Ulrich Simon

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5323729/publications.pdf Version: 2024-02-01

		36303	27406
268	13,298	51	106
papers	citations	h-index	g-index
324 all docs	324 docs citations	324 times ranked	17441 citing authors

HUDICH SIMON

#	Article	IF	CITATIONS
1	Sizeâ€Dependent Cytotoxicity of Gold Nanoparticles. Small, 2007, 3, 1941-1949.	10.0	1,617
2	Metal and Metal Oxide Nanoparticles in Chemiresistors: Does the Nanoscale Matter?. Small, 2006, 2, 36-50.	10.0	1,238
3	Gold Nanoparticles of Diameter 1.4 nm Trigger Necrosis by Oxidative Stress and Mitochondrial Damage. Small, 2009, 5, 2067-2076.	10.0	685
4	Particle size-dependent and surface charge-dependent biodistribution of gold nanoparticles after intravenous administration. European Journal of Pharmaceutics and Biopharmaceutics, 2011, 77, 407-416.	4.3	493
5	Size and surface charge of gold nanoparticles determine absorption across intestinal barriers and accumulation in secondary target organs after oral administration. Nanotoxicology, 2012, 6, 36-46.	3.0	313
6	The acid properties of H-ZSM-5 as studied by NH3-TPD and 27Al-MAS-NMR spectroscopy. Applied Catalysis A: General, 2007, 328, 174-182.	4.3	312
7	Gold nanoparticles: assembly and electrical properties in 1–3 dimensions. Chemical Communications, 2005, , 697-710.	4.1	272
8	On the application potential of gold nanoparticles in nanoelectronics and biomedicine. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2010, 368, 1405-1453.	3.4	230
9	A fascinating new field in colloid science: small ligand-stabilized metal clusters and possible application in microelectronics. Colloid and Polymer Science, 1995, 273, 101-117.	2.1	218
10	Air–Blood Barrier Translocation of Tracheally Instilled Gold Nanoparticles Inversely Depends on Particle Size. ACS Nano, 2014, 8, 222-233.	14.6	211
11	A fascinating new field in colloid science: small ligand-stabilized metal clusters and their possible application in microelectronics. Colloid and Polymer Science, 1995, 273, 202-218.	2.1	187
12	Preparation and Gas Sensing Characteristics of Nanoparticulate pâ€Type Semiconducting LnFeO ₃ and LnCrO ₃ Materials. Advanced Functional Materials, 2007, 17, 2189-2197.	14.9	165
13	Charge Transport in Nanoparticle Arrangements. Advanced Materials, 1998, 10, 1487-1492.	21.0	158
14	Experimental and Theoretical Understanding of Nitrogen-Doping-Induced Strong Metal–Support Interactions in Pd/TiO ₂ Catalysts for Nitrobenzene Hydrogenation. ACS Catalysis, 2017, 7, 1197-1206.	11.2	138
15	The Application of Au55 Clusters as Quantum Dots. Angewandte Chemie International Edition in English, 1993, 32, 250-254.	4.4	132
16	Trabecular bone fracture healing simulation with finite element analysis and fuzzy logic. Journal of Biomechanics, 2005, 38, 2440-2450.	2.1	131
17	Crystal Structure, Electrochemical and Optical Properties of [Au ₉ (PPh ₃) ₈](NO ₃) ₃ . European Journal of Inorganic Chemistry, 2008, 2008, 106-111.	2.0	127
18	Electrical properties of nanoscaled host/guest compounds. Microporous and Mesoporous Materials, 2000, 41, 1-36.	4.4	123

#	Article	IF	CITATIONS
19	DNAâ€Based Assembly of Metal Nanoparticles. European Journal of Inorganic Chemistry, 2005, 2005, 3641-3655.	2.0	116
20	Chain-like assembly of gold nanoparticles on artificial DNA templates via â€~click chemistry'. Chemical Communications, 2008, , 169-171.	4.1	116
21	Controlled Nucleation of DNA Metallization. Angewandte Chemie - International Edition, 2009, 48, 219-223.	13.8	116
22	Formation of Bimetallic Ag–Au Nanowires by Metallization of Artificial DNA Duplexes. Small, 2007, 3, 1049-1055.	10.0	106
