Vladimir Tolmachev

List of Publications by Year in descending order

Source: https:/|exaly.com/author-pdf/5325707/publications.pdf
Version: 2024-02-01

Phase I Trial of ^{99m}Tc-(HE) <sub> $3</$ sub $>-$ G3, a DARPin-Based Probe for Imaging of HER2
Expression in Breast Cancer. Journal of Nuclear Medicine, 2022, 63, 528-535.

Affibody-Mediated PNA-Based Pretargeted Cotreatment Improves Survival of Trastuzumab-Treated Mice Bearing HER2-Expressing Xenografts. Journal of Nuclear Medicine, 2022, 63, 1046-1051.

Radionuclides in Diagnostics and Therapy of Malignant Tumors: New Development. Cancers, 2022, 14, 297.

Targeted nuclear medicine. Seek and destroy. Russian Chemical Reviews, 2022, 91, .
2.5

Effect of Inter-Domain Linker Composition on Biodistribution of ABD-Fused Affibody-Drug Conjugates
Targeting HER2. Pharmaceutics, 2022, 14, 522.

exhibits potent cytotoxic action in prostate cancer cells. Oncology Reports, 2022, 47, .

Experimental Therapy of HER2-Expressing Xenografts Using the Second-Generation HER2-Targeting
Affibody Molecule 188Re-ZHER2:41071. Pharmaceutics, 2022, 14, 1092.

Phase I Clinical Trial Using [99mTc]Tc-1-thio-D-glucose for Diagnosis of Lymphoma Patients.
Pharmaceutics, 2022, 14, 1274.

Theranostic pairing: ABY-025/251 targeting HER2 with ⁶⁸ Ga and
9 ¹⁸⁸Reâ€"Minimized radioligands using Affibody peptide scaffold technology.. Journal of
Clinical Oncology, 2022, 40, 3093-3093.
Preclinical Evaluation of a New Format of 68Ga- and 111In-Labeled Affibody Molecule ZIGF-1R:4551 for
10 the Visualization of IGF-1R Expression in Malignant Tumors Using PET and SPECT. Pharmaceutics, 2022, 14, 1475.

$$
\begin{aligned}
& \text { Radionuclide therapy using ABD-fused ADAPT scaffold protein: Proof of Principle. Biomaterials, 2021, } \\
& 266,120381 .
\end{aligned}
$$

$5.7 \quad 11$

Phase I Study of ^{99m}Tc-ADAPT6, a Scaffold Proteinấ"Based Probe for Visualization of HER2
12 Expression in Breast Cancer. Journal of Nuclear Medicine, 2021, 62, 493-499.
2.8

41

Single-photon emission computerized tomography with <sup> 99 m </sup > TC-DARPIN9_29 in diagnostics
13 of breast cancer with Her2/neu overexpression: first clinical experience. Molekulyarnaya Meditsina
0.0

0
(Molecular Medicine), 2021, 19, 41-46.
Preclinical Evaluation of 99mTc-Labeled GRPR Antagonists maSSS/SES-PEG2-RM26 for Imaging of Prostate Cancer. Pharmaceutics, 2021, 13, 182.
2.0

7

Comparative Evaluation of Novel 177Lu-Labeled PNA Probes for Affibody-Mediated PNA-Based
Pretargeting. Cancers, 2021, 13, 500.
1.7

Phase I clinical study of a new radiopharmaceutical based on recombinant target molecules
16 DARPin9_29 labeled with technetium-99m for radionuclide diagnosis of the Her2/neu-positive breast
cancer. Molekulyarnaya Meditsina (Molecular Medicine), 2021, 19, 41-48.
17 66Ga-PET-imaging of GRPR-expression in prostate cancer: production and characterization of
[66Ga]Ga-NOTA-PEC2-RM26. Scientific Reports, 2021, 11, 3631.
1.6

10

The Use of a Non-Conventional Long-Lived Gallium Radioisotope 66Ga Improves Imaging Contrast of
19
20
Preclinical Evaluation of 99mTc-ZHER2:41071, a Second-Generation Affibody-Based HER2-Visualizing
Imaging Probe with a Low Renal Uptake. International Journal of Molecular Sciences, 2021, 22, 2770.
1.8

14

Affibody-Derived Drug Conjugates Targeting HER2: Effect of Drug Load on Cytotoxicity and
Biodistribution. Pharmaceutics, 2021, 13, 430.
$2.0 \quad 8$
21 Possibilities of radionuclide diagnostics of Her2-positive breast cancer using technetium-99m-labeled target molecules: the first experience of clinical use. Bulletin of Siberian Medicine, 2021, 20, 23-30.
$0.1 \quad 6$

PET and SPECT Imaging of the EGFR Family (RTK Class I) in Oncology. International Journal of
1.8

Molecular Sciences, 2021, 22, 3663.

Comparative Analysis of the Clinical Use of $99 m$ Technetium-Labeled Recombinant Target Molecules in
23 Different Dosages for the Radionuclide Diagnosis of Her2-Positive Breast Cancer. Vestnik
$0.1 \quad 0$
Rentgenologii I Radiologii, 2021, 102, 89-97.
Comparative Preclinical Evaluation of HER2-Targeting ABD-Fused AffibodyÂ® Molecules 177Lu-ABY-271
and 177Lu-ABY-027: Impact of DOTA Position on ABD Domain. Pharmaceutics, 2021, 13, 839.
$2.0 \quad 5$
25 Influence of the Position and Composition of Radiometals and Radioiodine Labels on Imaging of Epcam
Expression in Prostate Cancer Model Using the DARPin Ecl. Cancers, 2021, 13, 3589.
26 The emerging role of radionuclide molecular imaging of HER2 expression in breast cancer. Seminars in
Cancer Biology, 2021, 72, 185-197.
Imaging-Guided Therapy Simultaneously Targeting HER2 and EpCAM with Trastuzumab and
EpCAM-Directed Toxin Provides Additive Effect in Ovarian Cancer Model. Cancers, 2021,13, 3939.

