Junsuke Uwada

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5326544/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Evaluation of radiolabeled acetylcholine synthesis and release in rat striatum. Journal of Neurochemistry, 2022, 160, 342-355.	3.9	3
2	Profiles of 5α-Reduced Androgens in Humans and Eels: 5α-Dihydrotestosterone and 11-Ketodihydrotestosterone Are Active Androgens Produced in Eel Gonads. Frontiers in Endocrinology, 2021, 12, 657360.	3.5	9
3	11-Ketotestosterone is a major androgen produced in porcine adrenal glands and testes. Journal of Steroid Biochemistry and Molecular Biology, 2021, 210, 105847.	2.5	12
4	Pleiotropic effects of probenecid on three-dimensional cultures of prostate cancer cells. Life Sciences, 2021, 278, 119554.	4.3	5
5	Analyses of Molecular Characteristics and Enzymatic Activities of Ovine HSD17B3. Animals, 2021, 11, 2876.	2.3	2
6	Evaluation of 17β-hydroxysteroid dehydrogenase activity using androgen receptor-mediated transactivation. Journal of Steroid Biochemistry and Molecular Biology, 2020, 196, 105493.	2.5	20
7	β-Hydroxybutyrate enhances the cytotoxic effect of cisplatin via the inhibition of HDAC/survivin axis in human hepatocellular carcinoma cells. Journal of Pharmacological Sciences, 2020, 142, 1-8.	2.5	28
8	PNU-120596, a positive allosteric modulator of α7 nicotinic acetylcholine receptor, directly inhibits p38 MAPK. Biochemical Pharmacology, 2020, 182, 114297.	4.4	8
9	AR420626, a selective agonist of GPR41/FFA3, suppresses growth of hepatocellular carcinoma cells by inducing apoptosis <i>via</i> HDAC inhibition. Therapeutic Advances in Medical Oncology, 2020, 12, 175883592091343.	3.2	15
10	Short-chain fatty acid mitigates adenine-induced chronic kidney disease via FFA2 and FFA3 pathways. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2020, 1865, 158666.	2.4	13
11	Store-operated calcium entry (SOCE) contributes to phosphorylation of p38 MAPK and suppression of TNF-α signalling in the intestinal epithelial cells. Cellular Signalling, 2019, 63, 109358.	3.6	9
12	Augmentation of Endogenous Acetylcholine Uptake and Cholinergic Facilitation of Hippocampal Long-Term Potentiation by Acetylcholinesterase Inhibition. Neuroscience, 2019, 404, 39-47.	2.3	18
13	Transcriptional Regulation of Ovarian Steroidogenic Genes: Recent Findings Obtained from Stem Cell-Derived Steroidogenic Cells. BioMed Research International, 2019, 2019, 1-13.	1.9	19
14	Cyclooxygenaseâ€2 is acutely induced by CCAAT/enhancerâ€binding protein β to produce prostaglandin E 2 and F 2α following gonadotropin stimulation in Leydig cells. Molecular Reproduction and Development, 2019, 86, 786-797.	2.0	7
15	β-Hydroxybutyrate, a ketone body, reduces the cytotoxic effect of cisplatin via activation of HDAC5 in human renal cortical epithelial cells. Life Sciences, 2019, 222, 125-132.	4.3	21
16	Novel regulatory systems for acetylcholine release in rat striatum and antiâ€Alzheimer's disease drugs. Journal of Neurochemistry, 2019, 149, 605-623.	3.9	13
17	The Role of Cysteine String Protein α Phosphorylation at Serine 10 and 34 by Protein Kinase Cγ for Presynaptic Maintenance. Journal of Neuroscience, 2018, 38, 278-290.	3.6	14
18	A short-chain fatty acid, propionate, enhances the cytotoxic effect of cisplatin by modulating GPR41 signaling pathways in HepG2 cells. Oncotarget, 2018, 9, 31342-31354.	1.8	40

