratosphere. Science, 2001, 291, 1026-1031.	6.0	279
28	A method for evaluating bias in global measurements of CO ₂ total columns from space. Atmospheric Chemistry and Physics, 2011, 11, 12317-12337.	1.9	279
29	The on-orbit performance of the Orbiting Carbon Observatory-2 (OCO-2) instrument and its radiometrically calibrated products. Atmospheric Measurement Techniques, 2017, 10, 59-81.	1.2	271
30	Importance of secondary sources in the atmospheric budgets of formic and acetic acids. Atmospheric Chemistry and Physics, 2011, 11, 1989-2013.	1.9	266
31	Improvement of the retrieval algorithm for GOSAT SWIR XCO ₂ and XCH ₄ and their validation using TCCON data. Atmospheric Measurement Techniques, 2013, 6, 1533-1547.	1.2	261
32	Comparisons of the Orbiting Carbon Observatory-2 (OCO-2) <i>X</i> _{CO₂&a measurements with TCCON. Atmospheric Measurement Techniques, 2017, 10, 2209-2238.}	mp; lt ‡sub	&an ap ;gt;
33	Nitrogen oxides and PAN in plumes from boreal fires during ARCTAS-B and their impact on ozone: an integrated analysis of aircraft and satellite observations. Atmospheric Chemistry and Physics, 2010, 10, 9739-9760.	1.9	234
34	Chemical Composition of Gas- and Aerosol-Phase Products from the Photooxidation of Naphthalene. Journal of Physical Chemistry A, 2010, 114, 913-934.	1.1	233
35	Estimating global and North American methane emissions with high spatial resolution using GOSAT satellite data. Atmospheric Chemistry and Physics, 2015, 15, 7049-7069.	1.9	225
36	Carbon dioxide column abundances at the Wisconsin Tall Tower site. Journal of Geophysical Research, 2006, 111, .	3.3	224

#	Article	IF	CITATIONS
37	Chemistry of hydrogen oxide radicals (HO _x) in the Arctic troposphere in spring. Atmospheric Chemistry and Physics, 2010, 10, 5823-5838.	1.9	220
38	Preliminary validation of column-averaged volume mixing ratios of carbon dioxide and methane retrieved from GOSAT short-wavelength infrared spectra. Atmospheric Measurement Techniques, 2011, 4, 1061-1076.	1.2	217
39	Sources, seasonality, and trends of southeast US aerosol: an integrated analysis of surface, aircraft, and satellite observations with the GEOS-Chem chemical transport model. Atmospheric Chemistry and Physics, 2015, 15, 10411-10433.	1.9	217
40	Kinetics and Products of the Acid-Catalyzed Ring-Opening of Atmospherically Relevant Butyl Epoxy Alcohols. Journal of Physical Chemistry A, 2010, 114, 8106-8113.	1.1	213
41	Ozone and organic nitrates over the eastern United States: Sensitivity to isoprene chemistry. Journal of Geophysical Research D: Atmospheres, 2013, 118, 11,256.	1.2	213
42	Ambiguity in the causes for decadal trends in atmospheric methane and hydroxyl. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 5367-5372.	3.3	213
43	Chemistry of HOx radicals in the upper troposphere. Atmospheric Environment, 2001, 35, 469-489.	1.9	211
44	Methane observations from the Greenhouse Gases Observing SATellite: Comparison to groundâ€based TCCON data and model calculations. Geophysical Research Letters, 2011, 38, .	1.5	211
45	Insights into hydroxyl measurements and atmospheric oxidation in a California forest. Atmospheric Chemistry and Physics, 2012, 12, 8009-8020.	1.9	211
46	Boreal forest fire emissions in fresh Canadian smoke plumes: C ₁ -C ₁₀ volatile organic compounds (VOCs), CO ₂ , CO, NO ₂ , NO, HCN and	1.9	209
47	CH ₃ CN. Atmospheric Chemistry and Physics, 2011, 11, 6445-6463. Emissions of greenhouse gases from a North American megacity. Geophysical Research Letters, 2009, 36, .	1.5	208
48	Sensitivity of ozone to bromine in the lower stratosphere. Geophysical Research Letters, 2005, 32, .	1.5	207
49	Emissions from forest fires near Mexico City. Atmospheric Chemistry and Physics, 2007, 7, 5569-5584.	1.9	205
50	Contribution of isoprene-derived organosulfates to free tropospheric aerosol mass. Proceedings of the United States of America, 2010, 107, 21360-21365.	3.3	203
51	Organic aerosol formation from the reactive uptake of isoprene epoxydiols (IEPOX) onto non-acidified inorganic seeds. Atmospheric Chemistry and Physics, 2014, 14, 3497-3510.	1.9	201
52	Daily and 3-hourly variability in global fire emissions and consequences for atmospheric model predictions of carbon monoxide. Journal of Geophysical Research, 2011, 116, n/a-n/a.	3.3	200
53	The photochemistry of acetone in the upper troposphere: A source of odd-hydrogen radicals. Geophysical Research Letters, 1997, 24, 3177-3180.	1.5	193
54	Rapid deposition of oxidized biogenic compounds to a temperate forest. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, E392-401.	3.3	192