28 HER3 PET Imaging: 68Ga-Labeled Affibody Molecules Provide Superior HER3 Contrast to 89Zr-Labeled Antibody and Antibody-Fragment-Based Tracers. Cancers, 2021, 13, 4791.

31 RADIOPHARMACEUTICAL BASED ON TECHNETIUM-99M-LABELED TARGET MOLECULES (CASE REPORT).

EVALUATION OF EXTENT OF BREAST CANCER IN A PATIENT WITH HER2/NEU OVEREXPRESSION USING A
Siberian Journal of Oncology, 2021, 20, 170-178.
32 Targeting HER2 Expressing Tumors with a Potent Drug Conjugate Based on an Albumin Binding Domain-Derived Affinity Protein. Pharmaceutics, 2021, 13, 1847.
2.0

4

The Influence of Domain Permutations of an Albumin-Binding Domain-Fused HER2-Targeting
33 Affibody-Based Drug Conjugate on Tumor Cell Proliferation and Therapy Efficacy. Pharmaceutics, 2021,
$2.0 \quad 6$
13, 1974.

Effect of a radiolabel biochemical nature on tumor-targeting properties of EpCAM-binding engineered scaffold protein DARPin Ecl. International Journal of Biological Macromolecules, 2020, 145, 216-225.

Heterodimeric Radiotracer Targeting PSMA and GRPR for Imaging of Prostate Cancerâ€"Optimization of the Affinity towards PSMA by Linker Modification in Murine Model. Pharmaceutics, 2020, $12,614$.
2.0

19

39	Evaluation of an antibody-PNA conjugate as a clearing agent for antibody-based PNA-mediated radionuclide pretargeting. Scientific Reports, 2020, 10, 20777.	1.6	12
40	Preclinical Evaluation of the Copper-64 Labeled GRPR-Antagonist RM26 in Comparison with the Cobalt-55 Labeled Counterpart for PET-Imaging of Prostate Cancer. Molecules, 2020, 25, 5993.	1.7	6
41	Feasibility of Imaging EpCAM Expression in Ovarian Cancer Using Radiolabeled DARPin Ecl. International Journal of Molecular Sciences, 2020, 21, 3310.	1.8	17
42	Evaluating the Therapeutic Efficacy of Mono- and Bivalent Affibody-Based Fusion Proteins Targeting HER3 in a Pancreatic Cancer Xenograft Model. Pharmaceutics, 2020, 12, 551.	2.0	9
43	Benefit of Later-Time-Point PET Imaging of HER3 Expression Using Optimized Radiocobalt-Labeled Affibody Molecules. International Journal of Molecular Sciences, 2020, 21, 1972.	1.8	9

44 Affibody Molecules as Targeting Vectors for PET Imaging. Cancers, 2020, 12, 651.
1.7

56

45	Influence of Residualizing Properties of the Radiolabel on Radionuclide Molecular Imaging of HER3 Using Affibody Molecules. International Journal of Molecular Sciences, 2020, 21, 1312.	1.8	7
46	HER2-Specific Pseudomonas Exotoxin A PE25 Based Fusions: Influence of Targeting Domain on Target Binding, Toxicity, and In Vivo Biodistribution. Pharmaceutics, 2020, 12, 391.	2.0	7
47	Preparation of Conjugates for Affibody-Based PNA-Mediated Pretargeting. Methods in Molecular Biology, 2020, 2105, 283-304.	0.4	3
48	Kinetic analysis of HER2-binding ABY-025 Affibody molecule using dynamic PET in patients with metastatic breast cancer. EJNMMI Research, 2020, 10, 21.	1.1	11
49	Imaging using radiolabelled targeted proteins: radioimmunodetection and beyond. EJNMMI Radiopharmacy and Chemistry, 2020, 5, 16.	1.8	38
50	Radiolabeled GRPR Antagonists for Imaging of Disseminated Prostate Cancer - Influence of Labeling Chemistry on Targeting Properties. Current Medicinal Chemistry, 2020, 27, 7090-7111.	1.2	9
51	Evaluation of Tumor-Targeting Properties of an Antagonistic Bombesin Analogue RM26 Conjugated with a Non-Residualizing Radioiodine Label Comparison with a Radiometal-Labelled Counterpart. Pharmaceutics, 2019, 11, 380.	2.0	6
52	Incorporation of a Hydrophilic Spacer Reduces Hepatic Uptake of HER2-Targeting Affibodyấe"DM1 Drug Conjugates. Cancers, 2019, 11, 1168.	1.7	12
53	Synthesis and Preclinical Evaluation of Radio-lodinated GRPR/PSMA Bispecific Heterodimers for the Theranostics Application in Prostate Cancer. Pharmaceutics, 2019, 11, 358.	2.0	17

Trastuzumab cotreatment improves survival of mice with PCâ€ 3 prostate cancer xenografts treated Cancer, 2019, 145, 3347-3358.
Improved contrast of affibody-mediated imaging of HER3 expression in mouse xenograft model
through co-injection of a trivalent affibody for in vivo blocking of hepatic uptake. Scientific Reports,

Site-specific conjugation of recognition tags to trastuzumab for peptide nucleic acid-mediated radionuclide HER2 pretargeting. Biomaterials, 2019, 203, 73-85.
63
repeat protein (DARPin) G3 variants for molecular imaging of HER2. International Journal of
73 Evaluation of HER2-specific peptide ligand for its employment as radiolabeled imaging probe. Scientific
Reports, 2018, 8, 2998.

Radionuclide Therapy of HER2-Expressing Human Xenografts Using Affibody-Based Peptide Nucleic
74 Acidâ€"Mediated Pretargeting: In Vivo Proof of Principle. Journal of Nuclear Medicine, 2018, 59,
2.8

48
1092-1098.

75 Influence of composition of cysteine-containing peptide-based chelators on biodistribution of
$1.2 \quad 16$ 99mTc-labeled anti-EGFR affibody molecules. Amino Acids, 2018, 50, 981-994.

