Ulrich Simon

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5323729/publications.pdf

Version: 2024-02-01

268 13,298 51
papers citations h-index

papers citations h-index g-index

324 324 324 17441
all docs docs citations times ranked citing authors

27406

106

#	Article	IF	CITATIONS
1	Sorption and Reaction of Biomass Derived HC Blends and Their Constituents on a Commercial Pt–Pd/Al2O3 Oxidation Catalyst. Catalysis Letters, 2022, 152, 1880-1894.	2.6	3
2	Perovskite Catalyst for In-Cylinder Coating to Reduce Raw Pollutant Emissions of Internal Combustion Engines. ACS Omega, 2022, 7, 5340-5349.	3.5	9
3	The effects of oxygen pressure on the discharge performance of potassium–oxygen batteries. Sustainable Energy and Fuels, 2022, 6, 1992-2000.	4.9	3
4	Impact of device design on the electronic and optoelectronic properties of integrated Ru-terpyridine complexes. Beilstein Journal of Nanotechnology, 2022, 13, 219-229.	2.8	3
5	DNA introduces an independent temperature responsiveness to thermosensitive microgels and enables switchable plasmon coupling as well as controlled uptake and release. Nanoscale, 2021, 13, 2875-2882.	5.6	4
6	Encapsulation of Au ₅₅ Clusters within Surface-Supported Metal–Organic Frameworks for Catalytic Reduction of 4-Nitrophenol. ACS Applied Nano Materials, 2021, 4, 522-528.	5.0	15
7	Induced pluripotent stem cell-derived vascular networks to screen nano–bio interactions. Nanoscale Horizons, 2021, 6, 245-259.	8.0	7
8	Recent Understanding of Low-Temperature Copper Dynamics in Cu-Chabazite NH3-SCR Catalysts. Catalysts, 2021, 11, 52.	3.5	14
9	Composition/Performance Evaluation of Lean NO _x Trap Catalysts for Coupling with SCR Technology. ChemCatChem, 2021, 13, 1787-1805.	3.7	12
10	Simulating Metaphyseal Fracture Healing in the Distal Radius. Biomechanics, 2021, 1, 29-42.	1.2	5
11	PTFE Enhances Discharge Performance of Carbon Cathodes in Potassiumâ€Oxygen Batteries. Batteries and Supercaps, 2021, 4, 1620.	4.7	3
12	Labelling via [Al18F]2+ Using Precomplexed Al-NODA Moieties. Pharmaceuticals, 2021, 14, 818.	3.8	4
13	Inhibition Effect of Phosphorus Poisoning on the Dynamics and Redox of Cu Active Sites in a Cu-SSZ-13 NH ₃ -SCR Catalyst for NO <i>_x</i> Reduction. Environmental Science & Eamp; Technology, 2021, 55, 12619-12629.	10.0	43
14	Controlling microgel deformation <i>via</i> deposition method and surface functionalization of solid supports. Physical Chemistry Chemical Physics, 2021, 23, 4927-4934.	2.8	18
15	Anomalous Discharge Behavior of Graphite Nanosheet Electrodes in Lithium-Oxygen Batteries. Materials, 2020, 13, 43.	2.9	5
16	Elucidation of the Active Sites for Monodisperse FePt and Pt Nanocrystal Catalysts for p-WSe ₂ Photocathodes. Journal of Physical Chemistry C, 2020, 124, 11877-11885.	3.1	10
17	Optimizing Discharge Capacity of Graphite Nanosheet Electrodes for Lithium–Oxygen Batteries. Batteries, 2020, 6, 36.	4.5	3
18	Spectroscopic identification and catalytic relevance of NH4+ intermediates in selective NOx reduction over Cu-SSZ-13 zeolites. Chemosphere, 2020, 250, 126272.	8.2	21

#	Article	IF	CITATIONS
19	Transport through Redox-Active Ru-Terpyridine Complexes Integrated in Single Nanoparticle Devices. Journal of Physical Chemistry C, 2020, 124, 4881-4889.	3.1	5
20	Electronic parameters in cobalt-based perovskite-type oxides as descriptors for chemocatalytic reactions. Nature Communications, 2020, 11, 652.	12.8	46
21	Integration of Individual Functionalized Gold Nanoparticles into Nanoelectrode Configurations: Recent Advances. European Journal of Inorganic Chemistry, 2020, 2020, 3798-3810.	2.0	2
22	Controlling the Electronic Contact at the Terpyridine/Metal Interface. Journal of Physical Chemistry C, 2019, 123, 21367-21375.	3.1	10
23	Size-Tailored Biocompatible FePt Nanoparticles for Dual <i>T</i> ₁ / <i>T</i> ₂ Magnetic Resonance Imaging Contrast Enhancement. Langmuir, 2019, 35, 10424-10434.	3.5	13
24	Deformation of Microgels at Solid–Liquid Interfaces Visualized in Three-Dimension. Nano Letters, 2019, 19, 8862-8867.	9.1	42
25	Tracking mobile active sites and intermediates in NH ₃ -SCR over zeolite catalysts by impedance-based <i>in situ</i> spectroscopy. Reaction Chemistry and Engineering, 2019, 4, 986-994.	3.7	16
26	Mechanistic Understanding of Cu-CHA Catalyst as Sensor for Direct NH ₃ -SCR Monitoring: The Role of Cu Mobility. ACS Applied Materials & Samp; Interfaces, 2019, 11, 8097-8105.	8.0	30
27	Cargo shuttling by electrochemical switching of core–shell microgels obtained by a facile one-shot polymerization. Chemical Science, 2019, 10, 1844-1856.	7.4	38
28	Stepwise Growth of Ruthenium Terpyridine Complexes on Au Surfaces. Journal of Physical Chemistry C, 2019, 123, 6537-6548.	3.1	8
29	Storage and Oxidation of Oxygen-Free and Oxygenated Hydrocarbons on a Pt–Pd Series Production Oxidation Catalyst. Topics in Catalysis, 2019, 62, 376-385.	2.8	6
30	Secondary-Phase Formation in Spinel-Type LiMn2O4-Cathode Materials for Lithium-Ion Batteries: Quantifying Trace Amounts of Li2MnO3 by Electron Paramagnetic Resonance Spectroscopy. Applied Magnetic Resonance, 2018, 49, 415-427.	1.2	14
31	lon specific effects on the immobilisation of charged gold nanoparticles on metal surfaces. RSC Advances, 2018, 8, 1717-1724.	3.6	5
32	CLPFFD–PEG functionalized NIR-absorbing hollow gold nanospheres and gold nanorods inhibit β-amyloid aggregation. Journal of Materials Chemistry B, 2018, 6, 2432-2443.	5.8	23
33	Sb ₂ Te ₃ Growth Study Reveals That Formation of Nanoscale Charge Carrier Domains Is an Intrinsic Feature Relevant for Electronic Applications. ACS Applied Nano Materials, 2018, 1, 6834-6842.	5.0	11
34	Modelling the fracture-healing process as a moving-interface problem using an interface-capturing approach. Computer Methods in Biomechanics and Biomedical Engineering, 2018, 21, 512-520.	1.6	11
35	Au Nanoparticles as Template for Defect Formation in Memristive SrTiO3 Thin Films. Nanomaterials, 2018, 8, 869.	4.1	9
36	Mobility of NH3-Solvated Cull Ions in Cu-SSZ-13 and Cu-ZSM-5 NH3-SCR Catalysts: A Comparative Impedance Spectroscopy Study. Catalysts, 2018, 8, 162.	3. 5	22