23	In vivo nanotoxicity testing using the zebrafish embryo assay. Journal of Materials Chemistry B, 2013, 1, 3918.	5.8	104
24	Nanodispersions of conducting particles: preparation, microstructure and dielectric properties. Colloid and Polymer Science, 1999, 277, 2-14.	2.1	96
25	Solvate-Supported Proton Transport in Zeolites. ChemPhysChem, 2004, 5, 465-472.	2.1	95
26	Site-selective immobilization of gold nanoparticles functionalized with DNA oligomers. Colloid and Polymer Science, 2001, 279, 68-72.	2.1	92
27	3D Structures of Responsive Nanocompartmentalized Microgels. Nano Letters, 2016, 16, 7295-7301.	9.1	90
28	Toxic effects and biodistribution of ultrasmall gold nanoparticles. Archives of Toxicology, 2017, 91, 3011-3037.	4.2	87
29	Development and working principle of an ammonia gas sensor based on a refined model for solvate supported proton transport in zeolites. Physical Chemistry Chemical Physics, 2003, 5, 5195-5198.	2.8	84
30	[Au ₁₄ (PPh ₃) ₈ (NO ₃) ₄]: An Example of a New Class of Au(NO ₃)â€Ligated Superatom Complexes. Angewandte Chemie - International Edition, 2013, 52, 3529-3532.	13.8	84
31	Molecularly stabilised ultrasmall gold nanoparticles: synthesis, characterization and bioactivity. Nanoscale, 2013, 5, 6224.	5.6	82
32	The effect of NH3 on the ionic conductivity of dehydrated zeolites Na beta and H beta. Microporous and Mesoporous Materials, 1998, 21, 111-116.	4.4	75
33	A numerical model of the fracture healing process that describes tissue development and revascularisation. Computer Methods in Biomechanics and Biomedical Engineering, 2011, 14, 79-93.	1.6	74
34	Cytotoxicity of Ultrasmall Gold Nanoparticles on Planktonic and Biofilm Encapsulated Gramâ€Positive Staphylococci. Small, 2015, 11, 3183-3193.	10.0	72
35	Translational proton motion in zeolite H-ZSM-5. Energy barriers and jump rates from DFT calculations. Physical Chemistry Chemical Physics, 2002, 4, 5207-5216.	2.8	71
36	Enhancement of capacitive deionization capacity of hierarchical porous carbon. Journal of Materials Chemistry A, 2015, 3, 12730-12737.	10.3	69

#	Article	IF	CITATIONS
37	Proton mobility in H-ZSM5 studied by impedance spectroscopy. Solid State Ionics, 1999, 118, 311-316.	2.7	68
38	Formation and Effect of NH ₄ ⁺ Intermediates in NH ₃ –SCR over Fe-ZSM-5 Zeolite Catalysts. ACS Catalysis, 2016, 6, 7696-7700.	11.2	68
39	Design Strategies for Multielectrode Arrays Applicable for High-Throughput Impedance Spectroscopy on Novel Gas Sensor Materials. ACS Combinatorial Science, 2002, 4, 511-515.	3.3	67
40	Sulfonated poly(ether ether ketone)–silica membranes doped with phosphotungstic acid. Morphology and proton conductivity. Journal of Membrane Science, 2009, 326, 45-57.	8.2	67
41	Charge-Transfer Mechanisms between Gold Clusters. European Journal of Inorganic Chemistry, 2003, 2003, 1121-1127.	2.0	65
42	Gas sensing properties of volume-doped CoTiO3 synthesized via polyol method. Sensors and Actuators B: Chemical, 2007, 126, 595-603.	7.8	65
43	The effects of gold nanoparticles functionalized with ß -amyloid specific peptides on an in vitro model of blood–brain barrier. Nanomedicine: Nanotechnology, Biology, and Medicine, 2017, 13, 1645-1652.	3.3	64
44	Differential hERG ion channel activity of ultrasmall gold nanoparticles. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 8004-8009.	7.1	63
45	Bifunctional DNA–gold nanoparticle conjugates as building blocks for the self-assembly of cross-linked particle layers. Biochemical and Biophysical Research Communications, 2003, 311, 995-999.	2.1	62
46	Reversible Photothermal Melting of DNA in DNA–Goldâ€Nanoparticle Networks. Small, 2008, 4, 607-610.	10.0	62
