Raphael Mechoulam

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5325895/publications.pdf Version: 2024-02-01

RAPHAEL MECHOULAM

#	Article	IF	CITATIONS
1	N-Oleoyl Glycine and Its Derivatives Attenuate the Acquisition and Expression of Cocaine-Induced Behaviors. Cannabis and Cannabinoid Research, 2023, 8, 812-823.	2.9	3
2	A Delightful Trip Along the Pathway of Cannabinoid and Endocannabinoid Chemistry and Pharmacology. Annual Review of Pharmacology and Toxicology, 2023, 63, 1-13.	9.4	6
3	Effect of oleoyl glycine and oleoyl alanine on lithium chloride induced nausea in rats and vomiting in shrews. Psychopharmacology, 2022, 239, 377-383.	3.1	2
4	Fenchone Derivatives as a Novel Class of CB2 Selective Ligands: Design, Synthesis, X-ray Structure and Therapeutic Potential. Molecules, 2022, 27, 1382.	3.8	6
5	Crosstalk between the transcriptional regulation of dopamine D2 and cannabinoid CB1 receptors in schizophrenia: Analyses in patients and in perinatal Δ9-tetrahydrocannabinol-exposed rats. Pharmacological Research, 2021, 164, 105357.	7.1	43
6	Anti-Biofilm Activity of Cannabidiol against Candida albicans. Microorganisms, 2021, 9, 441.	3.6	30
7	Cannabinoid Quinones—A Review and Novel Observations. Molecules, 2021, 26, 1761.	3.8	14
8	N-Oleoylglycine and N-Oleoylalanine Do Not Modify Tolerance to Nociception, Hyperthermia, and Suppression of Activity Produced by Morphine. Frontiers in Synaptic Neuroscience, 2021, 13, 620145.	2.5	5
9	Therapeutic Potential of Cannabidiol, Cannabidiolic Acid, and Cannabidiolic Acid Methyl Ester as Treatments for Nausea and Vomiting. Cannabis and Cannabinoid Research, 2021, 6, 266-274.	2.9	15
10	Assessing the treatment of cannabidiolic acid methyl ester: a stable synthetic analogue of cannabidiolic acid on c-Fos and NeuN expression in the hypothalamus of rats. Journal of Cannabis Research, 2021, 3, 31.	3.2	2
11	Spontaneous and Naloxone-Precipitated Withdrawal Behaviors From Chronic Opiates are Accompanied by Changes in N-Oleoylglycine and N-Oleoylalanine Levels in the Brain and Ameliorated by Treatment With These Mediators. Frontiers in Pharmacology, 2021, 12, 706703.	3.5	9
12	Novel CBG Derivatives Can Reduce Inflammation, Pain and Obesity. Molecules, 2021, 26, 5601.	3.8	10
13	Beyond THC and Endocannabinoids. Annual Review of Pharmacology and Toxicology, 2020, 60, 637-659.	9.4	107
14	Acute naloxone-precipitated morphine withdrawal elicits nausea-like somatic behaviors in rats in a manner suppressed by N-oleoylglycine. Psychopharmacology, 2020, 237, 375-384.	3.1	12
15	Evaluation of repeated or acute treatment with cannabidiol (CBD), cannabidiolic acid (CBDA) or CBDA methyl ester (HU-580) on nausea and/or vomiting in rats and shrews. Psychopharmacology, 2020, 237, 2621-2631.	3.1	18
16	Oleoyl alanine (HU595): a stable monomethylated oleoyl glycine interferes with acute naloxone precipitated morphine withdrawal in male rats. Psychopharmacology, 2020, 237, 2753-2765.	3.1	11
17	Protective Effects of <i>N</i> -Oleoylglycine in a Mouse Model of Mild Traumatic Brain Injury. ACS Chemical Neuroscience, 2020, 11, 1117-1128.	3.5	15
18	Altered dopamine D3 receptor gene expression in MAM model of schizophrenia is reversed by peripubertal cannabidiol treatment. Biochemical Pharmacology, 2020, 177, 114004.	4.4	36