#	Article	IF	Citations
37	Local dynamics of copper active sites in zeolite catalysts for selective catalytic reduction of NOx with NH3. Applied Catalysis B: Environmental, 2018, 237, 263-272.	20.2	35
38	Electrochemical and Electronic Charge Transport Properties of Ni-Doped LiMn2O4 Spinel Obtained from Polyol-Mediated Synthesis. Materials, 2018, 11, 806.	2.9	19
39	Simulating lateral distraction osteogenesis. PLoS ONE, 2018, 13, e0194500.	2.5	12
40	Microwave Cavity Perturbation Studies on H-form and Cu Ion-Exchanged SCR Catalyst Materials: Correlation of Ammonia Storage and Dielectric Properties. Topics in Catalysis, 2017, 60, 243-249.	2.8	19
41	Influence of Synthesis, Dopants and Cycling Conditions on the Cycling Stability of Doped LiNi _{0.5} Mn _{1.5} O ₄ Spinels. Journal of the Electrochemical Society, 2017, 164, A6349-A6358.	2.9	17
42	Electrochemical stability and electron transfer across 4-methyl- $4\hat{a}\in^2$ -(n-mercaptoalkyl) biphenyl monolayers on Au(100)-(1 \tilde{A} -1) electrodes in 1-hexyl-3-methylimidazolium hexafluorophosphate ionic liquid. Electrochimica Acta, 2017, 231, 44-52.	5.2	4
43	Elucidation and Comparison of the Effect of LiTFSI and LiNO ₃ Salts on Discharge Chemistry in Nonaqueous Li–O ₂ Batteries. ACS Applied Materials & amp; Interfaces, 2017, 9, 19319-19325.	8.0	24
44	Easy-Preparable Butyrylcholinesterase/Microgel Construct for Facilitated Organophosphate Biosensing. Analytical Chemistry, 2017, 89, 6091-6098.	6.5	51
45	Influence of Polymer Architecture on the Electrochemical Deposition of Polyelectrolytes. Electrochimica Acta, 2017, 232, 98-105.	5.2	26
46	Surface coupling strength of gold nanoparticles affects cytotoxicity towards neurons. Biomaterials Science, 2017, 5, 1051-1060.	5.4	7
47	The effects of gold nanoparticles functionalized with ß -amyloid specific peptides on an in vitro model of blood–brain barrier. Nanomedicine: Nanotechnology, Biology, and Medicine, 2017, 13, 1645-1652.	3.3	64
48	Hydrophobic superparamagnetic FePt nanoparticles in hydrophilic poly(N-vinylcaprolactam) microgels: a new multifunctional hybrid system. Journal of Materials Chemistry B, 2017, 5, 1284-1292.	5.8	33
49	Experimental and Theoretical Understanding of Nitrogen-Doping-Induced Strong Metal–Support Interactions in Pd/TiO ₂ Catalysts for Nitrobenzene Hydrogenation. ACS Catalysis, 2017, 7, 1197-1206.	11.2	138
50	Construction of 6-thioguanine and 6-mercaptopurine carriers based on \hat{l}^2 cyclodextrins and gold nanoparticles. Carbohydrate Polymers, 2017, 177, 22-31.	10.2	25
51	Toxic effects and biodistribution of ultrasmall gold nanoparticles. Archives of Toxicology, 2017, 91, 3011-3037.	4.2	87
52	Resistive Switching of Sub-10 nm TiO2 Nanoparticle Self-Assembled Monolayers. Nanomaterials, 2017, 7, 370.	4.1	14
53	Single Interdigital Transducer Approach for Gravimetrical SAW Sensor Applications in Liquid Environments. Sensors, 2017, 17, 2931.	3.8	10
54	Gold nanoparticles stabilized with \hat{l}^2 cyclodextrin-2-amino-4-(4-chlorophenyl)thiazole complex: A novel system for drug transport. PLoS ONE, 2017, 12, e0185652.	2.5	10

