
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5325721/publications.pdf Version: 2024-02-01

IENNI RADCLAV

#	Article	IF	CITATIONS
1	Remobilization of Andesite Magma by Intrusion of Mafic Magma at the Soufriere Hills Volcano, Montserrat, West Indies. Journal of Petrology, 2000, 41, 21-42.	2.8	422
2	Experimental phase equilibria constraints on pre-eruptive storage conditions of the Soufriere Hills magma. Geophysical Research Letters, 1998, 25, 3437-3440.	4.0	201
3	The role of magma mixing in triggering the current eruption at the Soufriere Hills Volcano, Montserrat, West Indies. Geophysical Research Letters, 1998, 25, 3433-3436.	4.0	182
4	Control on the emplacement of the andesite lava dome of the Soufriere Hills volcano, Montserrat by degassing-induced crystallization. Terra Nova, 2000, 12, 14-20.	2.1	171
5	Degassing during magma ascent in the Mule Creek vent (USA). Bulletin of Volcanology, 1996, 58, 117-130.	3.0	169
6	Whose reality counts? Factors affecting the perception of volcanic risk. Journal of Volcanology and Geothermal Research, 2008, 172, 259-272.	2.1	158
7	Magma production and growth of the lava dome of the Soufriere Hills Volcano, Montserrat, West Indies: November 1995 to December 1997. Geophysical Research Letters, 1998, 25, 3421-3424.	4.0	157
8	The issue of trust and its influence on risk communication during a volcanic crisis. Bulletin of Volcanology, 2008, 70, 605-621.	3.0	146
9	A Hornblende Basalt from Western Mexico: Water-saturated Phase Relations Constrain a Pressure-Temperature Window of Eruptibility. Journal of Petrology, 2004, 45, 485-506.	2.8	132
10	Petrologic evidence for pre-eruptive pressure-temperature conditions, and recent reheating, of andesitic magma erupting at the Soufriere Hills Volcano, Montserrat, W.I Geophysical Research Letters, 1998, 25, 3669-3672.	4.0	125
11	BrO formation in volcanic plumes. Geochimica Et Cosmochimica Acta, 2006, 70, 2935-2941.	3.9	122
12	Volcanic hazard communication using maps: an evaluation of their effectiveness. Bulletin of Volcanology, 2007, 70, 123-138.	3.0	113
13	Rainfall-induced volcanic activity on Montserrat. Geophysical Research Letters, 2002, 29, 22-1.	4.0	80
14	Generation of a debris avalanche and violent pyroclastic density current on 26 December (Boxing Day) 1997 at Soufrière Hills Volcano, Montserrat. Geological Society Memoir, 2002, 21, 409-434.	1.7	78
15	Pre-eruptive volatile content and degassing history of an evolving peralkaline volcano. Journal of Volcanology and Geothermal Research, 1996, 74, 75-87.	2.1	65
16	Global Mapping of Citizen Science Projects for Disaster Risk Reduction. Frontiers in Earth Science, 2019, 7, .	1.8	60
17	Framing volcanic risk communication within disaster risk reduction: finding ways for the social and physical sciences to work together. Geological Society Special Publication, 2008, 305, 163-177.	1.3	58
18	Monitoring SO2emission at the Soufriere Hills Volcano: Implications for changes in eruptive conditions. Geophysical Research Letters, 1998, 25, 3681-3684.	4.0	55