47	Influence of the fixation stability on the healing time — A numerical study of a patient-specific fracture healing process. Clinical Biomechanics, 2010, 25, 606-612.	1.2	62
48	Microgel Size Modulation by Electrochemical Switching. Chemistry of Materials, 2015, 27, 7306-7312.	6.7	61
49	Cation-Cation Interaction in Dehydrated Zeolites X and Y Monitored by Modulus Spectroscopy. Journal of Porous Materials, 1999, 6, 33-40.	2.6	60
50	High throughput screening of the propylene and ethanol sensing properties of rare-earth orthoferrites and orthochromites. Sensors and Actuators B: Chemical, 2007, 126, 181-186.	7.8	58
51	Preparation and gas sensing properties of nanocrystalline La-doped CoTiO3. Sensors and Actuators B: Chemical, 2006, 120, 110-118.	7.8	56
52	STM Investigations on Compact Au ₅₅ Cluster Pellets. Europhysics Letters, 1994, 28, 641-646.	2.0	53
53	STM Study of Mixed Alkanethiol/Biphenylthiol Self-Assembled Monolayers on Au(111). Langmuir, 2006, 22, 3021-3027.	3.5	53
54	A Missing Link in Undecagold Cluster Chemistry: Singleâ€Crystal Xâ€ray Analysis of [Au ₁₁ (PPh ₃) ₇ Cl ₃]. European Journal of Inorganic Chemistry, 2013, 2013, 2002-2006.	2.0	52

#	Article	IF	CITATIONS
55	Functionalization of silicon nanoparticles via hydrosilylation with 1-alkenes. Colloid and Polymer Science, 2007, 285, 729-736.	2.1	51
56	Easy-Preparable Butyrylcholinesterase/Microgel Construct for Facilitated Organophosphate Biosensing. Analytical Chemistry, 2017, 89, 6091-6098.	6.5	51
57	Modern chemical synthesis methods towards low-dimensional phase change structures in the Ge–Sb–Te material system. Progress in Crystal Growth and Characterization of Materials, 2015, 61, 27-45.	4.0	50
58	Chemical tailoring of the charging energy in metal cluster arrangements by use of bifunctional spacer molecules. Journal of Materials Chemistry, 1998, 8, 517-518.	6.7	48
59	Spontaneous Assembly of Miktoarm Stars into Vesicular Interpolyelectrolyte Complexes. Macromolecular Rapid Communications, 2013, 34, 855-860.	3.9	48
60	Highâ€Sensitivity Realâ€Time Analysis of Nanoparticle Toxicity in Green Fluorescent Proteinâ€Expressing Zebrafish. Small, 2013, 9, 863-869.	10.0	47
61	Electronic parameters in cobalt-based perovskite-type oxides as descriptors for chemocatalytic reactions. Nature Communications, 2020, 11, 652.	12.8	46
62	K3Sb7IIIO9Se3· 3 H2O: The First Crystalline Nanoporous Material with a Photo-Semiconducting Host Structure. Angewandte Chemie International Edition in English, 1997, 36, 1121-1124.	4.4	44
63	High-Throughput Method for the Impedance Spectroscopic Characterization of Resistive Gas Sensors. Angewandte Chemie - International Edition, 2004, 43, 752-754.	13.8	44
64	Correlation of TPD and impedance measurements on the desorption of NH3 from zeolite H-ZSM-5. Solid State Ionics, 2008, 179, 1968-1973.	2.7	44
65	Features of Transport in Ultrathin Gold Nanowire Structures. Small, 2013, 9, 846-852.	10.0	44
66	Inhibition Effect of Phosphorus Poisoning on the Dynamics and Redox of Cu Active Sites in a Cu-SSZ-13 NH ₃ -SCR Catalyst for NO <i>_x</i> Reduction. Environmental Science & Technology, 2021, 55, 12619-12629.	10.0	43
67	Transmission electron microscopic and small angle X-ray diffraction investigations of Au55(PPh3)12Cl6 microcrystalsâ€. Chemical Communications, 1999, , 1303-1304.	4.1	42
68	Prediction of fracture healing under axial loading, shear loading and bending is possible using distortional and dilatational strains as determining mechanical stimuli. Journal of the Royal Society Interface, 2013, 10, 20130389.	3.4	42
69	Deformation of Microgels at Solid–Liquid Interfaces Visualized in Three-Dimension. Nano Letters, 2019, 19, 8862-8867.	9.1	42
70	High-Throughput Gas Sensing Screening of Surface-Doped In2O3. ACS Combinatorial Science, 2007, 9, 53-61.	3.3	41