#	Article	IF	CITATIONS
55	In Situ Spectroscopic Studies of Proton Transport in Zeolite Catalysts for NH3-SCR. Catalysts, 2016, 6, 204.	3.5	8
56	Molecular and Electronic Structure of the Cluster [Au ₈ (PPh ₃) ₈](NO ₃) ₂ . European Journal of Inorganic Chemistry, 2016, 2016, 975-981.	2.0	9
57	Cellular Uptake: Assessing the Intracellular Integrity of Phosphine-Stabilized Ultrasmall Cytotoxic Gold Nanoparticles Enabled by Fluorescence Labeling (Adv. Healthcare Mater. 24/2016). Advanced Healthcare Materials, 2016, 5, 3088-3088.	7.6	0
58	The effect of Cu and Fe cations on NH3-supported proton transport in DeNOx-SCR zeolite catalysts. Catalysis Science and Technology, 2016, 6, 3362-3366.	4.1	32
59	Formation and Effect of NH ₄ ⁺ Intermediates in NH ₃ –SCR over Fe-ZSM-5 Zeolite Catalysts. ACS Catalysis, 2016, 6, 7696-7700.	11.2	68
60	3D Structures of Responsive Nanocompartmentalized Microgels. Nano Letters, 2016, 16, 7295-7301.	9.1	90
61	Microstructured Hydrogel Templates for the Formation of Conductive Gold Nanowire Arrays. Macromolecular Rapid Communications, 2016, 37, 1446-1452.	3.9	14
62	Assessing the Intracellular Integrity of Phosphineâ€Stabilized Ultrasmall Cytotoxic Gold Nanoparticles Enabled by Fluorescence Labeling. Advanced Healthcare Materials, 2016, 5, 3118-3128.	7.6	6
63	Metal Loading Affects the Proton Transport Properties and the Reaction Monitoring Performance of Fe-ZSM-5 and Cu-ZSM-5 in NH ₃ -SCR. Journal of Physical Chemistry C, 2016, 120, 25361-25370.	3.1	31
64	Monitoring NH3 storage and conversion in Cu-ZSM-5 and Cu-SAPO-34 catalysts for NH3-SCR by simultaneous impedance and DRIFT spectroscopy. Sensors and Actuators B: Chemical, 2016, 236, 1075-1082.	7.8	24
65	Sensing catalytic conversion: Simultaneous DRIFT and impedance spectroscopy for in situ monitoring of NH3–SCR on zeolites. Sensors and Actuators B: Chemical, 2016, 224, 492-499.	7.8	21
66	Directed Self-Assembly and Infrared Reflection Absorption Spectroscopy Analysis of Amphiphilic and Zwitterionic Janus Gold Nanoparticles. Langmuir, 2016, 32, 954-962.	3 . 5	10
67	Ligand-lipid and ligand-core affinity control the interaction of gold nanoparticles with artificial lipid bilayers and cell membranes. Nanomedicine: Nanotechnology, Biology, and Medicine, 2016, 12, 1409-1419.	3.3	20
68	Multivalency of PEG-thiol ligands affects the stability of NIR-absorbing hollow gold nanospheres and gold nanorods. Journal of Materials Chemistry B, 2016, 4, 2828-2841.	5 . 8	22
69	In situ monitoring of DeNO x -SCR on zeolite catalysts by means of simultaneous impedance and DRIFT spectroscopy. Procedia Engineering, 2015, 120, 257-260.	1.2	8
70	Resistive Switching: Resistive Switching of Individual, Chemically Synthesized TiO2Nanoparticles (Small $48/2015$). Small, 2015 , 11 , 6504 - 6504 .	10.0	0
71	Shape without Structure: An Intriguing Formation Mechanism in the Solvothermal Synthesis of the Phaseâ€Change Material Sb ₂ Te ₃ . Angewandte Chemie - International Edition, 2015, 54, 6632-6636.	13.8	18
72	Resistive Switching of Individual, Chemically Synthesized TiO ₂ Nanoparticles. Small, 2015, 11, 6444-6456.	10.0	24

#	Article	IF	CITATIONS
73	Correlating the Integral Sensing Properties of Zeolites with Molecular Processes by Combining Broadband Impedance and DRIFT Spectroscopyâ€"A New Approach for Bridging the Scales. Sensors, 2015, 15, 28915-28941.	3.8	30
74	Cytotoxicity of Ultrasmall Gold Nanoparticles on Planktonic and Biofilm Encapsulated Gramâ€Positive Staphylococci. Small, 2015, 11, 3183-3193.	10.0	72
75	Tuning neuron adhesion and neurite guiding using functionalized AuNPs and backfill chemistry. RSC Advances, 2015, 5, 39252-39262.	3.6	18
76	Polydiacetylene stabilized gold nanoparticles – extraordinary high stability and integration into a nanoelectrode device. RSC Advances, 2015, 5, 102981-102992.	3.6	7
77	Modern chemical synthesis methods towards low-dimensional phase change structures in the Ge–Sb–Te material system. Progress in Crystal Growth and Characterization of Materials, 2015, 61, 27-45.	4.0	50
78	Probing Structural Dynamics of an Artificial Protein Cage Using High-Speed Atomic Force Microscopy. Nano Letters, 2015, 15, 1331-1335.	9.1	29
79	Solvothermally Synthesized Sb ₂ Te ₃ Platelets Show Unexpected Optical Contrasts in Mid-Infrared Near-Field Scanning Microscopy. Nano Letters, 2015, 15, 2787-2793.	9.1	23
80	Enhancement of capacitive deionization capacity of hierarchical porous carbon. Journal of Materials Chemistry A, 2015, 3, 12730-12737.	10.3	69
81	Microgel Size Modulation by Electrochemical Switching. Chemistry of Materials, 2015, 27, 7306-7312.	6.7	61
82	Zirconium phosphate-based porous heterostructures: A new class of materials for ammonia sensing. Sensors and Actuators B: Chemical, 2015, 217, 175-180.	7.8	3
83	Ammonia storage studies on H-ZSM-5 zeolites by microwave cavity perturbation: correlation of dielectric properties with ammonia storage. Journal of Sensors and Sensor Systems, 2015, 4, 263-269.	0.9	39
84	Directed Immobilization of Janus-AuNP in Heterometallic Nanogaps: a Key Step Toward Integration of Functional Molecular Units in Nanoelectronics. Journal of Physical Chemistry C, 2014, 118, 27142-27149.	3.1	16
85	Volume-doped cobalt titanates for ethanol sensing: An impedance and X-ray absorption spectroscopy study. Sensors and Actuators B: Chemical, 2014, 192, 60-69.	7.8	14
86	Differential Adsorption of Gold Nanoparticles to Gold/Palladium and Platinum Surfaces. Langmuir, 2014, 30, 574-583.	3.5	16
87	Air–Blood Barrier Translocation of Tracheally Instilled Gold Nanoparticles Inversely Depends on Particle Size. ACS Nano, 2014, 8, 222-233.	14.6	211
88	Challenging material patterning: Fine lithography on coarse substrates. Scanning, 2014, 36, 362-367.	1.5	0
89	Selective Packaging of Ferricyanide within Thermoresponsive Microgels. Journal of Physical Chemistry C, 2014, 118, 26199-26211.	3.1	38
90	Enhanced photoacoustic signal from DNA assembled gold nanoparticle networks. Materials Research Express, 2014, 1, 045015.	1.6	4