#	Article	lF	CITATIONS
19	Global volcanic hazard and risk. , 2015, , 81-172.		52
20	Textural and micro-petrological variations in the eruptive products of the 2006 dome-forming eruption of Merapi volcano, Indonesia: Implications for sub-surface processes. Journal of Volcanology and Geothermal Research, 2013, 261, 98-120.	2.1	51
21	Transitions between explosive and effusive phases during the cataclysmic 2010 eruption of Merapi volcano, Java, Indonesia. Bulletin of Volcanology, 2016, 78, 54.	3.0	51
22	Analytical models for bubble growth during decompression of high viscosity magmas. Bulletin of Volcanology, 1995, 57, 422-431.	3.0	50
23	Rainfall-induced lahars in the Belham Valley, Montserrat, West Indies. Journal of the Geological Society, 2007, 164, 815-827.	2.1	46
24	Pre- and syn-eruptive degassing and crystallisation processes of the 2010 and 2006 eruptions of Merapi volcano, Indonesia. Contributions To Mineralogy and Petrology, 2014, 168, 1.	3.1	43
25	Livelihoods, Wellbeing and the Risk to Life During Volcanic Eruptions. Frontiers in Earth Science, 2019, 7, .	1.8	42
26	A UK perspective on tackling the geoscience racial diversity crisis in the Global North. Nature Geoscience, 2021, 14, 256-259.	12.9	38
27	Meteorological monitoring of an active volcano: Implications for eruption prediction. Journal of Volcanology and Geothermal Research, 2006, 150, 339-358.	2.1	37
28	Adapting to changes in volcanic behaviour: Formal and informal interactions for enhanced risk management at Tungurahua Volcano, Ecuador. Global Environmental Change, 2017, 45, 217-226.	7.8	36
29	Mafic enclaves record syn-eruptive basalt intrusion and mixing. Earth and Planetary Science Letters, 2018, 484, 30-40.	4.4	36
30	Caught in the act: Implications for the increasing abundance of mafic enclaves during the recent eruptive episodes of the SoufriÄ re Hills Volcano, Montserrat. Geophysical Research Letters, 2010, 37, .	4.0	35
31	A new method to quantify the real supply of mafic components to a hybrid andesite. Contributions To Mineralogy and Petrology, 2013, 165, 191-215.	3.1	34
32	Chapter 18 Characterization of mafic enclaves in the erupted products of Soufrière Hills Volcano, Montserrat, 2009 to 2010. Geological Society Memoir, 2014, 39, 343-360.	1.7	32
33	Risk communication films: Process, product and potential for improving preparedness and behaviour change. International Journal of Disaster Risk Reduction, 2017, 23, 138-151.	3.9	32
34	The Dilemmas of Risk-Sensitive Development on a Small Volcanic Island. Resources, 2016, 5, 21.	3.5	31
35	Responding to eruptive transitions during the 2020–2021 eruption of La Soufrière volcano, St. Vincent. Nature Communications, 2022, 13, .	12.8	31
36	Chapter 16 Pre-eruptive vapour and its role in controlling eruption style and longevity at Soufrière Hills Volcano. Geological Society Memoir, 2014, 39, 291-315.	1.7	30

#	Article	IF	CITATIONS
37	The fast response of volcano-seismic activity to intense precipitation: Triggering of primary volcanic activity by rainfall at Soufrière Hills Volcano, Montserrat. Journal of Volcanology and Geothermal Research, 2009, 184, 405-415.	2.1	29
38	Merapi (Java, Indonesia): anatomy of a killer volcano. Geology Today, 2011, 27, 57-62.	0.9	29
39	Geochemical evidence for relict degassing pathways preserved in andesite. Earth and Planetary Science Letters, 2014, 386, 21-33.	4.4	29
40	Tristan da Cunha: Constraining eruptive behavior using the 40Ar/39Ar dating technique. Geology, 2012, 40, 723-726.	4.4	28
41	Living with Volcan Tungurahua: The dynamics of vulnerability during prolonged volcanic activity. Geoforum, 2017, 80, 72-81.	2.5	28
42	Sediment-charged flash floods on Montserrat: The influence of synchronous tephra fall and varying extent of vegetation damage. Journal of Volcanology and Geothermal Research, 2010, 194, 127-138.	2.1	27
43	Risk reduction through community-based monitoring: the vigÃas of Tungurahua, Ecuador. Journal of Applied Volcanology, 2014, 3, .	2.0	27
44	Interpreting flash flood palaeoflow parameters from antidunes and gravel lenses: An example from Montserrat, West Indies. Sedimentology, 2017, 64, 1817-1845.	3.1	25
45	A thermodynamical model for rainfall-triggered volcanic dome collapse. Geophysical Research Letters, 2004, 31, n/a-n/a.	4.0	23
46	Meteorological Controls on Local and Regional Volcanic Ash Dispersal. Scientific Reports, 2018, 8, 6873.	3.3	23
47	Staged storage and magma convection at Ambrym volcano, Vanuatu. Journal of Volcanology and Geothermal Research, 2016, 322, 144-157.	2.1	21
48	Bridging the gap: 40Ar/39Ar dating of volcanic eruptions from the â€~Age of Discovery'. Geology, 2018, 46, 1035-1038.	4.4	21
49	The Ongoing Eruption in Montserrat. Science, 1997, 276, 371-372.	12.6	20
50	Chapter 17 Petrological and geochemical variation during the Soufrière Hills eruption, 1995 to 2010. Geological Society Memoir, 2014, 39, 317-342.	1.7	20
51	An introduction to global volcanic hazard and risk. , 2015, , 1-80.		20
52	The 1902–3 eruptions of the Soufrière, St Vincent: Impacts, relief and response. Journal of Volcanology and Geothermal Research, 2018, 356, 183-199.	2.1	20
53	An interdisciplinary approach to volcanic risk reduction under conditions of uncertainty: a case study of Tristan da Cunha. Natural Hazards and Earth System Sciences, 2014, 14, 1871-1887.	3.6	19
54	Timescales of magma ascent and degassing and the role of crustal assimilation at Merapi volcano (2006–2010), Indonesia: Constraints from uranium-series and radiogenic isotopic compositions. Geochimica Et Cosmochimica Acta, 2018, 222, 34-52.	3.9	19