#	Article	IF	CITATIONS
55	Role of aldehyde chemistry and NO _x concentrations in secondary organic aerosol formation. Atmospheric Chemistry and Physics, 2010, 10, 7169-7188.	1.9	190
56	Improved retrievals of carbon dioxide from Orbiting Carbon Observatory-2 with the version 8 ACOS algorithm. Atmospheric Measurement Techniques, 2018, 11, 6539-6576.	1.2	188
57	Airborne measurements of western U.S. wildfire emissions: Comparison with prescribed burning and air quality implications. Journal of Geophysical Research D: Atmospheres, 2017, 122, 6108-6129.	1.2	184
58	Secondary organic aerosol formation from biomass burning intermediates: phenol and methoxyphenols. Atmospheric Chemistry and Physics, 2013, 13, 8019-8043.	1.9	181
59	The Orbiting Carbon Observatory-2: first 18Âmonths of science data products. Atmospheric Measurement Techniques, 2017, 10, 549-563.	1.2	180
60	Atmospheric fates of Criegee intermediates in the ozonolysis of isoprene. Physical Chemistry Chemical Physics, 2016, 18, 10241-10254.	1.3	179
61	Organic nitrate chemistry and its implications for nitrogen budgets in an isoprene- and monoterpene-rich atmosphere: constraints from aircraft (SEAC ⁴ RS) and ground-based (SOAS) observations in the Southeast US. Atmospheric Chemistry and Physics. 2016. 16. 5969-5991.	1.9	173
62	Formation of Low Volatility Organic Compounds and Secondary Organic Aerosol from Isoprene Hydroxyhydroperoxide Low-NO Oxidation. Environmental Science & amp; Technology, 2015, 49, 10330-10339.	4.6	172
63	Atmospheric Fate of Methacrolein. 1. Peroxy Radical Isomerization Following Addition of OH and O ₂ . Journal of Physical Chemistry A, 2012, 116, 5756-5762.	1.1	166
64	Emission Measurements of the Concorde Supersonic Aircraft in the Lower Stratosphere. Science, 1995, 270, 70-74.	6.0	165
65	Characterization and Quantification of Isoprene-Derived Epoxydiols in Ambient Aerosol in the Southeastern United States. Environmental Science & Technology, 2010, 44, 4590-4596.	4.6	165
66	The Deep Convective Clouds and Chemistry (DC3) Field Campaign. Bulletin of the American Meteorological Society, 2015, 96, 1281-1309.	1.7	165
67	HO _{<i>x</i>} chemistry during INTEXâ€A 2004: Observation, model calculation, and comparison with previous studies. Journal of Geophysical Research, 2008, 113, .	3.3	163
68	Observed OH and HO2in the upper troposphere suggest a major source from convective injection of peroxides. Geophysical Research Letters, 1997, 24, 3181-3184.	1.5	160
69	The Orbiting Carbon Observatory-2 early science investigations of regional carbon dioxide fluxes. Science, 2017, 358, .	6.0	157
70	Retrieval of atmospheric CO ₂ with enhanced accuracy and precision from SCIAMACHY: Validation with FTS measurements and comparison with model results. Journal of Geophysical Research, 2011, 116, .	3.3	153
71	Sources of variations in total column carbon dioxide. Atmospheric Chemistry and Physics, 2011, 11, 3581-3593.	1.9	149
72	Gas Phase Production and Loss of Isoprene Epoxydiols. Journal of Physical Chemistry A, 2014, 118, 1237-1246.	1.1	149

#	Article	IF	CITATIONS
73	Atmospheric autoxidation is increasingly important in urban and suburban North America. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 64-69.	3.3	149
74	New constraints on Northern Hemisphere growing season net flux. Geophysical Research Letters, 2007, 34, .	1.5	147
75	Space-based near-infrared CO2 measurements: Testing the Orbiting Carbon Observatory retrieval algorithm and validation concept using SCIAMACHY observations over Park Falls, Wisconsin. Journal of Geophysical Research, 2006, 111, .	3.3	146
76	Biomass burning and urban air pollution over the Central Mexican Plateau. Atmospheric Chemistry and Physics, 2009, 9, 4929-4944.	1.9	138
77	α-pinene photooxidation under controlled chemical conditions – Part 2: SOA yield and composition in low- and high-NO _x environments. Atmospheric Chemistry and Physics, 2012, 12, 7413-7427.	1.9	133
78	Pollution influences on atmospheric composition and chemistry at high northern latitudes: Boreal and California forest fire emissions. Atmospheric Environment, 2010, 44, 4553-4564.	1.9	131
79	Total column CO ₂ measurements at Darwin, Australia – site description and calibration against in situ aircraft profiles. Atmospheric Measurement Techniques, 2010, 3, 947-958.	1.2	131
80	On the Sources of Methane to the Los Angeles Atmosphere. Environmental Science & Technology, 2012, 46, 9282-9289.	4.6	126
81	Organic nitrate aerosol formation via NO ₃ + biogenic volatile organic compounds in the southeastern United States. Atmospheric Chemistry and Physics, 2015, 15, 13377-13392.	1.9	124
82	Planning, implementation, and first results of the Tropical Composition, Cloud and Climate Coupling Experiment (TC4). Journal of Geophysical Research, 2010, 115, .	3.3	120
83	Calibration of TCCON column-averaged CO ₂ : the first aircraft campaign over European TCCON sites. Atmospheric Chemistry and Physics, 2011, 11, 10765-10777.	1.9	120
84	Inferring regional sources and sinks of atmospheric CO ₂ from GOSAT XCO ₂ data. Atmospheric Chemistry and Physics, 2014, 14, 3703-3727.	1.9	120
85	Direct Measurements of the Convective Recycling of the Upper Troposphere. Science, 2007, 315, 816-820.	6.0	114
86	Processâ€evaluation of tropospheric humidity simulated by general circulation models using water vapor isotopologues: 1. Comparison between models and observations. Journal of Geophysical Research, 2012, 117, .	3.3	114
87	Isoprene Peroxy Radical Dynamics. Journal of the American Chemical Society, 2017, 139, 5367-5377.	6.6	114
88	Observational Insights into Aerosol Formation from Isoprene. Environmental Science & Technology, 2013, 47, 11403-11413.	4.6	113
89	The Orbiting Carbon Observatory (OCO-2): spectrometer performance evaluation using pre-launch direct sun measurements. Atmospheric Measurement Techniques, 2015, 8, 301-313.	1.2	113
90	The Greenhouse Gas Climate Change Initiative (GHG-CCI): Comparison and quality assessment of near-surface-sensitive satellite-derived CO2 and CH4 global data sets. Remote Sensing of Environment, 2015, 162, 344-362.	4.6	112