#	Article	IF	Citations
91	Detection of the ammonia loading of a Cu Chabazite SCR catalyst by a radio frequency-based method. Sensors and Actuators B: Chemical, 2014, 205, 88-93.	7.8	39
92	Synthesis and Internal Structure of Finite-Size DNA–Gold Nanoparticle Assemblies. Journal of Physical Chemistry C, 2014, 118, 7174-7184.	3.1	14
93	Probing the effect of surface chemistry on the electrical properties of ultrathin gold nanowire sensors. Nanoscale, 2014, 6, 5146-5155.	5.6	27
94	Competing strain relaxation mechanisms in epitaxially grown Pr0.48Ca0.52MnO3 on SrTiO3. APL Materials, 2014, 2, 106106.	5.1	12
95	Bonding them all. Nature Materials, 2013, 12, 694-696.	27.5	18
96	In vivo nanotoxicity testing using the zebrafish embryo assay. Journal of Materials Chemistry B, 2013, 1, 3918.	5.8	104
97	Electrical Characterization of 4-Mercaptophenylamine-Capped Nanoparticles in a Heterometallic Nanoelectrode Gap. Journal of Physical Chemistry C, 2013, 117, 22002-22009.	3.1	10
98	Cellular uptake of fluorophore-labeled glyco-DNA–gold nanoparticles. Journal of Nanoparticle Research, 2013, 15, 1.	1.9	1
99	Combinatorial Approaches for Synthesis of Metal Oxides: Processing and Sensing Application. , 2013, , 117-166.		0
100	Features of Transport in Ultrathin Gold Nanowire Structures. Small, 2013, 9, 846-852.	10.0	44
101	Size- and Ligand-Specific Bioresponse of Gold Clusters and Nanoparticles: Challenges and Perspectives. Structure and Bonding, 2013, , 189-241.	1.0	8
102	[Au ₁₄ (PPh ₃) ₈ (NO ₃) ₄]: An Example of a New Class of Au(NO ₃)â€Ligated Superatom Complexes. Angewandte Chemie - International Edition, 2013, 52, 3529-3532.	13.8	84
103	Highâ€Sensitivity Realâ€Time Analysis of Nanoparticle Toxicity in Green Fluorescent Proteinâ€Expressing Zebrafish. Small, 2013, 9, 863-869.	10.0	47
104	A Missing Link in Undecagold Cluster Chemistry: Singleâ€Crystal Xâ€ray Analysis of [Au ₁₁ (PPh ₃) ₇ Cl ₃]. European Journal of Inorganic Chemistry, 2013, 2013, 2002-2006.	2.0	52
105	Dip-pen-based direct writing of conducting silver dots. Journal of Colloid and Interface Science, 2013, 406, 256-262.	9.4	11
106	Ultrathin Nanowires: Features of Transport in Ultrathin Gold Nanowire Structures (Small 6/2013). Small, 2013, 9, 960-960.	10.0	0
107	Molecularly stabilised ultrasmall gold nanoparticles: synthesis, characterization and bioactivity. Nanoscale, 2013, 5, 6224.	5.6	82
108	Isolation, Optical Properties and Core Structure of a Water-soluble, Phosphine-stabilized [Au ₉] ³⁺ Cluster. Zeitschrift Fur Naturforschung - Section B Journal of Chemical Sciences, 2013, 68, 569-574.	0.7	10

#	Article	IF	Citations
109	Differential hERG ion channel activity of ultrasmall gold nanoparticles. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 8004-8009.	7.1	63
110	Prediction of fracture healing under axial loading, shear loading and bending is possible using distortional and dilatational strains as determining mechanical stimuli. Journal of the Royal Society Interface, 2013, 10, 20130389.	3.4	42
111	High-throughput experimentation in resistive gas sensor materials development. Journal of Materials Research, 2013, 28, 574-588.	2.6	17
112	Spontaneous Assembly of Miktoarm Stars into Vesicular Interpolyelectrolyte Complexes. Macromolecular Rapid Communications, 2013, 34, 855-860.	3.9	48
113	Guided immobilisation of single gold nanoparticles by chemical electron beam lithography. Beilstein Journal of Nanotechnology, 2013, 4, 336-344.	2.8	8
114	Size-dependent multispectral photoacoustic response of solid and hollow gold nanoparticles. Nanotechnology, 2012, 23, 225707.	2.6	24
115	Size dependent photoacoustic signal response of gold nanoparticles using a multispectral laser diode system., 2012,,.		1
116	Preferential Adhesion of Silver Nanoparticles Onto Crystal Faces of α-Cyclodextrin/Carboxylic Acids Inclusion Compounds. Journal of Nanoscience and Nanotechnology, 2012, 12, 8929-8934.	0.9	6
117	Covalent Cargo Loading to Molecular Shuttles via Copper-free "Click Chemistry― Biomacromolecules, 2012, 13, 3908-3911.	5.4	19
118	Neuron Adhesion: Control of Cell Adhesion and Neurite Outgrowth by Patterned Gold Nanoparticles with Tunable Attractive or Repulsive Surface Properties (Small 21/2012). Small, 2012, 8, 3226-3226.	10.0	0
119	Electrically Conducting Nanopatterns Formed by Chemical e-Beam Lithography via Gold Nanoparticle Seeds. Langmuir, 2012, 28, 2448-2454.	3.5	22
120	Electrical Transport through Single Nanoparticles and Nanoparticle Arrays. Journal of Physical Chemistry C, 2012, 116, 20657-20665.	3.1	24
121	Size and surface charge of gold nanoparticles determine absorption across intestinal barriers and accumulation in secondary target organs after oral administration. Nanotoxicology, 2012, 6, 36-46.	3.0	313
122	Solid Phase Supported "Click―Chemistry Approach for the Preparation of Water Soluble Gold Nanoparticle Dimers. Journal of Cluster Science, 2012, 23, 1049-1059.	3.3	9
123	Zeolites as nanoporous, gas-sensitive materials for in situ monitoring of DeNO _x -SCR. Beilstein Journal of Nanotechnology, 2012, 3, 667-673.	2.8	28
124	Highly nâ€type doped InGaN films for efficient direct solar hydrogen generation. Physica Status Solidi C: Current Topics in Solid State Physics, 2012, 9, 964-967.	0.8	6
125	Control of Cell Adhesion and Neurite Outgrowth by Patterned Gold Nanoparticles with Tunable Attractive or Repulsive Surface Properties. Small, 2012, 8, 3357-3367.	10.0	30
126	Surface "Click―Reaction of DNA followed by Directed Metalization for the Construction of Contactable Conducting Nanostructures. Angewandte Chemie - International Edition, 2012, 51, 7586-7588.	13.8	26