6

76 Molecular design of radiocopper-labelled Affibody molecules. Scientific Reports, 2018, 8, 6542.
1.6

13

80 Affibodyấ ${ }^{\prime}$ mediated imaging of EGFR expression in prostate cancer using radiocobaltâ€́labeled DOTAâ $€^{\prime} Z E G F R: 2377$. Oncology Reports, 2018, 41, 534-542.

Preclinical Evaluation of [68Ga]Ga-DFO-ZEGFR:2377: A Promising Affibody-Based Probe for Noninvasive
81 PET Imaging of EGFR Expression in Tumors. Cells, 2018, 7, 141.

Radionuclide imaging of VEGFR2 in glioma vasculature using biparatopic affibody conjugate: proof-of-principle in a murine model. Theranostics, 2018, 8, 4462-4476.

Influence of Molecular Design on the Targeting Properties of ABD-Fused Mono- and Bi-Valent
Anti-HER3 Affibody Therapeutic Constructs. Cells, 2018, 7, 164.

Affibody-derived drug conjugates: Potent cytotoxic molecules for treatment of HER2 over-expressing
84 tumors. Journal of Controlled Release, 2018, 288, 84-95.
4.8

40

Development of an optimal imaging strategy for selection of patients for affibody-based PNA-mediated radionuclide therapy. Scientific Reports, 2018, 8, 9643.

Comparative Evaluation of Radioiodine and Technetium-Labeled DARPin 9_29 for Radionuclide
86 Molecular Imaging of HER2 Expression in Malignant Tumors. Contrast Media and Molecular Imaging,
2018, 2018, 1-11.
Evaluation of the Therapeutic Potential of a HER3-Binding Affibody Construct TAM-HER3 in Comparison
with a Monoclonal Antibody, Seribantumab. Molecular Pharmaceutics, 2018, 15, 3394-3403.

Optimized Molecular Design of ADAPT-Based HER2-Imaging Probes Labeled with ¹¹¹In and
⁶⁸Ga. Molecular Pharmaceutics, 2018, 15, 2674-2683.
2.3

15

In vivo evaluation of a novel format of a bivalent HER3-targeting and albumin-binding therapeutic
affibody construct. Scientific Reports, 2017, 7, 43118.
1.6

20

Intra-image referencing for simplified assessment of HER2-expression in breast cancer metastases using the Affibody molecule ABY-025 with PET and SPECT. European Journal of Nuclear Medicine and 3.3 39 Molecular Imaging, 2017, 44, 1337-1346.
The use of radiocobalt as a label improves imaging of EGFR using DOTA-conjugated Affibody molecule
Scientific Reports, 2017, 7, 5961.
95
Comparative Evaluation of Anti-HER2 Affibody Molecules Labeled with ⁶⁴Cu Using NOTA 0.4 1496 High Contrast PET Imaging of GRPR Expression in Prostate Cancer Using Cobalt-Labeled BombesinAntagonist RM26. Contrast Media and Molecular Imaging, 2017, 2017, 1-10.$0.4 \quad 27$
97 Evaluation of a radiocobalt-labelled affibody molecule for imaging of human epidermal growth 1.4 10
Feasibility of Affibody Molecule-Based PNA-Mediated Radionuclide Pretargeting of Malignant Tumors.Theranostics, 2016, 6, 93-103.
Measuring HER2-Receptor Expression In Metastatic Breast Cancer Using [<sup>68</sup >Ca]ABY-025 $\quad 4.64204$
Evaluation of a novel type of imaging probe based on a recombinant bivalent mini-antibody construct
100 for detection of CD44v6-expressing squamous cell carcinoma. International Journal of Oncology, 2016, 48, 461-470.1.413
101 VEGFR2 pY949 signalling regulates
101 VEGFR2 pY949 signalling regulates 5.8
111
102 Novel chemoselective ¹⁸F-radiolabeling of thiol-containing biomolecules under mild aqueous conditions. Chemical Communications, 2016, 52, 6083-6086. 35
PET imaging of epidermal growth factor receptor expression in tumours using 89Zr-labelled1.4
109

> Influence of Histidine-Containing Tags on the Biodistribution of ADAPT Scaffold Proteins.
> Bioconjugate Chemistry, 2016, 27, 716-726.
1.8

38

Feasibility of Affibody-Based Bioorthogonal Chemistryâ€"Mediated Radionuclide Pretargeting. Journal of Nuclear Medicine, 2016, 57, 431-436.
2.8

46
$2.6 \quad 12$
111 Control of growth factor binding and release in bisphosphonate functionalized hydrogels guides rapid differentiation of precursor cells in vitro. Biomaterials Science, 2016, 4, 250-254.

Selection of optimal chelator improves the contrast of GRPR imaging using bombesin analogue RM26.
1.4 International Journal of Oncology, 2016, 48, 2124-2134.

113	Increasing the Net Negative Charge by Replacement of DOTA Chelator with DOTAGA Improves the Biodistribution of Radiolabeled Second-Generation Synthetic Affibody Molecules. Molecular Pharmaceutics, 2016, 13, 1668-1678.	2.3	33
114	Imaging of CAIX-expressing xenografts in vivo using 99mTc-HEHEHE-ZCAIX:1 Affibody molecule. International Journal of Oncology, 2015, 46, 513-520.	1.4	31
115	Affibody-mediated PET imaging of HER3 expression in malignant tumours. Scientific Reports, 2015, 5, 15226.	1.6	56

116 Siteâ€€pecific Radioiodination of HER2â đargeting Affibody Molecules using 4â€łodophenethylmaleimide
Decreases Renal Uptake of Radioactivity. ChemistryOpen, 2015, 4, 174-182.
$0.9 \quad 12$

Target-specific cytotoxic effects on HER2-expressing cells by the tripartite fusion toxin
117 ZHER2:2891-ABD-PE38X8, including a targeting affibody molecule and a half-life extension domain.
$1.4 \quad 21$ International Journal of Oncology, 2015, 47, 601-609.