#	Article	IF	CITATIONS
91	Impact of the isoprene photochemical cascade on tropical ozone. Atmospheric Chemistry and Physics, 2012, 12, 1307-1325.	1.9	111
92	Kinetics and Products of the Reaction of the First-Generation Isoprene Hydroxy Hydroperoxide (ISOPOOH) with OH. Journal of Physical Chemistry A, 2016, 120, 1441-1451.	1.1	111
93	Mechanism of the hydroxyl radical oxidation of methacryloyl peroxynitrate (MPAN) and its pathway toward secondary organic aerosol formation in the atmosphere. Physical Chemistry Chemical Physics, 2015, 17, 17914-17926.	1.3	108
94	Comparison of chemical characteristics of 495 biomass burning plumes intercepted by the NASA DC-8 aircraft during the ARCTAS/CARB-2008 field campaign. Atmospheric Chemistry and Physics, 2011, 11, 13325-13337.	1.9	106
95	Understanding the impact of recent advances in isoprene photooxidation on simulations of regional air quality. Atmospheric Chemistry and Physics, 2013, 13, 8439-8455.	1.9	106
96	Extreme deuterium enrichment in stratospheric hydrogen and the global atmospheric budget of H2. Nature, 2003, 424, 918-921.	13.7	105
97	Methane retrieved from TROPOMI: improvement of the data product and validation of the first 2 years of measurements. Atmospheric Measurement Techniques, 2021, 14, 665-684.	1.2	104
98	On Rates and Mechanisms of OH and O ₃ Reactions with Isoprene-Derived Hydroxy Nitrates. Journal of Physical Chemistry A, 2014, 118, 1622-1637.	1.1	102
99	Production of O($\hat{A^1}D$) from photolysis of O3. Geophysical Research Letters, 1994, 21, 2227-2230.	1.5	100
100	Observations of heterogeneous reactions between Asian pollution and mineral dust over the Eastern North Pacific during INTEX-B. Atmospheric Chemistry and Physics, 2009, 9, 8283-8308.	1.9	99
101	Conversion of hydroperoxides to carbonyls in field and laboratory instrumentation: Observational bias in diagnosing pristine versus anthropogenically controlled atmospheric chemistry. Geophysical Research Letters, 2014, 41, 8645-8651.	1.5	99
102	How bias correction goes wrong: measurement of X _{CO₂} affected by erroneous surface pressure estimates. Atmospheric Measurement Techniques, 2019, 12, 2241-2259.	1.2	99
103	Aircraftâ€borne, laserâ€induced fluorescence instrument for the in situ detection of hydroxyl and hydroperoxyl radicals. Review of Scientific Instruments, 1994, 65, 1858-1876.	0.6	98
104	The imprint of surface fluxes and transport on variations in total column carbon dioxide. Biogeosciences, 2012, 9, 875-891.	1.3	98
105	Chemical ionization tandem mass spectrometer for the <i>in situ</i> measurement of methyl hydrogen peroxide. Review of Scientific Instruments, 2010, 81, 094102.	0.6	97
106	Analysis of ozone and nitric acid in spring and summer Arctic pollution using aircraft, ground-based, satellite observations and MOZART-4 model: source attribution and partitioning. Atmospheric Chemistry and Physics, 2012, 12, 237-259.	1.9	96
107	Airborne measurements of organosulfates over the continental U.S Journal of Geophysical Research D: Atmospheres, 2015, 120, 2990-3005.	1.2	96
108	Total observed organic carbon (TOOC) in the atmosphere: a synthesis of North American observations. Atmospheric Chemistry and Physics, 2008, 8, 2007-2025.	1.9	94

#	Article	IF	CITATIONS
109	ISS observations offer insights into plant function. Nature Ecology and Evolution, 2017, 1, 194.	3.4	94
110	Importance of biogenic precursors to the budget of organic nitrates: observations of multifunctional organic nitrates by CIMS and TD-LIF during BEARPEX 2009. Atmospheric Chemistry and Physics, 2012, 12, 5773-5785.	1.9	93
111	α-pinene photooxidation under controlled chemical conditions – Part 1: Gas-phase composition in low- and high-NO _x environments. Atmospheric Chemistry and Physics, 2012, 12, 6489-6504.	1.9	93
112	Agricultural fires in the southeastern U.S. during SEAC ⁴ RS: Emissions of trace gases and particles and evolution of ozone, reactive nitrogen, and organic aerosol. Journal of Geophysical Research D: Atmospheres, 2016, 121, 7383-7414.	1.2	93
113	Photodissociation of Peroxynitric Acid in the Near-IR. Journal of Physical Chemistry A, 2002, 106, 3766-3772.	1.1	92
114	On the temperature dependence of organic reactivity, nitrogen oxides, ozone production, and the impact of emission controls in San Joaquin Valley, California. Atmospheric Chemistry and Physics, 2014, 14, 3373-3395.	1.9	92
115	Airborne observations of total RONO ₂ : new constraints on the yield and lifetime of isoprene nitrates. Atmospheric Chemistry and Physics, 2009, 9, 1451-1463.	1.9	91
116	Measured HDO/H2O ratios across the tropical tropopause. Geophysical Research Letters, 2003, 30, .	1.5	89
117	Formation of highly oxygenated low-volatility products from cresol oxidation. Atmospheric Chemistry and Physics, 2017, 17, 3453-3474.	1.9	89
118	OCO-3 early mission operations and initial (vEarly) XCO2 and SIF retrievals. Remote Sensing of Environment, 2020, 251, 112032.	4.6	89
119	Upper tropospheric ozone production from lightning NO <i>_x</i> â€impacted convection: Smoke ingestion case study from the DC3 campaign. Journal of Geophysical Research D: Atmospheres, 2015, 120, 2505-2523.	1.2	88
120	Atmospheric Fate of Methyl Vinyl Ketone: Peroxy Radical Reactions with NO and HO ₂ . Journal of Physical Chemistry A, 2015, 119, 4562-4572.	1.1	87
121	Summertime influence of Asian pollution in the free troposphere over North America. Journal of Geophysical Research, 2007, 112, .	3.3	86
122	Atmospheric greenhouse gases retrieved from SCIAMACHY: comparison to ground-based FTS measurements and model results. Atmospheric Chemistry and Physics, 2012, 12, 1527-1540.	1.9	86
123	Photolysis, OH reactivity and ozone reactivity of a proxy for isoprene-derived hydroperoxyenals (HPALDs). Physical Chemistry Chemical Physics, 2012, 14, 7276.	1.3	86
124	Isoprene NO ₃ Oxidation Products from the RO ₂ + HO ₂ Pathway. Journal of Physical Chemistry A, 2015, 119, 10158-10171.	1.1	86
125	Twilight observations suggest unknown sources of HOx. Geophysical Research Letters, 1999, 26, 1373-1376.	1.5	85
126	Global CO ₂ fluxes inferred from surface air-sample measurements and from TCCON retrievals of the CO ₂ total column. Geophysical Research Letters, 2011, 38, n/a-n/a.	1.5	85