#	Article	IF	Citations
127	Hierarchical Structures of Carbon Nanotubes and Arrays of Chromium apped Silicon Nanopillars: Formation and Electrical Properties. Chemistry - A European Journal, 2012, 18, 11614-11620.	3.3	2
128	Particle size-dependent and surface charge-dependent biodistribution of gold nanoparticles after intravenous administration. European Journal of Pharmaceutics and Biopharmaceutics, 2011, 77, 407-416.	4.3	493
129	Size dependent gas sensing properties of spinel iron oxide nanoparticles. Sensors and Actuators B: Chemical, 2011, 160, 942-950.	7.8	39
130	Stepwise Thermal and Photothermal Dissociation of a Hierarchical Superaggregate of DNAâ€Functionalized Gold Nanoparticles. Small, 2011, 7, 1397-1402.	10.0	15
131	Clycoâ€DNA–Gold Nanoparticles: Lectinâ€Mediated Assembly and Dualâ€Stimuli Response. Small, 2011, 7, 1954-1960.	10.0	14
132	The Role of Oxidative Etching in the Synthesis of Ultrathin Singleâ€Crystalline Au Nanowires. Chemistry - A European Journal, 2011, 17, 9503-9507.	3.3	22
133	A numerical model of the fracture healing process that describes tissue development and revascularisation. Computer Methods in Biomechanics and Biomedical Engineering, 2011, 14, 79-93.	1.6	74
134	Zeolite H-ZSM-5: A Microporous Proton Conductor for the in situ Monitoring of DeNOx-SCR. Materials Research Society Symposia Proceedings, 2011, 1330, 30301.	0.1	6
135	Electrical Properties of Thin Layers Consisting of Surface Functionalized Silicon Nanoparticles. Materials Research Society Symposia Proceedings, 2011, 1359, 199.	0.1	0
136	Patterned self-assembly of gold nanoparticles on chemical templates fabricated by soft UV nanoimprint lithography. Nanotechnology, 2011, 22, 295301.	2.6	32
137	Electrical properties of surface functionalized silicon nanoparticles. Journal of Nanoparticle Research, 2010, 12, 1367-1375.	1.9	14
138	NH ₃ -TPD measurements using a zeolite-based sensor. Measurement Science and Technology, 2010, 21, 027003.	2.6	25
139	Electrical characterization of single biphenyl-propanethiol capped 4nm Au nanoparticles. , 2010, , .		1
140	Influence of the fixation stability on the healing time $\hat{a} \in \text{``A numerical study of a patient-specific}$ fracture healing process. Clinical Biomechanics, 2010, 25, 606-612.	1.2	62
141	On the application potential of gold nanoparticles in nanoelectronics and biomedicine. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2010, 368, 1405-1453.	3.4	230
142	Electronic transport properties of individual 4,4′-bis(mercaptoalkyl)-biphenyl derivatives measured in STM-based break junctions. Physical Chemistry Chemical Physics, 2010, 12, 10518.	2.8	10
143	Controlled Nucleation of DNA Metallization. Angewandte Chemie - International Edition, 2009, 48, 219-223.	13.8	116
144	Sulfonated poly(ether ether ketone)–silica membranes doped with phosphotungstic acid. Morphology and proton conductivity. Journal of Membrane Science, 2009, 326, 45-57.	8.2	67

#	Article	IF	CITATIONS
145	Quantised double layer charging of monolayer-protected clusters in a room temperature ionic liquid. Electrochimica Acta, 2009, 54, 5006-5010.	5.2	19
146	Cytotoxicity: Small 18/2009. Small, 2009, 5, NA-NA.	10.0	0
147	Fieldâ€Emission Resonances at Tip/ <i>α</i> , <i>jï%</i> â€Mercaptoalkyl Ferrocene/Au Interfaces Studied by STM. Small, 2009, 5, 496-502.	10.0	33
148	Gold Nanoparticles of Diameter 1.4 nm Trigger Necrosis by Oxidative Stress and Mitochondrial Damage. Small, 2009, 5, 2067-2076.	10.0	685
149	Photothermal Control of the Activity of HRPâ€Functionalized Gold Nanoparticles. Small, 2009, 5, 2549-2553.	10.0	32
150	Structural ordering of ω-ferrocenylalkanethiol monolayers on Au(111) studied by scanning tunneling microscopy. Surface Science, 2009, 603, 716-722.	1.9	18
151	Preparation and Measurement of Combinatorial Screen Printed Libraries for the Electrochemical Analysis of Liquids. ACS Combinatorial Science, 2009, 11, 138-142.	3.3	6
152	Metal nanoparticle $\hat{a}\in DNA$ hybrids $\hat{a}\in S$ from assembly towards functional conjugates. Journal of Materials Chemistry, 2009, 19, 1518.	6.7	25
153	DNA-Mediated Assembly of Metal Nanoparticles: Fabrication, Structural Features, and Electrical Properties. Nanostructure Science and Technology, 2009, , 11-41.	0.1	3
154	Impedometric Screening of Gas-Sensitive Inorganic Materials., 2009, , 273-293.		0
155	Generation and electrical contacting of gold quantum dots. Colloid and Polymer Science, 2008, 286, 1029-1037.	2.1	13
156	Reversible Photothermal Melting of DNA in DNA–Goldâ€Nanoparticle Networks. Small, 2008, 4, 607-610.	10.0	62
157	An Easy Singleâ€Step Synthesis of Platinum Nanoparticles Embedded in Carbon. Chemistry - A European Journal, 2008, 14, 8776-8779.	3.3	4
158	Crystal Structure, Electrochemical and Optical Properties of [Au ₉ (PPh ₃) ₈](NO ₃) ₃ . European Journal of Inorganic Chemistry, 2008, 2008, 106-111.	2.0	127
159	Electrical and Optical Properties of Cetineite-Type Rb-, Sr-, and Ba-Oxoselenoantimonates(III). European Journal of Inorganic Chemistry, 2008, 2008, 369-372.	2.0	3
160	Zeolite based trace humidity sensor for high temperature applications in hydrogen atmosphere. Sensors and Actuators B: Chemical, 2008, 134, 171-174.	7.8	40
161	Correlation of TPD and impedance measurements on the desorption of NH3 from zeolite H-ZSM-5. Solid State Ionics, 2008, 179, 1968-1973.	2.7	44
162	Assembly of DNA-functionalized gold nanoparticles studied by UV/Vis-spectroscopy and dynamic light scattering. Physical Chemistry Chemical Physics, 2008, 10, 1870.	2.8	31