Comparative evaluation of 111 In-labeled NOTA-conjugated affibody molecules for visualization of HER3 expression in malignant tumors. Oncology Reports, 2015, 34, 1042-1048.
1.2

30
119 Evaluation of 99mTc-ZIGF1R:4551-GGGC affibody molecule, a new probe for imaging of insulin-like growth factor type 1 receptor expression. Amino Acids, 2015, 47, 303-315.120 The effect of macrocyclic chelators on the targeting properties of the 68 Ga-labeled gastrin releasing
0.3

46 peptide receptor antagonist PEG 2 -RM26. Nuclear Medicine and Biology, 2015, 42, 446-454.
$1.2 \quad 22$Development of a 124I-labeled version of the anti-PSMA monoclonal antibody capromab for immunoPET125 staging of prostate cancer: Aspects of labeling chemistry and biodistribution. International Journal

Methods for Radiolabelling of Monoclonal Antibodies. Methods in Molecular Biology, 2014, 1060,
$309-330$.

Incorporation of a Triglutamyl Spacer Improves the Biodistribution of Synthetic Affibody Molecules
128 Radiofluorinated at the N-Terminus via Oxime Formation with ¹⁸F-4-Fluorobenzaldehyde.
Bioconjugate Chemistry, 2014, 25, 82-92.
First-in-Human Molecular Imaging of HER2 Expression in Breast Cancer Metastases Using the ¹¹¹In-ABY-025 Affibody Molecule. Journal of Nuclear Medicine, 2014, 55, 730-735.
2.8

Locally Delivered CD40 Agonist Antibody Accumulates in Secondary Lymphoid Organs and Eradicates Experimental Disseminated Bladder Cancer. Cancer Immunology Research, 2014, 2, 80-90.

Gallium-68-Labeled Affibody Molecule for PET Imaging of PDGFR1² Expression in Vivo. Molecular Pharmaceutics, 2014, 11, 3957-3964.

Selection of an optimal cysteine-containing peptide-based chelator for labeling of affibody molecules with 188Re. European Journal of Medicinal Chemistry, 2014, 87, 519-528.
2.6

19

> Imaging of HER3-expressing xenografts in mice using a 99mTc(CO)3-HEHEHE-ZHER3:08699 affibody molecule. European Journal of Nuclear Medicine and Molecular Imaging, 2014, 41, 1450-1459.
3.3

40

Imaging of Platelet-Derived Growth Factor Receptor 12 Expression in Glioblastoma Xenografts Using Affibody Molecule ¹¹¹In-DOTA-Z09591. Journal of Nuclear Medicine, 2014, 55, 294-300.

Position for Site-Specific Attachment of a DOTA Chelator to Synthetic Affibody Molecules Has a
135 Different Influence on the Targeting Properties of ⁶⁸ Ga-Compared to <sup> 111 </sup
0.7 In-Labeled Conjugates. Molecular Imaging, 2014, 13, 7290.2014.00034.

Histidine-Rich Glycoprotein Uptake and Turnover Is Mediated by Mononuclear Phagocytes. PLoS ONE, 2014, 9, el07483.

Radiolabeled Probes Targeting Tyrosine-Kinase Receptors For Personalized Medicine. Current
Pharmaceutical Design, 2014, 20, 2275-2292.
Site-Specific Radiometal Labeling and Improved Biodistribution Using ABY-027, A Novel HER2-Targeting
138 Affibody Moleculeâ€"Albumin-Binding Domain Fusion Protein. Journal of Nuclear Medicine, 2013, 54, 961-968.

139 Evaluation of backbone-cyclized HER2-binding 2-helix Affibody molecule for In Vivo molecular imaging.
Nuclear Medicine and Biology, 2013, 40, 378-386.
0.3

15
[99mTc(CO)3]+-(HE)3-ZIGF1R:4551, a new Affibody conjugate for visualization of insulin-like growth
140 factor-1 receptor expression in malignant tumours. European Journal of Nuclear Medicine and
3.3

38 Molecular Imaging, 2013, 40, 439-449.

HAHAHA, HEHEHE, HIHIHI, or HKHKHK: Influence of Position and Composition of Histidine Containing
141 Tags on Biodistribution of $[\langle\sup \rangle 99 \mathrm{~m}\langle\mid \sup \rangle \mathrm{Tc}(\mathrm{CO})\langle\operatorname{sub}\rangle 3</$ sub $\rangle]\langle$ sup $\rangle+\langle |$ sup \rangle-Labeled Affibody
2.9

54
Molecules. Journal of Medicinal Chemistry, 2013, 56, 4966-4974.
Influence of Nuclides and Chelators on Imaging Using Affibody Molecules: Comparative Evaluation of
142 Recombinant Affibody Molecules Site-Specifically Labeled with ⁶⁸Ga and ¹¹¹In
1.8 via Maleimido Derivatives of DOTA and NODAGA. Bioconjugate Chemistry, 2013, 24, 1102-1109. GRPR-Targeted Tumor Imaging. Bioconjugate Chemistry, 2013, 24, 1144-1153.
145
146

Influence of Macrocyclic Chelators on the Targeting Properties of 68Ga-Labeled Synthetic Affibody
Molecules: Comparison with 111In-Labeled Counterparts. PLoS ONE, 2013, 8, e70028.
1.1

50

In Vitro and In Vivo Evaluation of a 18F-Labeled High Affinity NOTA Conjugated Bombesin Antagonist as
1.1

44
a PET Ligand for GRPR-Targeted Tumor Imaging. PLoS ONE, 2013, 8, e81932.
1.1

61
147 Inhibiting HER3-Mediated Tumor Cell Growth with Affibody Molecules Engineered to Low Picomolar Affinity by Position-Directed Error-Prone PCR-Like Diversification. PLoS ONE, 2013, 8, e62791.