71	A Flexible Database for Combinatorial and High-Throughput Materials Science. QSAR and Combinatorial Science, 2005, 24, 22-28.	1.4	40
72	Zeolite based trace humidity sensor for high temperature applications in hydrogen atmosphere. Sensors and Actuators B: Chemical, 2008, 134, 171-174.	7.8	40

#	Article	IF	CITATIONS
73	Multidentate thioether ligands coating gold nanoparticles. Chemical Communications, 2008, , 3438.	4.1	40
74	Size dependent gas sensing properties of spinel iron oxide nanoparticles. Sensors and Actuators B: Chemical, 2011, 160, 942-950.	7.8	39
75	Detection of the ammonia loading of a Cu Chabazite SCR catalyst by a radio frequency-based method. Sensors and Actuators B: Chemical, 2014, 205, 88-93.	7.8	39
76	Ammonia storage studies on H-ZSM-5 zeolites by microwave cavity perturbation: correlation of dielectric properties with ammonia storage. Journal of Sensors and Sensor Systems, 2015, 4, 263-269.	0.9	39
77	Selective Packaging of Ferricyanide within Thermoresponsive Microgels. Journal of Physical Chemistry C, 2014, 118, 26199-26211.	3.1	38
78	Cargo shuttling by electrochemical switching of core–shell microgels obtained by a facile one-shot polymerization. Chemical Science, 2019, 10, 1844-1856.	7.4	38
79	Setup for High-Throughput Impedance Screening of Gas-Sensing Materials. ACS Combinatorial Science, 2005, 7, 682-687.	3.3	37
80	Title is missing!. Journal of Applied Electrochemistry, 2000, 30, 293-302.	2.9	35
81	Formation of electrically conducting DNA-assembled gold nanoparticle monolayers. Journal of Materials Chemistry, 2006, 16, 1338.	6.7	35
82	Function follows form: shape complementarity and nanoparticle toxicity. Nanomedicine, 2008, 3, 601-603.	3.3	35
83	Local dynamics of copper active sites in zeolite catalysts for selective catalytic reduction of NOx with NH3. Applied Catalysis B: Environmental, 2018, 237, 263-272.	20.2	35
84	Clusters on Clusters:closo-Dodecaborate as a Ligand for Au55 Clusters. European Journal of Inorganic Chemistry, 1999, 1999, 2051-2055.	2.0	34
85	Die Verwendung von Au ₅₅ â€Clustern als Quantenpunkte. Angewandte Chemie, 1993, 105, 264-267.	2.0	33
86	Self-Assembly of Crosslinked DNA-Gold Nanoparticle Layers Visualized by In-Situ Scanning Force Microscopy. Advanced Materials, 2005, 17, 1643-1647.	21.0	33
87	Ordered arrays of silicon pillars with controlled height and aspect ratio. Nanotechnology, 2007, 18, 305307.	2.6	33
88	Fieldâ€Emission Resonances at Tip/ <i>î±</i> , <i>ï‰</i> â€Mercaptoalkyl Ferrocene/Au Interfaces Studied by STM. Small, 2009, 5, 496-502.	10.0	33
89	Hydrophobic superparamagnetic FePt nanoparticles in hydrophilic poly(N-vinylcaprolactam) microgels: a new multifunctional hybrid system. Journal of Materials Chemistry B, 2017, 5, 1284-1292.	5.8	33
90	Preparation of Nanosized Perovskite-type Oxides via Polyol Method. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2004, 630, 2083-2089.	1.2	32

#	Article	IF	CITATIONS
91	Photothermal Control of the Activity of HRPâ€Functionalized Gold Nanoparticles. Small, 2009, 5, 2549-2553.	10.0	32
92	Patterned self-assembly of gold nanoparticles on chemical templates fabricated by soft UV nanotechnology, 2011, 22, 295301.	2.6	32
93	The effect of Cu and Fe cations on NH3-supported proton transport in DeNOx-SCR zeolite catalysts. Catalysis Science and Technology, 2016, 6, 3362-3366.	4.1	32
94	Assembly of DNA-functionalized gold nanoparticles studied by UV/Vis-spectroscopy and dynamic light scattering. Physical Chemistry Chemical Physics, 2008, 10, 1870.	2.8	31