#	Article	IF	CITATIONS
163	Multidentate thioether ligands coating gold nanoparticles. Chemical Communications, 2008, , 3438.	4.1	40
164	Chain-like assembly of gold nanoparticles on artificial DNA templates via â€~click chemistry'. Chemical Communications, 2008, , 169-171.	4.1	116
165	Striped Phase of Mercaptoalkylferrocenes on ${\rm Au}(111)$ with a Potential for Nanoscale Surface Patterning. Langmuir, 2008, 24, 4577-4580.	3.5	10
166	In-Situ Electrical Addressing of One-Dimensional Gold Nanoparticle Assemblies. Journal of Nanoscience and Nanotechnology, 2008, 8, 461-465.	0.9	11
167	Function follows form: shape complementarity and nanoparticle toxicity. Nanomedicine, 2008, 3, 601-603.	3.3	35
168	In situnanomanipulation system for electrical measurements in SEM. Measurement Science and Technology, 2007, 18, N84-N89.	2.6	28
169	Surface Chemistry of <i>n</i> -Octane Modified Silicon Nanoparticles Analyzed by IR, ¹³ C CPMAS NMR, EELS, and TGA. Journal of Nanoscience and Nanotechnology, 2007, 7, 2818-2822.	0.9	10
170	Ordered arrays of silicon pillars with controlled height and aspect ratio. Nanotechnology, 2007, 18, 305307.	2.6	33
171	Highly Efficient Silver Nanoparticle Formation on Dialdehyde-Modified DNA. Materials Research Society Symposia Proceedings, 2007, 1061, 1.	0.1	0
172	High Throughput Screening of the Sensing Properties of Doped SmFeO ₃ . Solid State Phenomena, 2007, 128, 225-236.	0.3	11
173	Self Assembly of Mixed Monolayers of Mercaptoundecylferrocene and Undecanethiol studied by STM. Journal of Physics: Conference Series, 2007, 61, 852-855.	0.4	11
174	Low Loading Pt Cathode Catalysts for Direct Methanol Fuel Cell Derived from the Particle Size Effect. Chemistry of Materials, 2007, 19, 3370-3372.	6.7	25
175	Structure and Electrochemical Characterization of 4-Methyl-4â \in (n-mercaptoalkyl)biphenyls on Au(111)-(1 Å $-$ 1). Journal of Physical Chemistry C, 2007, 111, 17409-17419.	3.1	29
176	Electrical and Structural Characterization of Biphenylethanethiol SAMs. Journal of Physical Chemistry C, 2007, 111, 6392-6397.	3.1	18
177	High-Throughput Gas Sensing Screening of Surface-Doped In2O3. ACS Combinatorial Science, 2007, 9, 53-61.	3.3	41
178	Noble Gases Influence the Conductance of Cetineiteâ€√ype Nanoporous Semiconductors. Angewandte Chemie - International Edition, 2007, 46, 6372-6375.	13.8	6
179	Preparation and Gas Sensing Characteristics of Nanoparticulate pâ€Type Semiconducting LnFeO ₃ and LnCrO ₃ Materials. Advanced Functional Materials, 2007, 17, 2189-2197.	14.9	165
180	The Structure of the First Supramolecular αâ€Cyclodextrin Complex with an Aliphatic Monofunctional Carboxylic Acid. European Journal of Organic Chemistry, 2007, 2007, 4298-4300.	2.4	21

#	Article	IF	Citations
181	Scanning Tunneling Microscopy and Spectroscopy Studies of 4-Methyl- 4′-(n-mercaptoalkyl)biphenyls on Au(111)-(1×1). ChemPhysChem, 2007, 8, 1037-1048.	2.1	22
182	The acid properties of H-ZSM-5 as studied by NH3-TPD and 27Al-MAS-NMR spectroscopy. Applied Catalysis A: General, 2007, 328, 174-182.	4.3	312
183	High throughput screening of the propylene and ethanol sensing properties of rare-earth orthoferrites and orthochromites. Sensors and Actuators B: Chemical, 2007, 126, 181-186.	7.8	58
184	Gas sensing properties of volume-doped CoTiO3 synthesized via polyol method. Sensors and Actuators B: Chemical, 2007, 126, 595-603.	7.8	65
185	Face preferred deposition of gold nanoparticles on î±-cyclodextrin/octanethiol inclusion compound. Journal of Colloid and Interface Science, 2007, 316, 202-205.	9.4	15
186	Formation of Bimetallic Ag–Au Nanowires by Metallization of Artificial DNA Duplexes. Small, 2007, 3, 1049-1055.	10.0	106
187	Sizeâ€Dependent Cytotoxicity of Gold Nanoparticles. Small, 2007, 3, 1941-1949.	10.0	1,617
188	cis-Pt Mediated Assembly of Gold Nanoparticles on DNA. Journal of Cluster Science, 2007, 18, 193-204.	3.3	13
189	Honoring the scientific lifework of $G\tilde{A}\sqrt[4]{4}$ nter Schmid on the occasion of his 70th birthday. Journal of Cluster Science, 2007, 18, 1-3.	3.3	0
190	Functionalization of silicon nanoparticles via hydrosilylation with 1-alkenes. Colloid and Polymer Science, 2007, 285, 729-736.	2.1	51
191	Advances in high throughput screening of gas sensing materials. Applied Surface Science, 2007, 254, 669-676.	6.1	27
192	DNA-Based Assembly of Metal Nanoparticles: Structure and Functionality. Nanoscience and Technology, 2007, , 263-282.	1.5	1
193	Reactivity and Properties of [â^'Oâ^'BilllOMoâ^']nChains. Inorganic Chemistry, 2006, 45, 9020-9031.	4.0	22
194	Formation of electrically conducting DNA-assembled gold nanoparticle monolayers. Journal of Materials Chemistry, 2006, 16, 1338.	6.7	35
195	STM Study of Mixed Alkanethiol/Biphenylthiol Self-Assembled Monolayers on Au(111). Langmuir, 2006, 22, 3021-3027.	3.5	53
196	Wet Chemical Synthesis and Screening of Thick Porous Oxide Films for Resistive Gas Sensing Applications. Sensors, 2006, 6, 1568-1586.	3.8	24
197	Workflow for High Throughput Screening of Gas Sensing Materials. Sensors, 2006, 6, 298-307.	3.8	26
198	Metal and Metal Oxide Nanoparticles in Chemiresistors: Does the Nanoscale Matter?. Small, 2006, 2, 36-50.	10.0	1,238