Imaging of Human Epidermal Growth Factor Receptor Type 2 Expression with 18F-Labeled Affibody
148 Molecule ZHER2:2395 in a Mouse Model for Ovarian Cancer. Journal of Nuclear Medicine, 2012, 53,
$2.8 \quad 66$ 146-153.
Imaging of Insulinlike Growth Factor Type 1 Receptor in Prostate Cancer Xenografts Using the
149 Affibody Molecule ¹¹¹In-DOTA-Z_{IGF1R:4551}. Journal of Nuclear Medicine, 2012,
$2.8 \quad 44$
53, 90-97.
150 Tumor Targeting Using Affibody Molecules: Interplay of Affinity, Target Expression Level, and Binding
Site Composition. Journal of Nuclear Medicine, 2012, 53, 953-960.
2.8
Influence of DOTA Chelator Position on Biodistribution and Targeting Properties of
151 ¹¹¹In-Labeled Synthetic Anti-HER2 Affibody Molecules. Bioconjugate Chemistry, 2012, 23, 34

Preclinical evaluation of anti-HER2 Affibody molecules site-specifically labeled with 111 In using a maleimido derivative of NODAGA. Nuclear Medicine and Biology, 2012, 39, 518-529.
0.3

15
153 Engineering of Affibody Molecules for Therapy and Diagnostics. Methods in Molecular Biology, 2012,
899, 103-126.
Targeting Free Prostate-Specific Antigen for<i>In Vivo<<i>Imaging of Prostate Cancer Using a
154 Monoclonal Antibody Specific for Unique Epitopes Accessible on Free Prostate-Specific Antigen Alone.
0.7
0.4

72 Cancer Biotherapy and Radiopharmaceuticals, 2012, 27, 243-251.
155 Liver uptake of radiolabeled targeting proteins and peptides: considerations for targeting peptide conjugate design. Drug Discovery Today, 2012, 17, 1224-1232.
$3.2 \quad 64$

Evaluation of a HER2-targeting affibody molecule combining an N-terminal HEHEHE-tag with a GGGC
156 chelator for 99 mTc -labelling at the C terminus. Tumor Biology, 2012, 33, 641-651.
0.8

21

157 Direct comparison of 111 In-labelled two-helix and three-helix Affibody molecules for in vivo
$3.3 \quad 11$
molecular imaging. European Journal of Nuclear Medicine and Molecular Imaging, 2012, 39, 693-702.
Order of amino acids in C-terminal cysteine-containing peptide-based chelators influences cellular
158 processing and biodistribution of 99 mTc -labeled recombinant Affibody molecules. Amino Acids, 2012,
1.2

42, 1975-1985.

159	Comparative evaluation of synthetic anti-HER2 Affibody molecules site-specifically labelled with 111 ln using N-terminal DOTA, NOTA and NODACA chelators in mice bearing prostate cancer xenografts. European Journal of Nuclear Medicine and Molecular Imaging, 2012, 39, 481-492.	3.3

160 Extending Half-life by Indirect Targeting of the Neonatal Fc Receptor (FcRn) Using a Minimal Albumin
Binding Domain. Journal of Biological Chemistry, 2011, 286, 5234-5241.
1.6

147

161 Evaluation of a Maleimido Derivative of NOTA for Site-Specific Labeling of Affibody Molecules.
 Bioconjugate Chemistry, 2011, 22, 894-902.

1.8 25

Use of a HEHEHE Purification Tag Instead of a Hexahistidine Tag Improves Biodistribution of Affibody

Affinity recovery of eight HER2-binding affibody variants using an anti-idiotypic affibody molecule as capture ligand. Protein Expression and Purification, 2011, 76, 127-135.

Effect of cetuximab in combination with alpha-radioimmunotherapy in cultured squamous cell carcinomas. Nuclear Medicine and Biology, 2011, 38, 103-112.

Influence of an aliphatic linker between DOTA and synthetic ZHER2:342 Affibody molecule on targeting properties of the 111 In-labeled conjugate. Nuclear Medicine and Biology, 2011, 38, 697-706.

Comparative biodistribution of imaging agents for in vivo molecular profiling of disseminated prostate cancer in mice bearing prostate cancer xenografts: focus on 1111 ln - and 125I-labeled anti-HER2 humanized monoclonal trastuzumab and ABY-025 Affibody. Nuclear Medicine and Biology, 2011, 38, 1093-1102.
Imaging agents for in vivo molecular profiling of disseminated prostate cancer: Cellular processing
of [111In]-labeled CHX-Aâ $€^{3}$ DTPA-trastuzumab and anti-HER2 ABY-025 Affibody in prostate cancer cell lines.
Experimental and Therapeutic Medicine, $2011,2,523-528$.

Imaging agents for in vivo molecular profiling of disseminated prostate cancer - targeting EGFR
168 receptors in prostate cancer: Comparison of cellular processing of [1111n]-labeled affibody molecule
1.413 ZEGFR:2377 and cetuximab. International Journal of Oncology, 2011, 38, 1137-43.
169 Protein interactions with HER-family receptors can have different characteristics depending on thehosting cell line. International Journal of Oncology, 2011, 40, 1677-82.1.420
Improved Tumor-to-Organ Ratios of a Novel ⁶⁷Ga-Human Epidermal Growth Factor
170 Radionuclide Conjugate with Preadministered Antiepidermal Growth Factor Receptor AffibodyMolecules. Cancer Biotherapy and Radiopharmaceuticals, 2011, 26, 593-601.
171 Optimal specific radioactivity of anti-HER2 Affibody molecules enables discrimination between xenografts with high and low HER2 expression levels. European Journal of Nuclear Medicine and 3.3 46 Molecular Imaging, 2011, 38, 531-539.
125I-Labeled Quercetin as a Novel DNA-Targeted Radiotracer. Cancer Biotherapy and
172 Radiopharmaceuticals, 2011, 26, 469-475. 0.7 6
173 Molecular Design and Optimization of ^{99m}Tc-Labeled Recombinant Affibody Molecules
Improves Their Biodistribution and Imaging Properties. Journal of Nuclear Medicine, 2011, 52, 461-469. 2.8 80
Radiobromine-Labelled Tracers for Positron Emission Tomography: Possibilities and Pitfalls. Current 0.3 12
Radiopharmaceuticals, 2011, 4, 76-89.
0.9 52Radionuclide Molecular Imaging Using Affibody Molecules. Current Pharmaceutical Biotechnology,
2010, 11, 581-589.
3.3 41
186Re-maSGS-ZHER2:342, a potential Affibody conjugate for systemic therapy of HER2-expressing
3.3 tumours. European Journal of Nuclear Medicine and Molecular Imaging, 2010, 37, 260-269.$3.3 \quad 103$
Imaging of EGFR expression in murine xenografts using site-specifically labelled anti-EGFR177111 In-DOTA-ZEGFR:2377 Affibody molecule: aspect of the injected tracer amount. European Journal ofNuclear Medicine and Molecular Imaging, 2010, 37, 613-622.A HER2-binding Affibody molecule labelled with 68Ga for PET imaging: direct in vivo comparison with178 the 111 In-labelled analogue. European Journal of Nuclear Medicine and Molecular Imaging, 2010, 37,
181