#	Article	IF	CITATIONS
127	First Spectroscopic Observation of Gas-Phase HOONO. Journal of Physical Chemistry A, 2002, 106, 855-859.	1.1	82
128	Reducing the impact of source brightness fluctuations on spectra obtained by Fourier-transform spectrometry. Applied Optics, 2007, 46, 4774.	2.1	80
129	Consistent evaluation of ACOS-GOSAT, BESD-SCIAMACHY, CarbonTracker, and MACC through comparisons to TCCON. Atmospheric Measurement Techniques, 2016, 9, 683-709.	1.2	80
130	Towards constraints on fossil fuel emissions from total column carbon dioxide. Atmospheric Chemistry and Physics, 2013, 13, 4349-4357.	1.9	79
131	Constraints on Aerosol Nitrate Photolysis as a Potential Source of HONO and NO _{<i>x</i>} . Environmental Science & Technology, 2018, 52, 13738-13746.	4.6	79
132	The diurnal variation of hydrogen, nitrogen, and chlorine radicals: Implications for the heterogeneous production of HNO2. Geophysical Research Letters, 1994, 21, 2551-2554.	1.5	76
133	Criegee Intermediates React with Ozone. Journal of Physical Chemistry Letters, 2013, 4, 2525-2529.	2.1	76
134	Observations of total RONO ₂ over the boreal forest: NO _x sinks and HNO ₃ sources. Atmospheric Chemistry and Physics, 2013, 13, 4543-4562.	1.9	76
135	Atmospheric CO2retrieved from ground-based near IR solar spectra. Geophysical Research Letters, 2002, 29, 53-1-53-4.	1.5	75
136	Observation of isoprene hydroxynitrates in the southeastern United States and implications for the fate of NO _{<i>x</i>} . Atmospheric Chemistry and Physics, 2015, 15, 11257-11272.	1.9	75
137	The lifetime of nitrogen oxides in an isoprene-dominated forest. Atmospheric Chemistry and Physics, 2016, 16, 7623-7637.	1.9	75
138	Differential column measurements using compact solar-tracking spectrometers. Atmospheric Chemistry and Physics, 2016, 16, 8479-8498.	1.9	75
139	Mapping carbon monoxide pollution from space down to city scales with daily global coverage. Atmospheric Measurement Techniques, 2018, 11, 5507-5518.	1.2	75
140	Unimolecular Reactions of Peroxy Radicals Formed in the Oxidation of α-Pinene and β-Pinene by Hydroxyl Radicals. Journal of Physical Chemistry A, 2019, 123, 1661-1674.	1.1	75
141	Forecasting global atmospheric CO ₂ . Atmospheric Chemistry and Physics, 2014, 14, 11959-11983.	1.9	74
142	Peroxy radical chemistry and OH radical production during the NO ₃ -initiated oxidation of isoprene. Atmospheric Chemistry and Physics, 2012, 12, 7499-7515.	1.9	72
143	The distribution of hydrogen, nitrogen, and chlorine radicals in the lower stratosphere: Implications for changes in O3due to emission of NOyfrom supersonic aircraft. Geophysical Research Letters, 1994, 21, 2547-2550.	1.5	67
144	Rethinking Ozone Production. Science, 2008, 319, 1624-1625.	6.0	65

#	Article	IF	CITATIONS
145	Tropospheric methane retrieved from ground-based near-IR solar absorption spectra. Geophysical Research Letters, 2003, 30, n/a-n/a.	1.5	64
146	Rapid Hydrogen Shift Scrambling in Hydroperoxy-Substituted Organic Peroxy Radicals. Journal of Physical Chemistry A, 2016, 120, 266-275.	1.1	62
147	Synthesis of the Southeast Atmosphere Studies: Investigating Fundamental Atmospheric Chemistry Questions. Bulletin of the American Meteorological Society, 2018, 99, 547-567.	1.7	62
148	A comparison of observations and model simulations of NOx/NOyin the lower stratosphere. Geophysical Research Letters, 1999, 26, 1153-1156.	1.5	61
149	A tropical West Pacific OH minimum and implications for stratospheric composition. Atmospheric Chemistry and Physics, 2014, 14, 4827-4841.	1.9	60
150	Overview of the Focused Isoprene eXperiment at the California Institute of Technology (FIXCIT): mechanistic chamber studies on the oxidation of biogenic compounds. Atmospheric Chemistry and Physics, 2014, 14, 13531-13549.	1.9	60
151	Identification of OSSO as a nearâ€UV absorber in the Venusian atmosphere. Geophysical Research Letters, 2016, 43, 11,146.	1.5	60
152	SOA formation from the photooxidation ofÂ <i>α</i> -pinene: systematic exploration ofÂthe simulation ofÂchamber data. Atmospheric Chemistry and Physics, 2016, 16, 2785-2802.	1.9	60
153	Sensitivity to grid resolution in the ability of a chemical transport model to simulate observed oxidant chemistry under high-isoprene conditions. Atmospheric Chemistry and Physics, 2016, 16, 4369-4378.	1.9	60
154	Patterns of CO ₂ and radiocarbon across high northern latitudes during International Polar Year 2008. Journal of Geophysical Research, 2011, 116, .	3.3	59
155	Emissions of organic carbon and methane from petroleum and dairy operations in California's San Joaquin Valley. Atmospheric Chemistry and Physics, 2014, 14, 4955-4978.	1.9	59
156	Speciation of OH reactivity above the canopy of an isoprene-dominated forest. Atmospheric Chemistry and Physics, 2016, 16, 9349-9359.	1.9	59
157	Atmospheric Fate of Methacrolein. 2. Formation of Lactone and Implications for Organic Aerosol Production. Journal of Physical Chemistry A, 2012, 116, 5763-5768.	1.1	58
158	Water vapor isotopologue retrievals from high-resolution GOSAT shortwave infrared spectra. Atmospheric Measurement Techniques, 2013, 6, 263-274.	1.2	58
159	Mapping hydroxyl variability throughout the global remote troposphere via synthesis of airborne and satellite formaldehyde observations. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 11171-11180.	3.3	58
160	Kinetics of reactions of ground state nitrogen atoms (4S3/2) with NO and NO2. Journal of Geophysical Research, 1994, 99, 18839.	3.3	57
161	Ozone production chemistry in the presence of urban plumes. Faraday Discussions, 2016, 189, 169-189.	1.6	56
162	Lightning NO _{<i>x</i>} Emissions: Reconciling Measured and Modeled Estimates With Updated NO _{<i>x</i>} Chemistry. Geophysical Research Letters, 2017, 44, 9479-9488.	1.5	56