95	Metal Loading Affects the Proton Transport Properties and the Reaction Monitoring Performance of Fe-ZSM-5 and Cu-ZSM-5 in NH ₃ -SCR. Journal of Physical Chemistry C, 2016, 120, 25361-25370.	3.1	31
96	Control of Cell Adhesion and Neurite Outgrowth by Patterned Gold Nanoparticles with Tunable Attractive or Repulsive Surface Properties. Small, 2012, 8, 3357-3367.	10.0	30
97	Correlating the Integral Sensing Properties of Zeolites with Molecular Processes by Combining Broadband Impedance and DRIFT Spectroscopy—A New Approach for Bridging the Scales. Sensors, 2015, 15, 28915-28941.	3.8	30
98	Mechanistic Understanding of Cu-CHA Catalyst as Sensor for Direct NH ₃ -SCR Monitoring: The Role of Cu Mobility. ACS Applied Materials & Interfaces, 2019, 11, 8097-8105.	8.0	30
99	Structure and Electrochemical Characterization of 4-Methyl-4â€~-(n-mercaptoalkyl)biphenyls on Au(111)-(1 × 1). Journal of Physical Chemistry C, 2007, 111, 17409-17419.	3.1	29
100	Probing Structural Dynamics of an Artificial Protein Cage Using High-Speed Atomic Force Microscopy. Nano Letters, 2015, 15, 1331-1335.	9.1	29
101	In situnanomanipulation system for electrical measurements in SEM. Measurement Science and Technology, 2007, 18, N84-N89.	2.6	28
102	Zeolites as nanoporous, gas-sensitive materials for in situ monitoring of DeNO _x -SCR. Beilstein Journal of Nanotechnology, 2012, 3, 667-673.	2.8	28
103	Advances in high throughput screening of gas sensing materials. Applied Surface Science, 2007, 254, 669-676.	6.1	27
104	Probing the effect of surface chemistry on the electrical properties of ultrathin gold nanowire sensors. Nanoscale, 2014, 6, 5146-5155.	5.6	27
105	Workflow for High Throughput Screening of Gas Sensing Materials. Sensors, 2006, 6, 298-307.	3.8	26
106	Surface "Click―Reaction of DNA followed by Directed Metalization for the Construction of Contactable Conducting Nanostructures. Angewandte Chemie - International Edition, 2012, 51, 7586-7588.	13.8	26
107	Influence of Polymer Architecture on the Electrochemical Deposition of Polyelectrolytes. Electrochimica Acta, 2017, 232, 98-105.	5.2	26
108	Low Loading Pt Cathode Catalysts for Direct Methanol Fuel Cell Derived from the Particle Size Effect. Chemistry of Materials, 2007, 19, 3370-3372.	6.7	25

#	Article	IF	CITATIONS
109	Metal nanoparticle–DNA hybrids – from assembly towards functional conjugates. Journal of Materials Chemistry, 2009, 19, 1518.	6.7	25
110	NH ₃ -TPD measurements using a zeolite-based sensor. Measurement Science and Technology, 2010, 21, 027003.	2.6	25
111	Construction of 6-thioguanine and 6-mercaptopurine carriers based on βcyclodextrins and gold nanoparticles. Carbohydrate Polymers, 2017, 177, 22-31.	10.2	25
112	Electronic Structure of a Novel Class of Nanoporous Materials. Physical Review Letters, 1998, 80, 3316-3319.	7.8	24
113	Wet Chemical Synthesis and Screening of Thick Porous Oxide Films for Resistive Gas Sensing Applications. Sensors, 2006, 6, 1568-1586.	3.8	24
114	Development of Hybrid Polymer Electrolyte Membranes Based on the Semi-Interpenetrating Network Concept. Fuel Cells, 2006, 6, 225-236.	2.4	24
115	Size-dependent multispectral photoacoustic response of solid and hollow gold nanoparticles. Nanotechnology, 2012, 23, 225707.	2.6	24
116	Electrical Transport through Single Nanoparticles and Nanoparticle Arrays. Journal of Physical Chemistry C, 2012, 116, 20657-20665.	3.1	24
117	Resistive Switching of Individual, Chemically Synthesized TiO ₂ Nanoparticles. Small, 2015, 11, 6444-6456.	10.0	24
118	Monitoring NH3 storage and conversion in Cu-ZSM-5 and Cu-SAPO-34 catalysts for NH3-SCR by simultaneous impedance and DRIFT spectroscopy. Sensors and Actuators B: Chemical, 2016, 236, 1075-1082.	7.8	24