RAPHAEL MECHOULAM

#	Article	IF	CITATIONS
19	Cannabidiol Partially Blocks the Excessive Sleepiness in Hypocretindeficient Rats: Preliminary Data. CNS and Neurological Disorders - Drug Targets, 2020, 18, 705-712.	1.4	10
20	HU-671, a Novel Oleoyl Serine Derivative, Exhibits Enhanced Efficacy in Reversing Ovariectomy-Induced Osteoporosis and Bone Marrow Adiposity. Molecules, 2019, 24, 3719.	3.8	6
21	Oleoyl glycine: interference with the aversive effects of acute naloxone-precipitated MWD, but not morphine reward, in male Sprague–Dawley rats. Psychopharmacology, 2019, 236, 2623-2633.	3.1	12
22	Effects of cannabidiol in males and females in two different rat models of depression. Physiology and Behavior, 2019, 201, 59-63.	2.1	56
23	Peripubertal cannabidiol treatment rescues behavioral and neurochemical abnormalities in the MAM model of schizophrenia. Neuropharmacology, 2019, 146, 212-221.	4.1	59
24	<i>Magel2</i> Modulates Bone Remodeling and Mass in Prader-Willi Syndrome by Affecting Oleoyl Serine Levels and Activity. Journal of Bone and Mineral Research, 2019, 34, 93-105.	2.8	16
25	Cannabidiol presents an inverted U-shaped dose-response curve in a simulated public speaking test. Revista Brasileira De Psiquiatria, 2019, 41, 9-14.	1.7	158
26	Role of CB ₂ Receptor in the Recovery of Mice after Traumatic Brain Injury. Journal of Neurotrauma, 2019, 36, 1836-1846.	3.4	25
27	N-Oleoyl-glycine reduces nicotine reward and withdrawal in mice. Neuropharmacology, 2019, 148, 320-331.	4.1	37
28	Epidemiological characteristics, safety and efficacy of medical cannabis in the elderly. European Journal of Internal Medicine, 2018, 49, 44-50.	2.2	145
29	HDAC1 and HDAC3 underlie dynamic H3K9 acetylation during embryonic neurogenesis and in schizophreniaâ€like animals. Journal of Cellular Physiology, 2018, 233, 530-548.	4.1	61
30	Cannabidiolic acid methyl ester, a stable synthetic analogue of cannabidiolic acid, can produce 5â€HT _{1A} receptorâ€mediated suppression of nausea and anxiety in rats. British Journal of Pharmacology, 2018, 175, 100-112.	5.4	53
31	Cannabidiol attenuates alcohol-induced liver steatosis, metabolic dysregulation, inflammation and neutrophil-mediated injury. Scientific Reports, 2017, 7, 12064.	3.3	78
32	Antinociceptive effects of HUF-101, a fluorinated cannabidiol derivative. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 2017, 79, 369-377.	4.8	32
33	Cannabidiol Limits T Cell-Mediated Chronic Autoimmune Myocarditis: Implications to Autoimmune Disorders and Organ Transplantation. Molecular Medicine, 2016, 22, 136-146.	4.4	56
34	Fluorinated Cannabidiol Derivatives: Enhancement of Activity in Mice Models Predictive of Anxiolytic, Antidepressant and Antipsychotic Effects. PLoS ONE, 2016, 11, e0158779.	2.5	35
35	<scp>HU</scp> â€446 and <scp>HU</scp> â€465, Derivatives of the Nonâ€psychoactive Cannabinoid Cannabidiol, Decrease the Activation of Encephalitogenic T Cells. Chemical Biology and Drug Design, 2016, 87, 143-153.	3.2	24
36	Cannabidiol Protects against Doxorubicin-Induced Cardiomyopathy by Modulating Mitochondrial Function and Biogenesis. Molecular Medicine, 2015, 21, 38-45.	4.4	120