#	Article	IF	CITATIONS
163	Southern California megacity CO ₂ , CH ₄ , and CO flux estimates using ground- and space-based remote sensing and a Lagrangian model. Atmospheric Chemistry and Physics, 2018, 18, 16271-16291.	1.9	56
164	An analysis of large HNO3-containing particles sampled in the Arctic stratosphere during the winter of 1999/2000. Journal of Geophysical Research, 2002, 107, SOL 41-1.	3.3	55
165	Measurement of atmospheric nitrous acid at Bodgett Forest during BEARPEX2007. Atmospheric Chemistry and Physics, 2010, 10, 6283-6294.	1.9	55
166	Cis-cis and trans-perp HOONO: Action spectroscopy and isomerization kinetics. Journal of Chemical Physics, 2004, 121, 1432-1448.	1.2	54
167	Testing Atmospheric Oxidation in an Alabama Forest. Journals of the Atmospheric Sciences, 2016, 73, 4699-4710.	0.6	54
168	The atmospheric column abundance of IO: Implications for stratospheric ozone. Journal of Geophysical Research, 1997, 102, 8887-8898.	3.3	53
169	Quantifying sources and sinks of reactive gases in the lower atmosphere using airborne flux observations. Geophysical Research Letters, 2015, 42, 8231-8240.	1.5	53
170	A decade of GOSAT Proxy satellite CH ₄ observations. Earth System Science Data, 2020, 12, 3383-3412.	3.7	53
171	On the flux of oxygenated volatile organic compounds from organic aerosol oxidation. Geophysical Research Letters, 2006, 33, .	1.5	50
172	Photooxidation of 2-Methyl-3-Buten-2-ol (MBO) as a Potential Source of Secondary Organic Aerosol. Environmental Science & Technology, 2009, 43, 4647-4652.	4.6	50
173	Hydroxy nitrate production in the OH-initiated oxidation of alkenes. Atmospheric Chemistry and Physics, 2015, 15, 4297-4316.	1.9	50
174	Alkoxy Radical Bond Scissions Explain the Anomalously Low Secondary Organic Aerosol and Organonitrate Yields From α-Pinene + NO ₃ . Journal of Physical Chemistry Letters, 2017, 8, 2826-2834.	2.1	50
175	Methane on Mars and Habitability: Challenges and Responses. Astrobiology, 2018, 18, 1221-1242.	1.5	50
176	Impacts of Traffic Reductions Associated With COVIDâ€19 on Southern California Air Quality. Geophysical Research Letters, 2020, 47, e2020GL090164.	1.5	50
177	Atmospheric Carbon Dioxide Variability in the Community Earth System Model: Evaluation and Transient Dynamics during the Twentieth and Twenty-First Centuries. Journal of Climate, 2013, 26, 4447-4475.	1.2	48
178	Quantifying the loss of processed natural gas within California's South Coast Air Basin using long-term measurements of ethane and methane. Atmospheric Chemistry and Physics, 2016, 16, 14091-14105.	1.9	48
179	Can a "state of the art―chemistry transport model simulate Amazonian tropospheric chemistry?. Journal of Geophysical Research, 2011, 116, .	3.3	47
180	Effects of atmospheric light scattering on spectroscopic observations of greenhouse gases from space. Part 2: Algorithm intercomparison in the GOSAT data processing for CO ₂ retrievals over TCCON sites. Journal of Geophysical Research D: Atmospheres, 2013, 118, 1493-1512.	1.2	46

#	Article	IF	CITATIONS
181	Simultaneous, in situ measurements of OH and HO ₂ in the stratosphere. Geophysical Research Letters, 1990, 17, 1905-1908 Assessment of errors and biases in retrievals of	1.5	45
182	X _{CO₂} , X _{CH₄} , X _{CO} , and X _{N₂O} from a 0.5 cm ^{–1} resolution solar-viewing spectrometer. Atmospheric	1.2	45
183	Methane emissions from dairies in the Los Angeles Basin. Atmospheric Chemistry and Physics, 2017, 17, 7509-7528.	1.9	45
184	Ozone chemistry in western U.S. wildfire plumes. Science Advances, 2021, 7, eabl3648.	4.7	45
185	Observations of large reductions in the NO/NOyratio near the mid-latitude tropopause and the role of heterogeneous chemistry. Geophysical Research Letters, 1996, 23, 3223-3226.	1.5	44
186	Characterization, sources and reactivity of volatile organic compounds (VOCs) in Seoul and surrounding regions during KORUS-AQ. Elementa, 2020, 8, .	1.1	44
187	Calculation of conformationally weighted dipole moments useful in ion–molecule collision rate estimates. Chemical Physics Letters, 2009, 474, 45-50.	1.2	43
188	A regional scale modeling analysis of aerosol and trace gas distributions over the eastern Pacific during the INTEX-B field campaign. Atmospheric Chemistry and Physics, 2010, 10, 2091-2115.	1.9	43
189	Computational Comparison of Different Reagent Ions in the Chemical Ionization of Oxidized Multifunctional Compounds. Journal of Physical Chemistry A, 2018, 122, 269-279.	1.1	43
190	In Situ Measurements of OH and H02in the Upper Troposphere and Stratosphere. Journals of the Atmospheric Sciences, 1995, 52, 3413-3420.	0.6	42
191	Sources, Sinks, and the Distribution of OH in the Lower Stratosphereâ€. Journal of Physical Chemistry A, 2001, 105, 1543-1553.	1.1	42
192	Near IR photolysis of HO2NO2: Implications for HOx. Geophysical Research Letters, 2002, 29, 9-1-9-4.	1.5	42
193	Effects of atmospheric light scattering on spectroscopic observations of greenhouse gases from space: Validation of PPDFâ€based CO ₂ retrievals from GOSAT. Journal of Geophysical Research, 2012, 117, .	3.3	42
194	The covariation of Northern Hemisphere summertime CO ₂ with surface temperature in boreal regions. Atmospheric Chemistry and Physics, 2013, 13, 9447-9459.	1.9	42
195	Simulations of column-averaged CO ₂ and CH ₄ using the NIES TM with a hybrid sigma-isentropic (σ-Î,) vertical coordinate. Atmospheric Chemistry and Physics, 2013, 13, 1713-1732.	1.9	42
196	Societal shifts due to COVID-19 reveal large-scale complexities and feedbacks between atmospheric chemistry and climate change. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	42
197	Comment on: "The measurement of tropospheric OH radicals by laser-induced fluorescence spectroscopy during the POPCORN Field Campaign―by Hofzumahaus et al. and "Intercomparison of tropospheric OH radical measurements by multiple folded long-path laser ab. Geophysical Research Letters, 1997, 24, 3037-3038.	1.5	41
198	Ground-based photon path measurements from solar absorption spectra of the O2 A-band. Journal of Quantitative Spectroscopy and Radiative Transfer, 2005, 90, 309-321.	1.1	41