119	Elucidation and Comparison of the Effect of LiTFSI and LiNO ₃ Salts on Discharge Chemistry in Nonaqueous Li–O ₂ Batteries. ACS Applied Materials & Interfaces, 2017, 9, 19319-19325.	8.0	24
120	Structure-Property Relations in Au55 Cluster Layers Studied by Temperature-Dependent Impedance Measurements. ChemPhysChem, 2001, 2, 321-325.	2.1	23
121	Solvothermally Synthesized Sb ₂ Te ₃ Platelets Show Unexpected Optical Contrasts in Mid-Infrared Near-Field Scanning Microscopy. Nano Letters, 2015, 15, 2787-2793.	9.1	23
122	CLPFFD–PEG functionalized NIR-absorbing hollow gold nanospheres and gold nanorods inhibit β-amyloid aggregation. Journal of Materials Chemistry B, 2018, 6, 2432-2443.	5.8	23
123	K ₃ Sb ₇ ^{III} O ₉ Se ₃ · 3H ₂ O: das erste kristalline, nanoporöse Material mit photohalbleitender Wirtstruktur. Angewandte Chemie, 1997, 109, 1138-1140.	2.0	22
124	Reactivity and Properties of [â^'Oâ^'BillIOMoâ^']nChains. Inorganic Chemistry, 2006, 45, 9020-9031.	4.0	22
125	Scanning Tunneling Microscopy and Spectroscopy Studies of 4-Methyl- 4′-(n-mercaptoalkyl)biphenyls on Au(111)-(1×1). ChemPhysChem, 2007, 8, 1037-1048	2.1	22
126	The Role of Oxidative Etching in the Synthesis of Ultrathin Single rystalline Au Nanowires. Chemistry - A European Journal, 2011, 17, 9503-9507.	3.3	22

#	Article	IF	CITATIONS
127	Electrically Conducting Nanopatterns Formed by Chemical e-Beam Lithography via Gold Nanoparticle Seeds. Langmuir, 2012, 28, 2448-2454.	3.5	22
128	Multivalency of PEG-thiol ligands affects the stability of NIR-absorbing hollow gold nanospheres and gold nanorods. Journal of Materials Chemistry B, 2016, 4, 2828-2841.	5.8	22
129	Mobility of NH3-Solvated Cull Ions in Cu-SSZ-13 and Cu-ZSM-5 NH3-SCR Catalysts: A Comparative Impedance Spectroscopy Study. Catalysts, 2018, 8, 162.	3.5	22
130	Electrical and optical properties of zeolite y supported sno2 nanoparticles. Colloid and Polymer Science, 1997, 275, 91-95.	2.1	21
131	Characteristics of Proton Hopping in Zeolite H-ZSM5. Physica Status Solidi (B): Basic Research, 2000, 218, 287-290.	1.5	21
132	The Structure of the First Supramolecular α yclodextrin Complex with an Aliphatic Monofunctional Carboxylic Acid. European Journal of Organic Chemistry, 2007, 2007, 4298-4300.	2.4	21
133	Sensing catalytic conversion: Simultaneous DRIFT and impedance spectroscopy for in situ monitoring of NH3–SCR on zeolites. Sensors and Actuators B: Chemical, 2016, 224, 492-499.	7.8	21
134	Spectroscopic identification and catalytic relevance of NH4+ intermediates in selective NOx reduction over Cu-SSZ-13 zeolites. Chemosphere, 2020, 250, 126272.	8.2	21
135	Oxygen ion conductivity of platinum-impregnated stabilized zirconia in bulk and microporous materials. Advanced Materials, 1996, 8, 424-427.	21.0	20
136	Ligand-lipid and ligand-core affinity control the interaction of gold nanoparticles with artificial lipid bilayers and cell membranes. Nanomedicine: Nanotechnology, Biology, and Medicine, 2016, 12, 1409-1419.	3.3	20
137	Quantised double layer charging of monolayer-protected clusters in a room temperature ionic liquid. Electrochimica Acta, 2009, 54, 5006-5010.	5.2	19
138	Covalent Cargo Loading to Molecular Shuttles via Copper-free "Click Chemistry― Biomacromolecules, 2012, 13, 3908-3911.	5.4	19
139	Microwave Cavity Perturbation Studies on H-form and Cu Ion-Exchanged SCR Catalyst Materials: Correlation of Ammonia Storage and Dielectric Properties. Topics in Catalysis, 2017, 60, 243-249.	2.8	19
140	Electrochemical and Electronic Charge Transport Properties of Ni-Doped LiMn2O4 Spinel Obtained from Polyol-Mediated Synthesis. Materials, 2018, 11, 806.	2.9	19
