Chunxi Hou

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/532407/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Supramolecularly regulated artificial transmembrane signal transduction for 'ON/OFF'-switchable enzyme catalysis. Chemical Communications, 2022, 58, 5725-5728.	4.1	11
2	Single-Cell VEGF Analysis by Fluorescence Imaging–Microfluidic Droplet Platform: An Immunosandwich Strategy on the Cell Surface. Analytical Chemistry, 2022, 94, 6591-6598.	6.5	8
3	"On/Off―Switchable Sequential Light-Harvesting Systems Based on Controllable Protein Nanosheets for Regulation of Photocatalysis. ACS Nano, 2022, 16, 8012-8021.	14.6	23
4	Recent development in the design of artificial enzymes through molecular imprinting technology. Journal of Materials Chemistry B, 2022, 10, 6590-6606.	5.8	23
5	Single-Molecule Observation of Selenoenzyme Intermediates in a Semisynthetic Seleno-α-Hemolysin Nanoreactor. Analytical Chemistry, 2022, 94, 8433-8440.	6.5	6
6	Hierarchical protein self-assembly into dynamically controlled 2D nanoarrays <i>via</i> host–guest chemistry. Chemical Communications, 2021, 57, 10620-10623.	4.1	6
7	Difunctionalized pillar[5]arene-based polymer nanosheets for photodynamic therapy of <i>Staphylococcus aureus</i> infection. Journal of Materials Chemistry B, 2021, 9, 2066-2072.	5.8	4
8	Construction of Ultralarge Two-Dimensional Fluorescent Protein Arrays via a Reengineered Rhodamine B-Based Molecular Tool. ACS Macro Letters, 2021, 10, 307-311.	4.8	4
9	Virus-Based Supramolecular Structure and Materials: Concept and Prospects. ACS Applied Bio Materials, 2021, 4, 5961-5974.	4.6	6
10	Highly sensitive detection of paraquat with pillar[5]arenes as an aptamer in an α-hemolysin nanopore. Materials Chemistry Frontiers, 2021, 5, 7032-7040.	5.9	4
11	Constructing antibacterial polymer nanocapsules based on pyridine quaternary ammonium salt. Materials Science and Engineering C, 2020, 108, 110383.	7.3	31
12	Engineering Nonmechanical Protein-Based Hydrogels with Highly Mechanical Properties: Comparison with Natural Muscles. Biomacromolecules, 2020, 21, 4212-4219.	5.4	12
13	Morphological Transformation between Orthogonal Dynamic Covalent Selfâ€Assembly of Imineâ€Boroxine Hybrid Polymer Nanocapsules and Thin Films via Linker Exchange. Macromolecular Rapid Communications, 2020, 41, 1900586.	3.9	4
14	Rational Design and Biological Application of Antioxidant Nanozymes. Frontiers in Chemistry, 2020, 8, 831.	3.6	31
15	Biomimetic Pulsating Vesicles with Both pH-Tunable Membrane Permeability and Light-Triggered Disassembly–Re-assembly Behaviors Prepared by Supra-Amphiphilic Helices. ACS Applied Materials & Interfaces, 2019, 11, 30566-30574.	8.0	15
16	Construction of a reconfigurable DNA nanocage for encapsulating a TMV disk. Chemical Communications, 2019, 55, 8951-8954.	4.1	6
17	Supramolecular polymer nanocapsules by enzymatic covalent condensation: biocompatible and biodegradable drug-delivery systems for chemo-photothermal anticancer therapy. Polymer Chemistry, 2019, 10, 3566-3570.	3.9	10
18	Template-Free Construction of Highly Ordered Monolayered Fluorescent Protein Nanosheets: A Bioinspired Artificial Light-Harvesting System. ACS Nano, 2019, 13, 1861-1869.	14.6	37

Снимхі Нои

#	Article	IF	CITATIONS
19	Design of artificial enzymes by supramolecular strategies. Current Opinion in Structural Biology, 2018, 51, 19-27.	5.7	49
20	Protein Selfâ€Assembly Driven by De Novo Coiled Coils and Constructing Ag Nanoparticleâ€Protein Assembly Composite with High Catalytic Activity. Particle and Particle Systems Characterization, 2018, 35, 1700436.	2.3	4
21	Photocontrolled protein assembly for constructing programmed two-dimensional nanomaterials. Journal of Materials Chemistry B, 2018, 6, 75-83.	5.8	12
22	Construction of Artificial Enzymes on aÂVirus Surface. Methods in Molecular Biology, 2018, 1776, 437-454.	0.9	0
23	Construction of protein assemblies by host–guest interactions with cucurbiturils. Organic and Biomolecular Chemistry, 2017, 15, 4272-4281.	2.8	43
24	Enzyme-Regulated Fast Self-Healing of a Pillararene-Based Hydrogel. Biomacromolecules, 2017, 18, 1885-1892.	5.4	53
25	Enzyme-Triggered Defined Protein Nanoarrays: Efficient Light-Harvesting Systems to Mimic Chloroplasts. ACS Nano, 2017, 11, 938-945.	14.6	71
26	Supramolecular Protein Assemblies Based on DNA Templates. Journal of Physical Chemistry Letters, 2017, 8, 3970-3979.	4.6	15
27	Protein Assembly: Versatile Approaches to Construct Highly Ordered Nanostructures. Chemical Reviews, 2016, 116, 13571-13632.	47.7	452
28	An ion signal responsive dynamic protein nano-spring constructed by high ordered host–guest recognition. Chemical Communications, 2016, 52, 2924-2927.	4.1	34
29	Construction of supramolecular polymer by enzyme-triggered covalent condensation of CB[8]-FGG-based supramonomer. Chemical Communications, 2016, 52, 2083-2086.	4.1	20
30	The construction of functional protein nanotubes by small molecule-induced self-assembly of cricoid proteins. Chemical Communications, 2016, 52, 4092-4095.	4.1	33
31	Quantum-Dot-Induced Self-Assembly of Cricoid Protein for Light Harvesting. ACS Nano, 2014, 8, 3743-3751.	14.6	83
32	Construction of Protein Nanowires through Cucurbit[8]urilâ€based Highly Specific Host–Guest Interactions: An Approach to the Assembly of Functional Proteins. Angewandte Chemie - International Edition, 2013, 52, 5590-5593.	13.8	145
33	Construction of GPx Active Centers on Natural Protein Nanodisk/Nanotube: A New Way to Develop Artificial Nanoenzyme. ACS Nano, 2012, 6, 8692-8701.	14.6	92