#	Article	IF	Citations
199	Molecular structure of ferrocenethiol islands embedded into alkanethiol self-assembled monolayers by UHV-STM. Physica Status Solidi (A) Applications and Materials Science, 2006, 203, 1448-1452.	1.8	18
200	Preparation and gas sensing properties of nanocrystalline La-doped CoTiO3. Sensors and Actuators B: Chemical, 2006, 120, 110-118.	7.8	56
201	Preparation, structural, and optical features of two-dimensional cross-linked DNA/gold-nanoparticle conjugates. Colloid and Polymer Science, 2006, 284, 1265-1273.	2.1	4
202	Development of Hybrid Polymer Electrolyte Membranes Based on the Semi-Interpenetrating Network Concept. Fuel Cells, 2006, 6, 225-236.	2.4	24
203	In-sity X-ray detection of Xe adsorption in cetineites. Studies in Surface Science and Catalysis, 2005, 158, 933-938.	1.5	0
204	Electrical detection of different amines with proton-conductive H-ZSM-5. Studies in Surface Science and Catalysis, 2005, , 2049-2056.	1.5	7
205	Trabecular bone fracture healing simulation with finite element analysis and fuzzy logic. Journal of Biomechanics, 2005, 38, 2440-2450.	2.1	131
206	Generation and Characterization of Multilayer Systems Consisting of Au55(PPh3)12Cl6 Double Layers and SiO2 Barrier Films. European Journal of Inorganic Chemistry, 2005, 2005, 3670-3678.	2.0	5
207	DNAâ€Based Assembly of Metal Nanoparticles. European Journal of Inorganic Chemistry, 2005, 2005, 3641-3655.	2.0	116
208	Self-Assembly of Crosslinked DNA-Gold Nanoparticle Layers Visualized by In-Situ Scanning Force Microscopy. Advanced Materials, 2005, 17, 1643-1647.	21.0	33
209	Gold Nanoparticles: Assembly and Electrical Properties in 1?3 Dimensions. ChemInform, 2005, 36, no.	0.0	0
210	A Flexible Database for Combinatorial and High-Throughput Materials Science. QSAR and Combinatorial Science, 2005, 24, 22-28.	1.4	40
211	Development of a High-Throughput Impedance Spectroscopy Screening System (HT-IS) for Characterisation of Novel Nanoscaled Gas Sensing Materials. Materials Research Society Symposia Proceedings, 2005, 876, 1.	0.1	1
212	Transformation of nanoporous oxoselenoantimonates into Sb2O3—nanoribbons and nanorods. Chemical Communications, 2005, , 5790.	4.1	16
213	Setup for High-Throughput Impedance Screening of Gas-Sensing Materials. ACS Combinatorial Science, 2005, 7, 682-687.	3.3	37
214	Gold nanoparticles: assembly and electrical properties in 1–3 dimensions. Chemical Communications, 2005, , 697-710.	4.1	272
215	Preparation of Nanosized Perovskite-type Oxides via Polyol Method. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2004, 630, 2083-2089.	1.2	32
216	High-Throughput Method for the Impedance Spectroscopic Characterization of Resistive Gas Sensors. Angewandte Chemie - International Edition, 2004, 43, 752-754.	13.8	44

#	Article	IF	CITATIONS
217	Solvate-Supported Proton Transport in Zeolites. ChemPhysChem, 2004, 5, 465-472.	2.1	95
218	Charge-Transfer Mechanisms between Gold Clusters. European Journal of Inorganic Chemistry, 2003, 2003, 1121-1127.	2.0	65
219	Bifunctional DNA–gold nanoparticle conjugates as building blocks for the self-assembly of cross-linked particle layers. Biochemical and Biophysical Research Communications, 2003, 311, 995-999.	2.1	62
220	Development and working principle of an ammonia gas sensor based on a refined model for solvate supported proton transport in zeolites. Physical Chemistry Chemical Physics, 2003, 5, 5195-5198.	2.8	84
221	Amperometric measurements with a nitrosyl cation conducting ceramic membrane. Physical Chemistry Chemical Physics, 2003, 5, 5199-5202.	2.8	2
222	Assembly of Gold Nanoparticles on DNA Strands. Materials Research Society Symposia Proceedings, 2002, 735, 941.	0.1	0
223	Assembly of Gold Nanoparticles on DNA Strands. Materials Research Society Symposia Proceedings, 2002, $761, 1.$	0.1	1
224	Design Strategies for Multielectrode Arrays Applicable for High-Throughput Impedance Spectroscopy on Novel Gas Sensor Materials. ACS Combinatorial Science, 2002, 4, 511-515.	3.3	67
225	Translational proton motion in zeolite H-ZSM-5. Energy barriers and jump rates from DFT calculations. Physical Chemistry Chemical Physics, 2002, 4, 5207-5216.	2.8	71
226	Metal clusters in plasma polymer matrices. Physical Chemistry Chemical Physics, 2002, 4, 2438-2442.	2.8	13
227	Immobilization of gold nanoparticles on solid supports utilizing DNA hybridization. Materials Science and Engineering C, 2002, 19, 47-50.	7.3	17
228	Site-selective immobilization of gold nanoparticles functionalized with DNA oligomers. Colloid and Polymer Science, 2001, 279, 68-72.	2.1	92
229	A new potentiometric NO sensor based on a NO+ cation conducting ceramic membrane. Sensors and Actuators B: Chemical, 2001, 77, 287-292.	7.8	11
230	Structure-Property Relations in Au55 Cluster Layers Studied by Temperature-Dependent Impedance Measurements. ChemPhysChem, 2001, 2, 321-325.	2.1	23
231	Bonding of Guest Molecules in the Tubes of Nanoporous Cetineite Crystals. Materials Research Society Symposia Proceedings, 2000, 658, 491.	0.1	O
232	1D Conductance in Cetineites: A New Class of Chemically Synthesized Nanoporous Semiconductors. Physica Status Solidi (B): Basic Research, 2000, 218, 151-154.	1.5	7
233	Characteristics of Proton Hopping in Zeolite H-ZSM5. Physica Status Solidi (B): Basic Research, 2000, 218, 287-290.	1.5	21
234	Electrical properties of nanoscaled host/guest compounds. Microporous and Mesoporous Materials, 2000, 41, 1-36.	4.4	123