141	Molecular structure of ferrocenethiol islands embedded into alkanethiol self-assembled monolayers by UHV-STM. Physica Status Solidi (A) Applications and Materials Science, 2006, 203, 1448-1452.	1.8	18
142	Electrical and Structural Characterization of Biphenylethanethiol SAMs. Journal of Physical Chemistry C, 2007, 111, 6392-6397.	3.1	18
143	Structural ordering of ï‰-ferrocenylalkanethiol monolayers on Au(111) studied by scanning tunneling microscopy. Surface Science, 2009, 603, 716-722.	1.9	18
144	Bonding them all. Nature Materials, 2013, 12, 694-696.	27.5	18

#	Article	IF	CITATIONS
145	Shape without Structure: An Intriguing Formation Mechanism in the Solvothermal Synthesis of the Phaseâ€Change Material Sb ₂ Te ₃ . Angewandte Chemie - International Edition, 2015, 54, 6632-6636.	13.8	18
146	Tuning neuron adhesion and neurite guiding using functionalized AuNPs and backfill chemistry. RSC Advances, 2015, 5, 39252-39262.	3.6	18
147	Controlling microgel deformation <i>via</i> deposition method and surface functionalization of solid supports. Physical Chemistry Chemical Physics, 2021, 23, 4927-4934.	2.8	18
148	Immobilization of gold nanoparticles on solid supports utilizing DNA hybridization. Materials Science and Engineering C, 2002, 19, 47-50.	7.3	17
149	High-throughput experimentation in resistive gas sensor materials development. Journal of Materials Research, 2013, 28, 574-588.	2.6	17
150	Influence of Synthesis, Dopants and Cycling Conditions on the Cycling Stability of Doped LiNi _{0.5} Mn _{1.5} O ₄ Spinels. Journal of the Electrochemical Society, 2017, 164, A6349-A6358.	2.9	17
151	Influence of spilt-over hydrogen on the electrical properties of H-ZSM-5. Applied Catalysis A: General, 2000, 202, 179-182.	4.3	16
152	Transformation of nanoporous oxoselenoantimonates into Sb2O3—nanoribbons and nanorods. Chemical Communications, 2005, , 5790.	4.1	16
153	Directed Immobilization of Janus-AuNP in Heterometallic Nanogaps: a Key Step Toward Integration of Functional Molecular Units in Nanoelectronics. Journal of Physical Chemistry C, 2014, 118, 27142-27149.	3.1	16
154	Differential Adsorption of Gold Nanoparticles to Gold/Palladium and Platinum Surfaces. Langmuir, 2014, 30, 574-583.	3.5	16
155	Tracking mobile active sites and intermediates in NH ₃ -SCR over zeolite catalysts by impedance-based <i>in situ</i> spectroscopy. Reaction Chemistry and Engineering, 2019, 4, 986-994.	3.7	16
156	Face preferred deposition of gold nanoparticles on α-cyclodextrin/octanethiol inclusion compound. Journal of Colloid and Interface Science, 2007, 316, 202-205.	9.4	15
157	Stepwise Thermal and Photothermal Dissociation of a Hierarchical Superaggregate of DNAâ€Functionalized Gold Nanoparticles. Small, 2011, 7, 1397-1402.	10.0	15
158	Encapsulation of Au ₅₅ Clusters within Surface-Supported Metal–Organic Frameworks for Catalytic Reduction of 4-Nitrophenol. ACS Applied Nano Materials, 2021, 4, 522-528.	5.0	15
159	Electrical properties of surface functionalized silicon nanoparticles. Journal of Nanoparticle Research, 2010, 12, 1367-1375.	1.9	14
160	Glycoâ€DNA–Gold Nanoparticles: Lectinâ€Mediated Assembly and Dualâ€Stimuli Response. Small, 2011, 7, 1954-1960.	10.0	14
161	Volume-doped cobalt titanates for ethanol sensing: An impedance and X-ray absorption spectroscopy study. Sensors and Actuators B: Chemical, 2014, 192, 60-69.	7.8	14
162	Synthesis and Internal Structure of Finite-Size DNA–Gold Nanoparticle Assemblies. Journal of Physical Chemistry C, 2014, 118, 7174-7184.	3.1	14

#	Article	IF	CITATIONS
163	Microstructured Hydrogel Templates for the Formation of Conductive Gold Nanowire Arrays. Macromolecular Rapid Communications, 2016, 37, 1446-1452.	3.9	14