Preparation and in vitro evaluation of $111 \mathrm{ln}-\mathrm{CHX}-\mathrm{A}^{\prime \prime}$-DTPA-labeled anti-VEGF monoclonal antibody bevacizumab. Human Antibodies, 2010, 19, 107-111.

Influence of Labelling Methods on Biodistribution and Imaging Properties of Radiolabelled Peptides for Visualisation of Molecular Therapeutic Targets. Current Medicinal Chemistry, 2010, 17, 2636-2655.
1.2

HEHEHE-Tagged Affibody Molecule May Be Purified by IMAC, Is Conveniently Labeled with
183 [^{99m}Tc(CO) <sub>3<|sub>]<sup>+<|sup>, and Shows Improved Biodistribution with
1.8

Reduced Hepatic Radioactivity Accumulation. Bioconjugate Chemistry, 2010, 21, 2013-2022.
Design of an Optimized Scaffold for Affibody Molecules. Journal of Molecular Biology, 2010, 398,
232-247.

Radiolabelled proteins for positron emission tomography: Pros and cons of labelling methods.
Biochimica Et Biophysica Acta - General Subjects, 2010, 1800, 487-510.

Kit formulation for 99 mTc -labeling of recombinant anti-HER2 Affibody molecules with a C-terminally
engineered cysteine. Nuclear Medicine and Biology, 2010, 37, 539-546.
0.3

29
Radiolabelled receptor-tyrosine-kinase targeting drugs for patient stratification and monitoring of
therapy response: prospects and pitfalls. Lancet Oncology, The, 2010, 11, 992-1000. 1131-1138.

189 Affibody Molecules for Epidermal Growth Factor Receptor Targeting In Vivo: Aspects of Dimerization and Labeling Chemistry. Journal of Nuclear Medicine, 2009, 50, 274-283.

Reply: Molecular Imaging of EGFR: It's Time to Go Beyond Receptor Expression. Journal of Nuclear Medicine, 2009, 50, 1196-1196.
191 Synthesis and chemoselective intramolecular crosslinking of a HER2â€binding affibody. Biopolymers,
$2009,92,116-123$.

2009, 92, 116-123.

192 Influence of valency and labelling chemistry on in vivo targeting using radioiodinated HER2-binding
192 Influence of valency and labelling chemistry on in vivo targeting using radioiodinated HER2-binding
Affibody molecules. European Journal of Nuclear Medicine and Molecular Imaging, 2009, 36, 692-701.
3.3

54

The influence of Bz-DOTA and CHX-Aâ€3-DTPA on the biodistribution of ABD-fused anti-HER2 Affibody
193 molecules: implications for 114 mln -mediated targeting therapy. European Journal of Nuclear Medicine
$3.3 \quad 27$ and Molecular Imaging, 2009, 36, 1460-1468.

Design, synthesis and biological evaluation of a multifunctional HER2-specific Affibody molecule for molecular imaging. European Journal of Nuclear Medicine and Molecular Imaging, 2009, 36, 1864-1873.
3.3

43

195 Positioning of 99 mTc -chelators influences radiolabeling, stability and biodistribution of Affibody molecules. Bioorganic and Medicinal Chemistry Letters, 2009, 19, 3912-3914.

On the Selection of a Tracer for PET Imaging of HER2-Expressing Tumors: Direct Comparison of a
196 ¹²⁴-Labeled Affibody Molecule and Trastuzumab in a Murine Xenograft Model. Journal of Nuclear Medicine, 2009, 50, 417-425.

Targeting of HER2-Expressing Tumors with a Site-Specifically ^{99m}Tc-Labeled Recombinant
197 Affibody Molecule, Z_{HER2:2395}, with C-Terminally Engineered Cysteine. Journal of Nuclear
2.8

Medicine, 2009, 50, 781-789.
The use of closo-dodecaborate-containing linker improves targeting of HNSCC xenografts with radioiodinated chimeric monoclonal antibody U36. Molecular Medicine Reports, 2009, 3, 155-60.
199 Differences in radiosensitivity between three HER2 overexpressing cell lines. European Journal of
[177Lu]Pertuzumab: Experimental Therapy of HER-2â€"Expressing Xenografts. Cancer Research, 2007, 67, 326-331.

Biodistribution of211At-Labeled Humanized Monoclonal Antibody A33. Cancer Biotherapy and Radiopharmaceuticals, 2007, 22, 480-487.

Synthetic Affibody Molecules: A Novel Class of Affinity Ligands for Molecular Imaging of HER2-Expressing Malignant Tumors. Cancer Research, 2007, 67, 2178-2186.