Junsuke Uwada

#	Article	IF	CITATIONS
19	A New Aspect of Cholinergic Transmission in the Central Nervous System. , 2018, , 45-58.		10
20	Activation of muscarinic receptors prevents TNF-α-mediated intestinal epithelial barrier disruption through p38 MAPK. Cellular Signalling, 2017, 35, 188-196.	3.6	30
21	Diethylstilbestrol administration inhibits theca cell androgen and granulosa cell estrogen production in immature rat ovary. Scientific Reports, 2017, 7, 8374.	3.3	15
22	Regulation of synaptic acetylcholine concentrations by acetylcholine transport in rat striatal cholinergic transmission. Journal of Neurochemistry, 2017, 143, 76-86.	3.9	10
23	Induction of steroidogenic cells from adult stem cells and pluripotent stem cells [Review]. Endocrine Journal, 2016, 63, 943-951.	1.6	11
24	Pharmacological evidence of specific acetylcholine transport in rat cerebral cortex and other brain regions. Journal of Neurochemistry, 2016, 139, 566-575.	3.9	13
25	Activation of muscarinic cholinoceptor ameliorates tumor necrosis factorâ€Î±â€induced barrier dysfunction in intestinal epithelial cells. FEBS Letters, 2015, 589, 3640-3647.	2.8	19
26	Muscarinic cholinoceptor-mediated activation of JNK negatively regulates intestinal secretion in mice. Journal of Pharmacological Sciences, 2015, 127, 150-153.	2.5	2
27	Regulation of Steroidogenesis, Development, and Cell Differentiation by Steroidogenic Factor-1 and Liver Receptor Homolog-1. Zoological Science, 2015, 32, 323.	0.7	28
28	Intracellular localization of M1 muscarinic acetylcholine receptor through clathrin-dependent constitutive internalization via a C-terminal tryptophan-based motif. Journal of Cell Science, 2014, 127, 3131-40.	2.0	20
29	Pharmacologically distinct phenotypes of <scp>α_{1B}</scp> â€edrenoceptors: variation in binding and functional affinities for antagonists. British Journal of Pharmacology, 2014, 171, 4890-4901.	5.4	7
30	Activation of focal adhesion kinase via M1 muscarinic acetylcholine receptor is required in restitution of intestinal barrier function after epithelial injury. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2014, 1842, 635-645.	3.8	18
31	M1 is a major subtype of muscarinic acetylcholine receptors on mouse colonic epithelial cells. Journal of Gastroenterology, 2013, 48, 885-896.	5.1	22
32	Comparison of subcellular distribution and functions between exogenous and endogenous M1 muscarinic acetylcholine receptors. Life Sciences, 2013, 93, 17-23.	4.3	4
33	Novel contribution of cell surface and intracellular M1â€muscarinic acetylcholine receptors to synaptic plasticity in hippocampus. Journal of Neurochemistry, 2013, 126, 360-371.	3.9	29
34	Agonist pharmacology at recombinant α _{1A} ―and α _{1L} â€adrenoceptors and in lower urinary tract α ₁ â€adrenoceptors. British Journal of Pharmacology, 2013, 170, 1242-1252.	5.4	10
35	Regional quantification of muscarinic acetylcholine receptors and βâ€adrenoceptors in human airways. British Journal of Pharmacology, 2012, 166, 1804-1814.	5.4	51
36	Phenotype pharmacology of lower urinary tract α ₁ â€adrenoceptors. British Journal of Pharmacology, 2012, 165, 1226-1234.	5.4	14

Junsuke Uwada

#	Article	IF	CITATIONS
37	Re-Evaluation of Nicotinic Acetylcholine Receptors in Rat Brain by a Tissue-Segment Binding Assay. Frontiers in Pharmacology, 2011, 2, 65.	3.5	4
38	Intracellular distribution of functional M ₁ â€muscarinic acetylcholine receptors in N1Eâ€115 neuroblastoma cells. Journal of Neurochemistry, 2011, 118, 958-967.	3.9	16
39	Influence of Tissue Integrity on Pharmacological Phenotypes of Muscarinic Acetylcholine Receptors in the Rat Cerebral Cortex. Journal of Pharmacology and Experimental Therapeutics, 2011, 339, 186-193.	2.5	10
40	The p150 subunit of CAF-1 causes association of SUMO2/3 with the DNA replication foci. Biochemical and Biophysical Research Communications, 2010, 391, 407-413.	2.1	20
41	A Simple <i>in Situ</i> Cell-Based SUMOylation Assay with Potential Application to Drug Screening. Bioscience, Biotechnology and Biochemistry, 2010, 74, 1473-1475.	1.3	9
42	Strategies for the Expression of SUMO-Modified Target Proteins in Escherichia coli. Methods in Molecular Biology, 2009, 497, 211-221.	0.9	19
43	Involvement of SUMO Modification in MBD1- and MCAF1-mediated Heterochromatin Formation. Journal of Biological Chemistry, 2006, 281, 23180-23190.	3.4	82