#	Article	IF	CITATIONS
37	Cannabidiol for the Prevention of Graft-versus-Host-Disease after Allogeneic Hematopoietic Cell Transplantation: Results ofÂa Phase II Study. Biology of Blood and Marrow Transplantation, 2015, 21, 1770-1775.	2.0	61
38	Effect of the synthetic cannabinoid HU-210 on quorum sensing and on the production of quorum sensing-mediated virulence factors by Vibrio harveyi. BMC Microbiology, 2015, 15, 159.	3.3	23
39	Early phytocannabinoid chemistry to endocannabinoids and beyond. Nature Reviews Neuroscience, 2014, 15, 757-764.	10.2	278
40	The Endocannabinoid System and the Brain. Annual Review of Psychology, 2013, 64, 21-47.	17.7	832
41	Motor effects of the non-psychotropic phytocannabinoid cannabidiol that are mediated by 5-HT1A receptors. Neuropharmacology, 2013, 75, 155-163.	4.1	57
42	Cannabidiol for neurodegenerative disorders: important new clinical applications for this phytocannabinoid?. British Journal of Clinical Pharmacology, 2013, 75, 323-333.	2.4	254
43	Towards a better cannabis drug. British Journal of Pharmacology, 2013, 170, 1363-1364.	5.4	25
44	Cannabidiol - An Innovative Strategy For Graft Versus Host Disease Prevention. Blood, 2013, 122, 3299-3299.	1.4	3
45	Cannabidiol – Recent Advances. Chemistry and Biodiversity, 2007, 4, 1678-1692.	2.1	432
46	Plant cannabinoids: a neglected pharmacological treasure trove. British Journal of Pharmacology, 2005, 146, 913-915.	5.4	94
47	Cannabinoids in Models of Chronic Inflammatory Conditions. Phytochemistry Reviews, 2005, 4, 11-18.	6.5	12
48	Cannabidiol: An Overview of Some Pharmacological Aspects. Journal of Clinical Pharmacology, 2002, 42, 11S-19S.	2.0	385
49	Cannabinoids and brain injury: therapeutic implications. Trends in Molecular Medicine, 2002, 8, 58-61.	6.7	209
50	Cannabidiol: an overview of some chemical and pharmacological aspects. Part I: chemical aspects. Chemistry and Physics of Lipids, 2002, 121, 35-43.	3.2	204
51	Suppressors of Cancer Cell Proliferation from Fig (Ficuscarica) Resin:Â Isolation and Structure Elucidation. Journal of Natural Products, 2001, 64, 993-996.	3.0	154
52	Molecular targets for cannabidiol and its synthetic analogues: effect on vanilloid VR1 receptors and on the cellular uptake and enzymatic hydrolysis of anandamide. British Journal of Pharmacology, 2001, 134, 845-852.	5.4	945
53	A hunger for cannabinoids. Nature, 2001, 410, 763-765.	27.8	42
54	An endogenous cannabinoid (2-AG) is neuroprotective after brain injury. Nature, 2001, 413, 527-531.	27.8	680

RAPHAEL MECHOULAM

#	Article	IF	CITATIONS
55	Dexanabinol (HU-211): A nonpsychotropic cannabinoid with neuroprotective properties. Drug Development Research, 2000, 50, 211-215.	2.9	38
56	Dexanabinol (HU-211): A nonpsychotropic cannabinoid with neuroprotective properties. , 2000, 50, 211.		1
57	PADMA-28, a traditional tibetan herbal preparation inhibits the respiratory burst in human neutrophils, the killing of epithelial cells by mixtures of oxidants and pro-inflammatory agonists and peroxidation of lipids. Inflammopharmacology, 1999, 7, 47-62.	3.9	34
58	Trick or treat from food endocannabinoids?. Nature, 1998, 396, 636-636.	27.8	101
59	Anandamide may mediate sleep induction. Nature, 1997, 389, 25-26.	27.8	185
60	Todd's achievement. Nature, 1997, 386, 755-755.	27.8	3
61	Derivatives of dexanabinol. II. Salts of amino acid esters containing tertiary and quaternary heterocyclic nitrogen with increased water-solubility. Pharmaceutical Research, 1996, 13, 469-475.	3.5	14
62	Derivatives of Dexanabinol. I. Water-soluble salts of glycinate esters. Pharmaceutical Research, 1996, 13, 62-69.	3.5	13
63	CANNABINOID ENANTIOMER ACTION ON THE CYTOARCHITECTURE. Cell Biology International, 1996, 20, 147-157.	3.0	23
64	The peripheral cannabinoid receptor: adenylate cyclase inhibition and G protein coupling. FEBS Letters, 1995, 375, 143-147.	2.8	170
65	Anandamide, a Brain Endogenous Compound, Interacts Specifically with Cannabinoid Receptors and Inhibits Adenylate Cyclase. Journal of Neurochemistry, 1993, 61, 352-355.	3.9	281
66	Subjectively experienced cannabis effects in animals. Drug Development Research, 1989, 16, 385-393.	2.9	11
67	Isolation and structure of .DELTA.+- tetrahydrocannabinol and other neutral cannabinoids from hashish. Journal of the American Chemical Society, 1971, 93, 217-224.	13.7	320
68	The absolute configuration of δ1-tetrahydrocannabinol, the major active constituent of hashish Tetrahedron Letters, 1967, 8, 1109-1111.	1.4	185