
Karen Schindler

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/532657/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Predicting embryonic aneuploidy rate in IVF patients using whole-exome sequencing. Human Genetics, 2022, 141, 1615-1627.	3.8	9
2	Using ZINC08918027 inhibitor to determine Aurora kinase-chromosomal passenger complex isoforms in mouse oocytes. BMC Research Notes, 2022, 15, 96.	1.4	0
3	Acentriolar spindle assembly in mammalian female meiosis and the consequences of its perturbations on human reproduction. Biology of Reproduction, 2022, 106, 253-263.	2.7	14
4	Analysis of DNA variants in miRNAs and miRNA 3'UTR binding sites in female infertility patients. Laboratory Investigation, 2021, 101, 503-512.	3.7	10
5	Meiosis interrupted: the genetics of female infertility via meiotic failure. Reproduction, 2021, 161, R13-R35.	2.6	44
6	Origins and mechanisms leading to aneuploidy in human eggs. Prenatal Diagnosis, 2021, 41, 620-630.	2.3	33
7	Aurora kinase A is essential for meiosis in mouse oocytes. PLoS Genetics, 2021, 17, e1009327.	3.5	35
8	Human MLH1/3 variants causing aneuploidy, pregnancy loss, and premature reproductive aging. Nature Communications, 2021, 12, 5005.	12.8	13
9	Aurora kinase B inhibits aurora kinase A to control maternal mRNA translation in mouse oocytes. Development (Cambridge), 2021, 148, .	2.5	8
10	Ageâ€dependent integrity of the meiotic spindle assembly checkpoint in females requires Aurora kinase B. Aging Cell, 2021, 20, e13489.	6.7	19
11	Inhibition of BIN2 extends reproductive lifespan. Nature Aging, 2021, 1, 977-979.	11.6	0
12	An analog-sensitive allele of Aurora kinase B is lethal in mouse. MicroPublication Biology, 2021, 2021, .	0.1	0
13	Unscrambling the oocyte and the egg: clarifying terminology of the female gamete in mammals. Molecular Human Reproduction, 2020, 26, 797-800.	2.8	8
14	Sirtuins in female meiosis and in reproductive longevity. Molecular Reproduction and Development, 2020, 87, 1175-1187.	2.0	12
15	Aurora B and C kinases regulate chromosome desynapsis and segregation during mouse and human spermatogenesis. Journal of Cell Science, 2020, 133, .	2.0	19
16	Exome sequencing links <i>CEP120</i> mutation to maternally derived aneuploid conception risk. Human Reproduction, 2020, 35, 2134-2148.	0.9	15
17	Aurora kinase mRNA expression is reduced with increasing gestational age and in severe early onset fetal growth restriction. Placenta, 2020, 95, 53-61.	1.5	7
18	Vitrification-induced activation of lysosomal cathepsin B perturbs spindle assembly checkpoint function in mouse oocytes. Molecular Human Reproduction, 2020, 26, 689-701.	2.8	13

KAREN SCHINDLER

#	Article	IF	CITATIONS
19	Mathematical modeling of human oocyte aneuploidy. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 10455-10464.	7.1	16
20	SIRT7 promotes chromosome synapsis during prophase I of female meiosis. Chromosoma, 2019, 128, 369-383.	2.2	14
21	Using Mouse Oocytes to Assess Human Gene Function During Meiosis I. Journal of Visualized Experiments, 2018, , .	0.3	1
22	Genetic Interactions between the Aurora Kinases Reveal New Requirements for AURKB and AURKC during Oocyte Meiosis. Current Biology, 2018, 28, 3458-3468.e5.	3.9	49
23	Immunofluorescence Technique to Detect Subcellular Structures Critical to Oocyte Maturation. Methods in Molecular Biology, 2018, 1818, 67-76.	0.9	9
24	Maternal RNA regulates Aurora C kinase during mouse oocyte maturation in a translation-independent fashionâ€. Biology of Reproduction, 2017, 96, 1197-1209.	2.7	5
25	Specialize and Divide (Twice): Functions of Three Aurora Kinase Homologs in Mammalian Oocyte Meiotic Maturation. Trends in Genetics, 2017, 33, 349-363.	6.7	40
26	Identification and characterization of Aurora kinase B and C variants associated with maternal aneuploidy. Molecular Human Reproduction, 2017, 23, 406-416.	2.8	30
27	Haspin inhibition reveals functional differences of interchromatid axis–localized AURKB and AURKC. Molecular Biology of the Cell, 2017, 28, 2233-2240.	2.1	10
28	The chromosomal basis of meiotic acentrosomal spindle assembly and function in oocytes. Chromosoma, 2017, 126, 351-364.	2.2	37
29	Characterization of macrozoospermia-associated AURKC mutations in a mammalian meiotic system. Human Molecular Genetics, 2016, 25, ddw128.	2.9	14
30	Haspin kinase regulates microtubule-organizing center clustering and stability through Aurora kinase C in mouse oocytes. Journal of Cell Science, 2016, 129, 3648-3660.	2.0	46
31	Functions of Aurora kinase C in meiosis and cancer. Frontiers in Cell and Developmental Biology, 2015, 3, 50.	3.7	55
32	Expression and characterization of three Aurora kinase C splice variants found in human oocytes. Molecular Human Reproduction, 2015, 21, 633-644.	2.8	20
33	RBBP4 Regulates Histone Deacetylation and Bipolar Spindle Assembly During Oocyte Maturation in the Mouse1. Biology of Reproduction, 2015, 92, 105.	2.7	31
34	Selective Disruption of Aurora C Kinase Reveals Distinct Functions from Aurora B Kinase during Meiosis in Mouse Oocytes. PLoS Genetics, 2014, 10, e1004194.	3.5	99
35	Knockdown of RBBP7 unveils a requirement of histone deacetylation for CPC function in mouse oocytes. Cell Cycle, 2014, 13, 600-611.	2.6	30
36	Phosphorylation of threonine 3 on histone H3 by Haspin kinase is required for meiosis I in mouse ocytes. Journal of Cell Science, 2014, 127, 5066-78.	2.0	47

