Jamie Michael Foster

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5324931/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Migration of cations induces reversible performance losses over day/night cycling in perovskite solar cells. Energy and Environmental Science, 2017, 10, 604-613.	30.8	525
2	Can slow-moving ions explain hysteresis in the current–voltage curves of perovskite solar cells?. Energy and Environmental Science, 2016, 9, 1476-1485.	30.8	363
3	Improving the Long-Term Stability of Perovskite Solar Cells with a Porous Al ₂ O ₃ Buffer Layer. Journal of Physical Chemistry Letters, 2015, 6, 432-437.	4.6	343
4	How transport layer properties affect perovskite solar cell performance: insights from a coupled charge transport/ion migration model. Energy and Environmental Science, 2019, 12, 396-409.	30.8	184
5	Measurement and modelling of dark current decay transients in perovskite solar cells. Journal of Materials Chemistry C, 2017, 5, 452-462.	5.5	64
6	Three-dimensional investigation of cycling-induced microstructural changes in lithium-ion battery cathodes using focused ion beam/scanning electron microscopy. Journal of Power Sources, 2016, 306, 300-308.	7.8	60
7	A Model for the Operation of Perovskite Based Hybrid Solar Cells: Formulation, Analysis, and Comparison to Experiment. SIAM Journal on Applied Mathematics, 2014, 74, 1935-1966.	1.8	53
8	Operando Mapping of Li Concentration Profiles and Phase Transformations in Graphite Electrodes by Magnetic Resonance Imaging and Nuclear Magnetic Resonance Spectroscopy. Journal of Physical Chemistry C, 2018, 122, 21784-21791.	3.1	47
9	IonMonger: a free and fast planar perovskite solar cell simulator with coupled ion vacancy and charge carrier dynamics. Journal of Computational Electronics, 2019, 18, 1435-1449.	2.5	42
10	Review of parameterisation and a novel database (LiionDB) for continuum Li-ion battery models. Progress in Energy, 2022, 4, 032004.	10.9	35
11	A continuum of physics-based lithium-ion battery models reviewed. Progress in Energy, 2022, 4, 042003.	10.9	30
12	Deducing transport properties of mobile vacancies from perovskite solar cell characteristics. Journal of Applied Physics, 2020, 128, .	2.5	25
13	A Shrinking-Core Model for the Degradation of High-Nickel Cathodes (NMC811) in Li-Ion Batteries: Passivation Layer Growth and Oxygen Evolution. Journal of the Electrochemical Society, 2021, 168, 020509.	2.9	23
14	Systematic derivation of a surface polarisation model for planar perovskite solar cells. European Journal of Applied Mathematics, 2019, 30, 427-457.	2.9	22
15	DandeLiion v1: An Extremely Fast Solver for the Newman Model of Lithium-Ion Battery (Dis)charge. Journal of the Electrochemical Society, 2021, 168, 060544.	2.9	18
16	Asymptotic and numerical prediction of current-voltage curves for an organic bilayer solar cell under varying illumination and comparison to the Shockley equivalent circuit. Journal of Applied Physics, 2013, 114, .	2.5	17
17	Structure Solution of Metal-Oxide Li Battery Cathodes from Simulated Annealing and Lithium NMR Spectroscopy. Chemistry of Materials, 2017, 29, 5550-5557.	6.7	17
18	Incorporating Dendrite Growth into Continuum Models of Electrolytes: Insights from NMR Measurements and Inverse Modeling. Journal of the Electrochemical Society, 2019, 166, A1591-A1602.	2.9	17

JAMIE MICHAEL FOSTER

#	Article	IF	CITATIONS
19	The Effect of Ionic Aggregates on the Transport of Charged Species in Lithium Electrolyte Solutions. Journal of the Electrochemical Society, 2018, 165, H561-H567.	2.9	15
20	Parametrisation and Use of a Predictive DFN Model for a High-Energy NCA/Gr-SiOx Battery. Journal of the Electrochemical Society, 2021, 168, 120522.	2.9	13
21	Demand Response Model Development for Smart Households Using Time of Use Tariffs and Optimal Control—The Isle of Wight Energy Autonomous Community Case Study. Energies, 2020, 13, 541.	3.1	11
22	Homogenization Study of the Effects of Cycling on the Electronic Conductivity of Commercial Lithium-Ion Battery Cathodes. Journal of Physical Chemistry C, 2015, 119, 12199-12208.	3.1	10
23	Charge transport modelling of Lithium-ion batteries. European Journal of Applied Mathematics, 2022, 33, 983-1031.	2.9	9
24	Understanding rapid charge and discharge in nano-structured lithium iron phosphate cathodes. European Journal of Applied Mathematics, 2022, 33, 328-368.	2.9	6
25	Discerning models of phase transformations in porous graphite electrodes: Insights from inverse modelling based on MRI measurements. Electrochimica Acta, 2020, 349, 136290.	5.2	6
26	On Uncertainty Quantification in the Parametrization of Newman-Type Models of Lithium-Ion Batteries. Journal of the Electrochemical Society, 0, , .	2.9	5
27	BESLE: Boundary element software for 3D linear elasticity. Computer Physics Communications, 2021, 265, 108009.	7.5	3
28	The slow spreading of a viscous fluid film over a deep viscous pool. Journal of Engineering Mathematics, 2011, 71, 393-408.	1.2	1
29	The halting of contact lines in slender viscous films driven by gravity and surface tension gradients. Physics of Fluids, 2014, 26, 073601.	4.0	1
30	Extremely Fast Solvers for Newman-Type Models of Li-Ion Cell (dis)Charge. ECS Meeting Abstracts, 2020, MA2020-01, 393-393.	0.0	0