#	Article	IF	CITATIONS
199	In situ measurements of tropospheric volcanic plumes in Ecuador and Colombia during TC ⁴ . Journal of Geophysical Research, 2011, 116, .	3.3	41
200	Atmospheric Acetaldehyde: Importance of Airâ€Sea Exchange and a Missing Source in the Remote Troposphere. Geophysical Research Letters, 2019, 46, 5601-5613.	1.5	41
201	Cropland Carbon Uptake Delayed and Reduced by 2019 Midwest Floods. AGU Advances, 2020, 1, e2019AV000140.	2.3	41
202	Total Column Carbon Observing Network (TCCON). , 2009, , .		41
203	Monitoring potential photochemical interference in laser-induced fluorescence Measurements of atmospheric OH. Geophysical Research Letters, 1996, 23, 3215-3218.	1.5	40
204	OH, HO2, and NO in two biomass burning plumes: Sources of HOxand implications for ozone production. Geophysical Research Letters, 1997, 24, 3185-3188.	1.5	40
205	Bias corrections of GOSAT SWIR XCO ₂ and XCH ₄ with TCCON data and their evaluation using aircraft measurement data. Atmospheric Measurement Techniques, 2016, 9, 3491-3512.	1.2	40
206	The NASA Atmospheric Tomography (ATom) Mission: Imaging the Chemistry of the Global Atmosphere. Bulletin of the American Meteorological Society, 2022, 103, E761-E790.	1.7	39
207	Lee-wave clouds and denitrification of the polar stratosphere. Geophysical Research Letters, 2002, 29, 36-1-36-4.	1.5	38
208	An analysis of fast photochemistry over high northern latitudes during spring and summer using in-situ observations from ARCTAS and TOPSE. Atmospheric Chemistry and Physics, 2012, 12, 6799-6825.	1.9	38
209	Production and Fate of C ₄ Dihydroxycarbonyl Compounds from Isoprene Oxidation. Journal of Physical Chemistry A, 2016, 120, 106-117.	1.1	38
210	Are models of catalytic removal of O3by HOxaccurate? Constraints from in situ measurements of the OH to HO2ratio. Geophysical Research Letters, 1994, 21, 2539-2542.	1.5	37
211	Comparison of modeled and observed values of NO2and JNO2during the Photochemistry of Ozone Loss in the Arctic Region in Summer (POLARIS) mission. Journal of Geophysical Research, 1999, 104, 26687-26703.	3.3	36
212	Fractionation of14N15N16O and15N14N16O during photolysis at 213 nm. Geophysical Research Letters, 2000, 27, 2481-2484.	1.5	36
213	Calibration of sealed HCl cells used for TCCON instrumental line shape monitoring. Atmospheric Measurement Techniques, 2013, 6, 3527-3537.	1.2	36
214	Constraining remote oxidation capacity with ATom observations. Atmospheric Chemistry and Physics, 2020, 20, 7753-7781.	1.9	36
215	The response of ClO radical concentrations to variations in NO2radical concentrations in the lower stratosphere. Geophysical Research Letters, 1994, 21, 2543-2546.	1.5	35
216	A method for colocating satellite <i>X</i> _{CO₂&ar}	np;lt;/sub{	&aŋg;gt;

data to ground-based data and its application to ACOS-GOSAT and TCCON. Atmospheric Measurement Techniques, 2014, 7, 2631-2644.

#	Article	IF	CITATIONS
217	The Orbiting Carbon Observatory (OCO-2) tracks 2–3 peta-gram increase in carbon release to the atmosphere during the 2014–2016 El Niño. Scientific Reports, 2017, 7, 13567.	1.6	35
218	Observed NO/NO ₂ Ratios in the Upper Troposphere Imply Errors in NOâ€NO ₂ â€O ₃ Cycling Kinetics or an Unaccounted NO _x Reservoir. Geophysical Research Letters, 2018, 45, 4466-4474.	1.5	34
219	Rapid hydrolysis of tertiary isoprene nitrate efficiently removes NO _x from the atmosphere. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 33011-33016.	3.3	34
220	Correcting model biases of CO in East Asia: impact on oxidant distributions during KORUS-AQ. Atmospheric Chemistry and Physics, 2020, 20, 14617-14647.	1.9	34
221	Impact of the deep convection of isoprene and other reactive trace species on radicals and ozone in the upper troposphere. Atmospheric Chemistry and Physics, 2012, 12, 1135-1150.	1.9	33
222	Global land mapping of satellite-observed CO ₂ total columns using spatio-temporal geostatistics. International Journal of Digital Earth, 2017, 10, 426-456.	1.6	33
223	Kinetics and Product Yields of the OH Initiated Oxidation of Hydroxymethyl Hydroperoxide. Journal of Physical Chemistry A, 2018, 122, 6292-6302.	1.1	33
224	Intensity of the second and third OH overtones of H2O2, HNO3, and HO2NO2. Journal of Geophysical Research, 2000, 105, 14593-14598.	3.3	32
225	Atmospheric Methane Emissions Correlate With Natural Gas Consumption From Residential and Commercial Sectors in Los Angeles. Geophysical Research Letters, 2019, 46, 8563-8571.	1.5	32
226	New Insights into the Radical Chemistry and Product Distribution in the OH-Initiated Oxidation of Benzene. Environmental Science & amp; Technology, 2020, 54, 13467-13477.	4.6	32
227	Chemical transport models often underestimate inorganic aerosol acidity in remote regions of the atmosphere. Communications Earth & Environment, 2021, 2, .	2.6	32
228	Observation-based modeling of ozone chemistry in the Seoul metropolitan area during the Korea-United States Air Quality Study (KORUS-AQ). Elementa, 2020, 8, .	1.1	32
229	Near-UV photolysis cross sections of CH ₃ OOH and HOCH ₂ OOH determined via action spectroscopy. Atmospheric Chemistry and Physics, 2007, 7, 713-720.	1.9	31
230	Convective distribution of tropospheric ozone and tracers in the Central American ITCZ region: Evidence from observations during TC4. Journal of Geophysical Research, 2010, 115, .	3.3	31
231	Intramolecular Hydrogen Shift Chemistry of Hydroperoxy-Substituted Peroxy Radicals. Journal of Physical Chemistry A, 2019, 123, 590-600.	1.1	31
232	Decadal changes in summertime reactive oxidized nitrogen and surface ozone over the Southeast United States. Atmospheric Chemistry and Physics, 2018, 18, 2341-2361.	1.9	30
233	Semi-autonomous sounding selection for OCO-2. Atmospheric Measurement Techniques, 2013, 6, 2851-2864.	1.2	29
234	Wet scavenging of soluble gases in DC3 deep convective storms using WRFâ€Chem simulations and aircraft observations. Journal of Geophysical Research D: Atmospheres, 2016, 121, 4233-4257.	1.2	29