Labelling chemistry and characterization of [90Y/177Lu]-DOTA-ZHER2:342-3 Affibody molecule, a
211 candidate agent for locoregional treatment of urinary bladder carcinoma. International Journal of Molecular Medicine, 2007, 19, 285.
<i>In Vitro</i>Evaluation of Two Polyhedral Boron Anion Derivatives as Linkers for Attachment of
212 Radioiodine to the Anti-HER2 Monoclonal Antibody Trastuzumab. Cancer Biotherapy and
Radiopharmaceuticals, 2007, 22, 585-596.
213 Radionuclide Therapy of HER2-Positive Microxenografts Using a 177Lu-Labeled HER2-Specific Affibody Molecule. Cancer Research, 2007, 67, 2773-2782.

Quantification of CD44v6 and EGFR Expression in Head and Neck Squamous Cell Carcinomas Using a Single-Dose Radioimmunoassay. Tumor Biology, 2007, 28, 253-263.

Imaging of HER2-expressing tumours using a synthetic Affibody molecule containing the
221 99mTc-chelating mercaptoacetyl-glycyl-glycyl-glycyl (MAG3) sequence. European Journal of Nuclear Medicine and Molecular Imaging, 2007, 34, 722-733.

222 99mTc-chelator engineering to improve tumour targeting properties of a HER2-specific Affibody molecule. European Journal of Nuclear Medicine and Molecular Imaging, 2007, 34, 1843-1853.

```225 Biodistribution of 211At labeled HER-2 binding affibody molecules in mice. Oncology Reports, 2007, 17,
```

```
        Radio-iodination of monoclonal antibody using potassium233 [125I]-(4-isothiocyanatobenzylammonio)-iodo-decahydro-closo-dodecaborate (iodo-DABI). Anticancer

\title{
Synthesis and radioiodination of some daunorubicin and doxorubicin derivatives. Carbohydrate \\ Research, 2005, 340, 15-24.
}
1.1

21

Radiobromination ofcloso-carboranes using palladium-catalyzed halogen exchange. Journal of Labelled Compounds and Radiopharmaceuticals, 2005, 48, 195-202.
0.5

12

Synthesis and radioiodination of some 9-aminoacridine derivatives for potential use in radionuclide
0.5

237 Synthesis and radioiodination of some 9-aminoacridine derivatives for potential use in rad
\(0.5-8\)

In vitro evaluation of the astatinated chimeric monoclonal antibody U36, a potential candidate for
238 treatment of head and neck squamous cell carcinoma. European Journal of Nuclear Medicine and
\(3.3 \quad 23\) Molecular Imaging, 2005, 32, 1296-1304.
[177Lu]pertuzumab: experimental studies on targeting of HER-2 positive tumour cells. European Journal
of Nuclear Medicine and Molecular Imaging, 2005, 32, 1457-1462.
\(3.3 \quad 61\)

240 Evaluation of ((4-Hydroxyphenyl)ethyl)maleimide for Site-Specific Radiobromination of Anti-HER2 Affibody. Bioconjugate Chemistry, 2005, 16, 1547-1555.
\(1.8 \quad 49\)
24 Vitro Characterization of 211 At-Labeled Antibody A33â" a Potential Thent Acent Against
241 Metastatic Colorectal Carcinoma. Cancer Biotherapy and Radiopharmaceuticals, 2005, 20, 514-523.
\(0.7 \quad 11\)

242 An aminoacridine derivative for radionuclide therapy: DNA binding properties studied in a novel cell-free in vitro assay. International Journal of Oncology, 2005, 27, 1355.
243 In Vitro Characterization of a Bivalent Anti-HER-2 Affibody with Potential for Radionuclide-Based 243 Diagnostics. Cancer Biotherapy and Radiopharmaceuticals, 2005, 20, 239-248.0.787Radiobromination of humanized anti-HER2 monoclonal antibody trastuzumab using N -succinimidyl244 5-bromo-3-pyridinecarboxylate, a potential label for immunoPET. Nuclear Medicine and Biology, 2005,0.32432, 613-622.
245 [99mTc] HYNIC-hEGF, a potential agent for imaging of EGF receptors in vivo: preparation and pre-clinical evaluation. Oncology Reports, 2005, 13, 1169-75.1.210Preparation and evaluation of (68)Ga-DOTA-hEGF for visualization of EGFR expression in malignant
2.8

90
253A limiting factor for the progress of radionuclide-based cancer diagnostics and therapy Availability
255 potential residualizing label for tumor targeting proteins and peptides. Journal of Radioanalytica\(0.7 \quad 9\)and Nuclear Chemistry, 2004, 261, 107-112.

256 Synthesis and Radioiodination of Some 9-Aminoacridine Derivatives. European Journal of Organic
257 Synthesis and radioiodination of 7-(3â€2-ammoniopropyl)-7,8-dicarba-nido-undecaborate(-1),(ANC). Journal of Labelled Compounds and Radiopharmaceuticals, 2004, 47, 557-569.Radiobromination of monoclonal antibody using potassium [76Br] (4) Tj ETQq0 \(00 \mathrm{rgBT} /\) Overlock 10 Tf 50547 Td (isothiocyanatoben
259 derivative of the [76Br]undecahydro-bromo-7,8-dicarba-nido-undecaborate(1-) ion. Nuclear Medicine\(0.3 \quad 51\)and Biology, 2004, 31, 425-433.
Comparative Biodistribution of Potential Anti-Glioblastoma Conjugates [<SUP> \(111</\) SUP \(\rangle\) In]DTPA-hEGF260 and \([<S U P\rangle 111</ S U P>\ln ] B z-D T P A-h E G F\) in Normal Mice. Cancer Biotherapy and Radiopharmaceuticals,\(0.7 \quad 13\)2004, 19, 491-501.
261 Targeting against epidermal growth factor receptors. Cellular processing of astatinated EGF after0.58
262 Title is missing!. Journal of Radioanalytical and Nuclear Chemistry, 2003, 256, 67-71.0.75
263 Title is missing!. Journal of Radioanalytical and Nuclear Chemistry, 2003, 256, 191-197. ..... 0.7 ..... 22Treatment of cultured glioma cells with the EGFR-TKI gefitinib ("Iressa", ZD1839) increases the uptake