#	Article	IF	Citations
235	Influence of spilt-over hydrogen on the electrical properties of H-ZSM-5. Applied Catalysis A: General, 2000, 202, 179-182.	4.3	16
236	Title is missing!. Journal of Applied Electrochemistry, 2000, 30, 293-302.	2.9	35
237	On structure/property-relations in nanoporous semiconductors of the cetineite-type. Studies in Surface Science and Catalysis, 2000, 129, 683-690.	1.5	1
238	Cetineites: Electronic, optical, and conduction properties of nanoporous chalcogenoantimonates. Physical Review B, 2000, 61, 15697-15706.	3.2	10
239	A Computational Study of the Translational Motion of Protons in Zeolite H-ZSM-5. Materials Research Society Symposia Proceedings, 2000, 658, 741.	0.1	1
240	Electrical properties of chemically tailored nanoparticles and their application in microelectronics. , $2000, 131-178.$		10
241	Proton mobility in H-ZSM5 studied by impedance spectroscopy. Solid State Ionics, 1999, 118, 311-316.	2.7	68
242	Cation-Cation Interaction in Dehydrated Zeolites X and Y Monitored by Modulus Spectroscopy. Journal of Porous Materials, 1999, 6, 33-40.	2.6	60
243	Nanodispersions of conducting particles: preparation, microstructure and dielectric properties. Colloid and Polymer Science, 1999, 277, 2-14.	2.1	96
244	Clusters on Clusters:closo-Dodecaborate as a Ligand for Au55 Clusters. European Journal of Inorganic Chemistry, 1999, 1999, 2051-2055.	2.0	34
245	Transmission electron microscopic and small angle X-ray diffraction investigations of Au55(PPh3)12Cl6 microcrystalsâ€. Chemical Communications, 1999, , 1303-1304.	4.1	42
246	Electronic and optical properties of cetineites nanoporous semiconductors with zeolite-like channel structure. Scripta Materialia, 1999, 12, 447-450.	0.5	11
247	Can We Determine the Barrier Resistance for Electron Transport in Ligand Stabilized Nanoparticles from Integral Conductance Measurements?. Materials Research Society Symposia Proceedings, 1999, 581, 77.	0.1	3
248	Ladungstransfer — chemisch, physikalisch und biologisch betrachtet. Nachrichten Aus Der Chemie, 1999, 47, 641-647.	0.0	0
249	Charge Transport in Nanoparticle Arrangements. Advanced Materials, 1998, 10, 1487-1492.	21.0	158
250	A Theoretical Consideration of Disorder in a Finite 1D Metal Cluster Chain in a Nanoporous Solid. Physica Status Solidi (B): Basic Research, 1998, 205, 223-227.	1.5	6
251	The effect of NH3 on the ionic conductivity of dehydrated zeolites Na beta and H beta. Microporous and Mesoporous Materials, 1998, 21, 111-116.	4.4	7 5
252	Conductivity studies on AgSbO3 channel structure by impedance spectroscopy. Solid State Ionics, 1998, 107, 111-116.	2.7	11

#	Article	IF	CITATIONS
253	Chemical tailoring of the charging energy in metal cluster arrangements by use of bifunctional spacer molecules. Journal of Materials Chemistry, 1998, 8, 517-518.	6.7	48
254	Electronic Structure of a Novel Class of Nanoporous Materials. Physical Review Letters, 1998, 80, 3316-3319.	7.8	24
255	Electrical and optical properties of zeolite y supported sno2 nanoparticles. Colloid and Polymer Science, 1997, 275, 91-95.	2.1	21
256	Potential distribution in a finite 1-D array of arbitrary mesoscopic tunnel junctions. Physica B: Condensed Matter, 1997, 240, 289-297.	2.7	10
257	K3Sb7IIIO9Se3· 3 H2O: The First Crystalline Nanoporous Material with a Photo-Semiconducting Host Structure. Angewandte Chemie International Edition in English, 1997, 36, 1121-1124.	4.4	44
258	K ₃ Sb ₇ ^{III} O ₉ Se ₃ · 3H ₂ O: das erste kristalline, nanoporöse Material mit photohalbleitender Wirtstruktur. Angewandte Chemie, 1997, 109, 1138-1140.	2.0	22
259	Oxygen ion conductivity of platinum-impregnated stabilized zirconia in bulk and microporous materials. Advanced Materials, 1996, 8, 424-427.	21.0	20
260	Impedanzspektroskopische Untersuchungen an Zeolithen mit eingelagerten Metallclustern. Chemie-Ingenieur-Technik, 1995, 67, 583-586.	0.8	8
261	A fascinating new field in colloid science: small ligand-stabilized metal clusters and possible application in microelectronics. Colloid and Polymer Science, 1995, 273, 101-117.	2.1	218
262	A fascinating new field in colloid science: small ligand-stabilized metal clusters and their possible application in microelectronics. Colloid and Polymer Science, 1995, 273, 202-218.	2.1	187
263	STM Investigations on Compact Au ₅₅ Cluster Pellets. Europhysics Letters, 1994, 28, 641-646.	2.0	53
264	The Application of Au55 Clusters as Quantum Dots. Angewandte Chemie International Edition in English, 1993, 32, 250-254.	4.4	132
265	Die Verwendung von Au ₅₅ â€Clustern als Quantenpunkte. Angewandte Chemie, 1993, 105, 264-267.	2.0	33
266	Electronic Properties of Compact and Diluted Metal-Clusters by Impedance Spectroscopy. Materials Research Society Symposia Proceedings, 1992, 272, 167.	0.1	4
267	In-situ Electrical Measurements on Nanostructures in a Scanning Electron Microscope., 0,, 595-596.		0
268	A Model of the Potassium-Oxygen Battery and its Application in Cathode Design. Journal of the Electrochemical Society, 0, , .	2.9	0