KAREN SCHINDLER

#	Article	IF	CITATIONS
37	Cdc25A activity is required for the metaphase II arrest in mouse oocytes. Journal of Cell Science, 2013, 126, 1081-1085.	2.0	35
38	Maternally recruited Aurora C kinase is more stable than Aurora B to support mouse oocyte maturation and early development. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, E2215-22.	7.1	79
39	Mouse Oocyte Microinjection, Maturation and Ploidy Assessment. Journal of Visualized Experiments, 2011, , .	0.3	51
40	Aurora kinase roles in idiosyncratic mitoses: The same, but different. Cell Cycle, 2011, 10, 23-22.	2.6	1
41	Protein Kinases and Protein Phosphatases that Regulate Meiotic Maturation in Mouse Oocytes. Results and Problems in Cell Differentiation, 2011, 53, 309-341.	0.7	27
42	Evidence that Weakened Centromere Cohesion Is a Leading Cause of Age-Related Aneuploidy in Oocytes. Current Biology, 2010, 20, 1522-1528.	3.9	330
43	CDC14B Acts Through FZR1 (CDH1) to Prevent Meiotic Maturation of Mouse Oocytes1. Biology of Reproduction, 2009, 80, 795-803.	2.7	66
44	Over-expression of CDC14B causes mitotic arrest and inhibits zygotic genome activation in mouse preimplantation embryos. Cell Cycle, 2009, 8, 3904-3913.	2.6	13
45	Aurora kinase B modulates chromosome alignment in mouse oocytes. Molecular Reproduction and Development, 2009, 76, 1094-1105.	2.0	78
46	The CDC14A phosphatase regulates oocyte maturation in mouse. Cell Cycle, 2009, 8, 1090-1098.	2.6	33
47	Arg-Pro-X-Ser/Thr Is a Consensus Phosphoacceptor Sequence for the Meiosis-Specific Ime2 Protein Kinase inSaccharomyces cerevisiaeâ€. Biochemistry, 2007, 46, 271-278.	2.5	22
48	Phosphorylation of Ime2 Regulates Meiotic Progression in Saccharomyces cerevisiae*. Journal of Biological Chemistry, 2006, 281, 18307-18316.	3.4	36
49	Phosphorylation of histone H4 Ser1 regulates sporulation in yeast and is conserved in fly and mouse spermatogenesis. Genes and Development, 2006, 20, 2580-2592.	5.9	94
50	The Cdk-Activating Kinase Cak1p Promotes Meiotic S Phase through Ime2p. Molecular and Cellular Biology, 2003, 23, 8718-8728.	2.3	38
51	CAK1 Promotes Meiosis and Spore Formation in Saccharomyces cerevisiae in a CDC28 -Independent Fashion. Molecular and Cellular Biology, 2002, 22, 57-68.	2.3	43
52	Geochemistry and microbial diversity of a trichloroethene-contaminated Superfund site undergoing intrinsic in situ reductive dechlorination. FEMS Microbiology Ecology, 2002, 40, 123-134.	2.7	44