264 of astatinated EGF despite the absence of gefitinib-mediated growth inhibition. European Journal of3.314Nuclear Medicine and Molecular Imaging, 2003, 30, 727-729.
265 Combined effect of gefitinib ('Iressa', ZD1839) and targeted radiotherapy with 211 At-ECF. European3.3Journal of Nuclear Medicine and Molecular Imaging, 2003, 30, 1348-1356.0.511Feasibility of palladium-catalyzed isotopic exchange between sodium [1251] ] and 2-iodo-para-carborane.Journal of Labelled Compounds and Radiopharmaceuticals, 2003, 46, 623-631.
0.8 ..... 30
High yield [125I]iodide-labeling of iodinated carboranes by palladium-catalyzed isotopic exchange. 267 Journal of Organometallic Chemistry, 2003, 680, 188-192.1.259
using positron emission tomography. British Journal of Haematology, 2003, 120, 853-859.Biodistribution of the Chimeric Monoclonal Antibody U36 Radioiodinated with a269 closo-Dodecaborate-Containing Linker. Comparison with Other Radioiodination Methods.1.819Bioconjugate Chemistry, 2003, 14, 805-810.
271 Approaches to Improve Cellular Retention of Radiohalogen Labels Delivered by Internalising1.2Tumour-Targeting Proteins and Peptides. Current Medicinal Chemistry, 2003, 10, 2447-2460.Comparative Biodistribution of the Radiohalogenated (Br, I and At) Antibody A33. Implications for In

Polyhedral Boron Compounds as Potential Linkers for Attachment of Radiohalogens to Targeting
274 Proteins and Peptides. A Review. Collection of Czechoslovak Chemical Communications, 2002, 67,
913-935.
Production, PET performance and dosimetric considerations of134Ce/134La, an Auger electron and
275 positron-emitting generator for radionuclide therapy. Physics in Medicine and Biology, 2002, 47, 615-629.
1.6

276 Elimination of Stabilised Hyaluronan from the Knee Joint in Healthy Men. Clinical Pharmacokinetics, 2002, 41, 603-613.
1.6

57

277 Targeting peptides and positron emission tomography. Biopolymers, 2002, 66, 381-392.
1.2

40

\section*{278 Preparation of [76Br] 5-bromo-2-thiouracil, a positron-emitting melanoma localizing agent. Journal of} Radioanalytical and Nuclear Chemistry, 2002, 251, 409-412.
0.7

2
279 110mIn-DTPA-D-Phel-octreotide for imaging of neuroendocrine tumors with PET. Journal of Nuclear 2.8 ..... 36
279 Medicine, 2002, 43, 1391-7.
280 Separation of arsenic from germanium oxide targets by dry distillation. Journal of Radioanalyticaland Nuclear Chemistry, 2001, 247, 61-66.
0.7 ..... 16
281 Separation of two labeled components of [1111n] -OctreoScan by HPLC. Journal of Radioanalytical and
Nuclear Chemistry, 2001, 247, 95-99.0.71Nuclear Chemistry, 2001, 247,95-99.0.518Closo-dodecaborate (2-) anion as a potential prosthetic group for attachment of astatine to proteins.282 Aspects of the labelling chemistry with chloramine-T. Journal of Labelled Compounds and18Radiopharmaceuticals, 2000, 43, 251-260.
283 Title is missing!. Journal of Radioanalytical and Nuclear Chemistry, 2000, 246, 207-213. ..... 0.7 ..... 5Positron emission tomography of experimental melanoma with [76Br]5-bromo-2-thiouracil. Nuclear
289 Positron Emission Tomography and Radioimmunotargeting: General Aspects. Acta OncolÃ ica, 1999, 38,335-341.
290Quantification aspects of patient studies with 52 Fe in positron emission tomography. Applied
291 Radiation and Isotopes, 1999, 51, 707-715.Kinetic analysis of 52 Fe-labelled iron(III) hydroxide-sucrose complex following bolus administration1.2using positron emission tomography. British Journal of Haematology, 1999, 104, 288-295.Pharmacokinetics and red cell utilization of iron(III) hydroxide-sucrose complex in anaemic patients: astudy using positron emission tomography. British Journal of Haematology, 1999, 104, 296-302.
High yield direct 76Br-bromination of monoclonal antibodies using chloramine-T. Nuclear Medicine and Biology, 1999, 26, 923-929.
Binding of tellurium to hepatocellular selenoproteins during incubation with inorganic tellurite:
296 consequences for the activity of selenium-dependent glutathione peroxidase. International Journal of ..... 1.2 ..... 55 Biochemistry and Cell Biology, 1999, 31, 291-301.
297 Closo-Dodecaborate(2-) as a Linker for lodination of Macromolecules. Aspects on Conjugation 297 Chemistry and Biodistribution. Bioconjugate Chemistry, 1999, 10, 338-345.
298 Effects of Dextranation on the Pharmacokinetics of Short Peptides. A PET Study on mEGF.Bioconjugate Chemistry, 1999, 10, 938-946.
299 Synthesis of N-Succinimidyl 4-[76Br]Bromobenzoate and its Use in Conjugation Labelling of0.7
300 Production of 61Cu from a natural nickel target. Applied Radiation and Isotopes, 1998, 49, 79-81.0.719
301 Production of 76Br by a low-energy cyclotron. Applied Radiation and Isotopes, 1998, 49, 1537-1540. 0.7 ..... 75Diffusion-based separation methods: Dry distillation of zinc, cadmium and mercury isotopes from0.73irradiated targets. Applied Radiation and Isotopes, 1997, 48, 565-569.
Rapid separation of gallium from zinc targets by thermal diffusion. Applied Radiation and Isotopes, ..... 0.7 ..... 25
303 1996, 47, 297-299.expression in malignant tumors. International Journal of Molecular Medicine, 0, , .```