#	Article	IF	CITATIONS
55	Hazard implications of small-scale edifice instability and sector collapse: a case history from Soufrière Hills Volcano, Montserrat. Geological Society Memoir, 2002, 21, 349-362.	1.7	16
56	Remembering, Forgetting, and Absencing Disasters in the Post-disaster Recovery Process. International Journal of Disaster Risk Science, 2020, 11, 287-299.	2.9	16
57	Social Processes and Volcanic Risk Reduction. , 2015, , 1203-1214.		15
58	Origin and evolution of silicic magmas at ocean islands: Perspectives from a zoned fall deposit on Ascension Island, South Atlantic. Journal of Volcanology and Geothermal Research, 2016, 327, 349-360.	2.1	14
59	Developing a simplified geographical information system approach to dilute lahar modelling for rapid hazard assessment. Bulletin of Volcanology, 2013, 75, 1.	3.0	13
60	Risk reduction through community-based monitoring: the. Journal of Applied Volcanology, 2014, 3, 11.	2.0	13
61	Saints and Sinners: a tephrochronology for Late Antique landscape change in Epirus from the eruptive history of Lipari, Aeolian Islands. Journal of Archaeological Science, 2008, 35, 2574-2579.	2.4	12
62	Lower Crustal Heterogeneity and Fractional Crystallization Control Evolution of Small-volume Magma Batches at Ocean Island Volcanoes (Ascension Island, South Atlantic). Journal of Petrology, 2019, 60, 1489-1522.	2.8	12
63	An application-driven approach to terrain model construction. International Journal of Geographical Information Science, 2010, 24, 1171-1191.	4.8	9
64	Geographical information system approaches for hazard mapping of dilute lahars on Montserrat, West Indies. Bulletin of Volcanology, 2012, 74, 1337-1353.	3.0	9
65	Micro-tephra in the West Runton Freshwater Bed: Preliminary results. Quaternary International, 2010, 228, 21-24.	1.5	8
66	Volatile behaviour in the 1995-2010 eruption of the Soufrière Hills Volcano, Montserrat recorded by U-series disequilibria in mafic enclaves and andesite host. Earth and Planetary Science Letters, 2019, 524, 115730.	4.4	6
67	Historical records of volcanic eruptions deserve more attention. Nature Reviews Earth & Environment, 2020, 1, 183-184.	29.7	6
68	Explosive felsic eruptions on ocean islands: A case study from Ascension Island (South Atlantic). Journal of Volcanology and Geothermal Research, 2021, 416, 107284.	2.1	6
69	Disaster aid? Mapping historical responses to volcanic eruptions from 1800–2000 in the Englishâ€speaking Eastern Caribbean: their role in creating vulnerabilities. Disasters, 2022, 46, .	2.2	6
70	Volcanic Unrest and Pre-eruptive Processes: A Hazard and Risk Perspective. Advances in Volcanology, 2017, , 1-21.	1.1	5
71	Rapid eruptive transitions from low to high intensity explosions and effusive activity: insights from textural analysis of a small-volume trachytic eruption, Ascension Island, South Atlantic. Bulletin of Volcanology, 2021, 83, 1.	3.0	5
72	Deep and disturbed: conditions for formation and eruption of a mingled rhyolite at Ascension Island, south Atlantic. Volcanica, 2020, 3, 139-153.	1.8	5

#	Article	IF	CITATIONS
73	Analytical models for bubble growth during decompression of high viscosity magmas. Bulletin of Volcanology, 1995, 57, 422-431.	3.0	4
74	Dynamics and timescales of mafic–silicic magma interactions at Soufrière Hills Volcano, Montserrat. Contributions To Mineralogy and Petrology, 2022, 177, 1.	3.1	3
75	U-series histories of magmatic volatile phase and enclave development at Soufrière Hills Volcano, Montserrat. Chemical Geology, 2021, 559, 119957.	3.3	2
76	SILVA GPS AND ELECTRONIC COMPASS. Terra Nova, 1995, 7, 469-471.	2.1	0
77	Fostering Interdisciplinary Science to Improve Resilience to Natural Hazards: Characterization, Communication and Mitigation of Risks Arising From Multiple Hazards; Norwich, UK, 7–8 May 2009. Eos, 2009, 90, 326.	0.1	0