#	Article	IF	CITATIONS
235	Evaluation of seasonal atmosphere–biosphere exchange estimations with TCCON measurements. Atmospheric Chemistry and Physics, 2013, 13, 5103-5115.	1.9	28
236	Derivation of tropospheric methane from TCCON CH ₄ and HF total column observations. Atmospheric Measurement Techniques, 2014, 7, 2907-2918.	1.2	28
237	On the stratospheric chemistry of hydrogen cyanide. Geophysical Research Letters, 2006, 33, .	1.5	26
238	OH-Stretch Vibrational Spectroscopy of Hydroxymethyl Hydroperoxide. Journal of Physical Chemistry A, 2006, 110, 7072-7079.	1.1	26
239	CH ₄ , CO, and H ₂ O spectroscopy for the Sentinel-5 Precursor mission: an assessment with the Total Carbon Column Observing Network measurements. Atmospheric Measurement Techniques, 2012, 5, 1387-1398.	1.2	26
240	Simulating reactive nitrogen, carbon monoxide, and ozone in California during ARCTAS-CARB 2008 with high wildfire activity. Atmospheric Environment, 2016, 128, 28-44.	1.9	26
241	Improved Constraints on Northern Extratropical CO ₂ Fluxes Obtained by Combining Surfaceâ€Based and Spaceâ€Based Atmospheric CO ₂ Measurements. Journal of Geophysical Research D: Atmospheres, 2020, 125, e2019JD032029.	1.2	26
242	Unimolecular Reactions Following Indoor and Outdoor Limonene Ozonolysis. Journal of Physical Chemistry A, 2021, 125, 669-680.	1.1	26
243	Simultaneous, in situ measurements of OH, HO ₂ , O ₃ , and H ₂ O: A test of modeled stratospheric HO _x chemistry. Geophysical Research Letters, 1990, 17, 1909-1912.	1.5	25
244	Evolution and stoichiometry of heterogeneous processing in the Antarctic stratosphere. Journal of Geophysical Research, 1997, 102, 13235-13253.	3.3	25
245	Novel Aerosol/Gas Inlet for Aircraft-Based Measurements. Aerosol Science and Technology, 2003, 37, 828-840.	1.5	25
246	Recent changes in the air-sea gas exchange of methyl chloroform. Geophysical Research Letters, 2004, 31, .	1.5	25
247	Long-range pollution transport during the MILAGRO-2006 campaign: a case study of a major Mexico City outflow event using free-floating altitude-controlled balloons. Atmospheric Chemistry and Physics, 2010, 10, 7137-7159.	1.9	25
248	Missing OH reactivity in the global marine boundary layer. Atmospheric Chemistry and Physics, 2020, 20, 4013-4029.	1.9	25
249	The NOxâ^'HNO3System in the Lower Stratosphere:Â Insights from In Situ Measurements and Implications of theJHNO3â^'[OH] Relationship. Journal of Physical Chemistry A, 2001, 105, 1521-1534.	1.1	24
250	A compact, lightweight gas standards generator for permeation tubes. Review of Scientific Instruments, 2003, 74, 3151-3154.	0.6	24
251	Radicals follow the Sun. Nature, 2006, 442, 145-146.	13.7	24
252	GFIT2: an experimental algorithm for vertical profile retrieval from near-IR spectra. Atmospheric Measurement Techniques, 2016, 9, 3513-3525.	1.2	24

#	Article	IF	CITATIONS
253	Convective transport and scavenging of peroxides by thunderstorms observed over the central U.S. during DC3. Journal of Geophysical Research D: Atmospheres, 2016, 121, 4272-4295.	1.2	24
254	Seasonal variability of stratospheric methane: implications for constraining tropospheric methane budgets using total column observations. Atmospheric Chemistry and Physics, 2016, 16, 14003-14024.	1.9	24
255	Observational Constraints on the Response of High‣atitude Northern Forests to Warming. AGU Advances, 2020, 1, e2020AV000228.	2.3	24
256	Improved retrieval of gas abundances from near-infrared solar FTIR spectra measured at the Karlsruhe TCCON station. Atmospheric Measurement Techniques, 2016, 9, 669-682.	1.2	23
257	Observational Constraints on the Oxidation of NOx in the Upper Troposphere. Journal of Physical Chemistry A, 2016, 120, 1468-1478.	1.1	23
258	Low-pressure gas chromatography with chemical ionization mass spectrometry for quantification of multifunctional organic compounds in the atmosphere. Atmospheric Measurement Techniques, 2018, 11, 6815-6832.	1.2	23
259	Exploring Oxidation in the Remote Free Troposphere: Insights From Atmospheric Tomography (ATom). Journal of Geophysical Research D: Atmospheres, 2020, 125, e2019JD031685.	1.2	23
260	Quantitative constraints on the atmospheric chemistry of nitrogen oxides: An analysis along chemical coordinates. Journal of Geophysical Research, 2000, 105, 24283-24304.	3.3	22
261	Multi-scale modeling study of the source contributions to near-surface ozone and sulfur oxides levels over California during the ARCTAS-CARB period. Atmospheric Chemistry and Physics, 2011, 11, 3173-3194.	1.9	22
262	Emissions and topographic effects on column CO 2 () variations, with a focus on the Southern California Megacity. Journal of Geophysical Research D: Atmospheres, 2017, 122, 7200-7215.	1.2	22
263	Intercomparison of OH and OH reactivity measurements in a high isoprene and low NO environment during the Southern Oxidant and Aerosol Study (SOAS). Atmospheric Environment, 2018, 174, 227-236.	1.9	22
264	Aerosol scattering effects on water vapor retrievals over the Los Angeles Basin. Atmospheric Chemistry and Physics, 2017, 17, 2495-2508.	1.9	21
265	Evaluation of MOPITT VersionÂ7 joint TIR–NIR X _{CO} retrievals with TCCON. Atmospheric Measurement Techniques, 2019, 12, 5547-5572.	1.2	21
266	Airborne formaldehyde and volatile organic compound measurements over the Daesan petrochemical complex on Korea's northwest coast during the Korea-United States Air Quality study. Elementa, 2020, 8, .	1.1	21
267	Comparison of XH2O Retrieved from GOSAT Short-Wavelength Infrared Spectra with Observations from the TCCON Network. Remote Sensing, 2016, 8, 414.	1.8	20
268	The role of HOxin super- and subsonic aircraft exhaust plumes. Geophysical Research Letters, 1997, 24, 65-68.	1.5	19
269	Stereoselectivity in Atmospheric Autoxidation. Journal of Physical Chemistry Letters, 2019, 10, 6260-6266.	2.1	19
270	Inferring ozone production in an urban atmosphere using measurements of peroxynitric acid. Atmospheric Chemistry and Physics, 2009, 9, 3697-3707.	1.9	18

#	Article	IF	CITATIONS
271	Drivers of column-average CO ₂ variability at Southern Hemispheric Total Carbon Column Observing Network sites. Atmospheric Chemistry and Physics, 2014, 14, 9883-9901.	1.9	18
272	Quantification of hydroxyacetone and glycolaldehyde using chemical ionization mass spectrometry. Atmospheric Chemistry and Physics, 2014, 14, 4251-4262.	1.9	17
273	An 11-year record of XCO ₂ estimates derived from GOSAT measurements using the NASA ACOS version 9 retrieval algorithm. Earth System Science Data, 2022, 14, 325-360.	3.7	17
274	Ozone destruction and production rates between spring and autumn in the Arctic stratosphere. Geophysical Research Letters, 2000, 27, 2605-2608.	1.5	16
275	Establishing the Dependence of [HO2]/[OH] on Temperature, Halogen Loading, O3, and NOxBased on in Situ Measurements from the NASA ER-2â€. Journal of Physical Chemistry A, 2001, 105, 1535-1542.	1.1	16
276	Comparison of ER-2 aircraft and POAM III, MLS, and SAGE II satellite measurements during SOLVE using traditional correlative analysis and trajectory hunting technique. Journal of Geophysical Research, 2002, 107, SOL 58-1-SOL 58-19.	3.3	16
277	Intercomparability of X _{CO₂} and X _{CH₄} from the United States TCCON sites. Atmospheric Measurement Techniques. 2017. 10. 1481-1493.	1.2	16
278	Hydrotrioxide (ROOOH) formation in the atmosphere. Science, 2022, 376, 979-982.	6.0	16
279	Balloon borne inâ€situ detection of OH in the stratosphere from 37 to 23 km. Geophysical Research Letters, 1989, 16, 1433-1436.	1.5	15
280	Infrared measurements of atmospheric CH3CN. Geophysical Research Letters, 2005, 32, .	1.5	15
281	Trend in ice moistening the stratosphere – constraints from isotope data of water and methane. Atmospheric Chemistry and Physics, 2010, 10, 201-207.	1.9	15
282	Comparing atmospheric [HO2]/[OH] to modeled [HO2]/[OH]: Identifying discrepancies with reaction rates. Geophysical Research Letters, 2001, 28, 967-970.	1.5	14
283	Near-IR photodissociation of peroxy acetyl nitrate. Atmospheric Chemistry and Physics, 2005, 5, 385-392.	1.9	14
284	Vibrational overtone initiated unimolecular dissociation of HOCH2OOH and HOCD2OOH: Evidence for mode selective behavior. Journal of Chemical Physics, 2008, 128, 184306.	1.2	14
285	Meteorological and air quality forecasting using the WRF–STEM model during the 2008 ARCTAS field campaign. Atmospheric Environment, 2011, 45, 6901-6910.	1.9	14
286	OH in the tropical upper troposphere and its relationships to solar radiation and reactive nitrogen. Journal of Atmospheric Chemistry, 2014, 71, 55-64.	1.4	14
287	Science of the Environmental Chamber. , 2017, , 1-93.		12
288	H ₂ O ₂ and CH ₃ OOH (MHP) in the Remote Atmosphere: 1. Global Distribution and Regional Influences. Journal of Geophysical Research D: Atmospheres, 2022, 127, .	1.2	11

#	Article	IF	CITATIONS
289	Regional and Urban Column CO Trends and Anomalies as Observed by MOPITT Over 16ÂYears. Journal of Geophysical Research D: Atmospheres, 2021, 126, e2020JD033967.	1.2	10
290	Hydroxymethanesulfonate (HMS) Formation during Summertime Fog in an Arctic Oil Field. Environmental Science and Technology Letters, 2021, 8, 511-518.	3.9	9
291	Photochemical evolution of the 2013 California Rim Fire: synergistic impacts of reactive hydrocarbons and enhanced oxidants. Atmospheric Chemistry and Physics, 2022, 22, 4253-4275.	1.9	9
292	Corrigendum to "The ACOS CO ₂ retrieval algorithm – Part 1: Description and validation against synthetic observations" published in Atmos. Meas. Tech., 5, 99–121, 2012. Atmospheric Measurement Techniques, 2012, 5, 193-193.	1.2	8
293	Investigation of a potential HCHO measurement artifact from ISOPOOH. Atmospheric Measurement Techniques, 2016, 9, 4561-4568.	1.2	8
294	Inorganic chlorine partitioning in the summer lower stratosphere: Modeled and measured [CIONO2]/[HCl] during POLARIS. Journal of Geophysical Research, 2001, 106, 1713-1732.	3.3	7
295	Stratospheric Aerosol Sampling: Effect of a Blunt-Body Housing on Inlet Sampling Characteristics. Aerosol Science and Technology, 2004, 38, 1080-1090.	1.5	7
296	Characteristics of greenhouse gas concentrations derived from ground-based FTS spectra at Anmyeondo, South Korea. Atmospheric Measurement Techniques, 2018, 11, 2361-2374.	1.2	7
297	H ₂ O ₂ and CH ₃ OOH (MHP) in the Remote Atmosphere: 2. Physical and Chemical Controls. Journal of Geophysical Research D: Atmospheres, 2022, 127, .	1.2	7
298	Trajectory studies of large HNO3-containing PSC particles in the Arctic: Evidence for the role of NAT. Geophysical Research Letters, 2004, 31, n/a-n/a.	1.5	6
299	The impact of spectral resolution on satellite retrieval accuracy of CO ₂ and CH ₄ . Atmospheric Measurement Techniques, 2014, 7, 1105-1119.	1.2	6
300	Observations of Volatile Organic Compounds in the Los Angeles Basin during COVID-19. ACS Earth and Space Chemistry, 2021, 5, 3045-3055.	1.2	6
301	Observations of atmospheric oxidation and ozone production in South Korea. Atmospheric Environment, 2022, 269, 118854.	1.9	6
302	Vertical Transport, Entrainment, and Scavenging Processes Affecting Trace Gases in a Modeled and Observed SEAC 4 RS Case Study. Journal of Geophysical Research D: Atmospheres, 2020, 125, e2019JD031957.	1.2	5
303	Improvements to a laser-induced fluorescence instrument for measuring SO ₂ – impact on accuracy and precision. Atmospheric Measurement Techniques, 2021, 14, 2429-2439.	1.2	5
304	Impact of stratospheric air and surface emissions on tropospheric nitrous oxide during ATom. Atmospheric Chemistry and Physics, 2021, 21, 11113-11132.	1.9	5
305	Boundary layer versus free tropospheric submicron particle formation: A case study from NASA DC-8 observations in the Asian continental outflow during the KORUS-AQ campaign. Atmospheric Research, 2021, 264, 105857.	1.8	4
306	FORest Canopy Atmosphere Transfer (FORCAsT) 2.0: model updates and evaluation with observations at a mixed forest site. Geoscientific Model Development, 2021, 14, 6309-6329.	1.3	4

#	Article	IF	CITATIONS
307	Solar Occultation FTIR Spectrometry at Mars for Trace Gas Detection: A Sensitivity Study. Earth and Space Science, 2019, 6, 836-860.	1.1	3
308	Hydrocarbon Tracers Suggest Methane Emissions from Fossil Sources Occur Predominately Before Gas Processing and That Petroleum Plays Are a Significant Source. Environmental Science & Technology, 0, , .	4.6	3
309	Chapter 14 Chemistry of HOx radicals in the upper troposphere. Developments in Environmental Science, 2002, 1, 393-433.	0.5	1
310	Response to Comment on "Unexpected Epoxide Formation in the Gas-Phase Photooxidation of Isoprene― Science, 2010, 327, 644-644.	6.0	1
311	Corrigendum to "Measurement of atmospheric nitrous acid at Blodgett Forest during BEARPEX2007" published in Atmos. Chem. Phys., 10, 6283-6294, 2010. Atmospheric Chemistry and Physics, 2010, 10, 6501-6501.	1.9	0
312	Correction of Ghosts in FTIR spectra. , 2015, , .		0
313	James G. Anderson Tribute. Journal of Physical Chemistry A, 2016, 120, 1317-1319.	1.1	Ο