164	Resistive Switching of Sub-10 nm TiO2 Nanoparticle Self-Assembled Monolayers. Nanomaterials, 2017, 7, 370.	4.1	14
165	Secondary-Phase Formation in Spinel-Type LiMn2O4-Cathode Materials for Lithium-Ion Batteries: Quantifying Trace Amounts of Li2MnO3 by Electron Paramagnetic Resonance Spectroscopy. Applied Magnetic Resonance, 2018, 49, 415-427.	1.2	14
166	Recent Understanding of Low-Temperature Copper Dynamics in Cu-Chabazite NH3-SCR Catalysts. Catalysts, 2021, 11, 52.	3.5	14
167	Metal clusters in plasma polymer matrices. Physical Chemistry Chemical Physics, 2002, 4, 2438-2442.	2.8	13
168	cis-Pt Mediated Assembly of Gold Nanoparticles on DNA. Journal of Cluster Science, 2007, 18, 193-204.	3.3	13
169	Generation and electrical contacting of gold quantum dots. Colloid and Polymer Science, 2008, 286, 1029-1037.	2.1	13
170	Size-Tailored Biocompatible FePt Nanoparticles for Dual <i>T</i> ₁ / <i>T</i> ₂ Magnetic Resonance Imaging Contrast Enhancement. Langmuir, 2019, 35, 10424-10434.	3.5	13
171	Competing strain relaxation mechanisms in epitaxially grown Pr0.48Ca0.52MnO3 on SrTiO3. APL Materials, 2014, 2, 106106.	5.1	12
172	Simulating lateral distraction osteogenesis. PLoS ONE, 2018, 13, e0194500.	2.5	12
173	Composition/Performance Evaluation of Lean NO _x Trap Catalysts for Coupling with SCR Technology. ChemCatChem, 2021, 13, 1787-1805.	3.7	12
174	Conductivity studies on AgSbO3 channel structure by impedance spectroscopy. Solid State Ionics, 1998, 107, 111-116.	2.7	11
175	Electronic and optical properties of cetineites nanoporous semiconductors with zeolite-like channel structure. Scripta Materialia, 1999, 12, 447-450.	0.5	11
176	A new potentiometric NO sensor based on a NO+ cation conducting ceramic membrane. Sensors and Actuators B: Chemical, 2001, 77, 287-292.	7.8	11
177	High Throughput Screening of the Sensing Properties of Doped SmFeO ₃ . Solid State Phenomena, 2007, 128, 225-236.	0.3	11
178	Self Assembly of Mixed Monolayers of Mercaptoundecylferrocene and Undecanethiol studied by STM. Journal of Physics: Conference Series, 2007, 61, 852-855.	0.4	11
179	In-Situ Electrical Addressing of One-Dimensional Gold Nanoparticle Assemblies. Journal of Nanoscience and Nanotechnology, 2008, 8, 461-465.	0.9	11
180	Dip-pen-based direct writing of conducting silver dots. Journal of Colloid and Interface Science, 2013, 406, 256-262.	9.4	11

#	Article	IF	CITATIONS
181	Sb ₂ Te ₃ Growth Study Reveals That Formation of Nanoscale Charge Carrier Domains Is an Intrinsic Feature Relevant for Electronic Applications. ACS Applied Nano Materials, 2018, 1, 6834-6842.	5.0	11
182	Modelling the fracture-healing process as a moving-interface problem using an interface-capturing approach. Computer Methods in Biomechanics and Biomedical Engineering, 2018, 21, 512-520.	1.6	11
183	Potential distribution in a finite 1-D array of arbitrary mesoscopic tunnel junctions. Physica B: Condensed Matter, 1997, 240, 289-297.	2.7	10
184	Cetineites: Electronic, optical, and conduction properties of nanoporous chalcogenoantimonates. Physical Review B, 2000, 61, 15697-15706.	3.2	10
185	Electrical properties of chemically tailored nanoparticles and their application in microelectronics. , 2000, , 131-178.		10
186	Surface Chemistry of <1>n 1 -Octane Modified Silicon Nanoparticles Analyzed by IR, ¹³ C CPMAS NMR, EELS, and TGA. Journal of Nanoscience and Nanotechnology, 2007, 7, 2818-2822.	0.9	10
187	Striped Phase of Mercaptoalkylferrocenes on Au(111) with a Potential for Nanoscale Surface Patterning. Langmuir, 2008, 24, 4577-4580.	3.5	10
188	Electronic transport properties of individual 4,4′-bis(mercaptoalkyl)-biphenyl derivatives measured in STM-based break junctions. Physical Chemistry Chemical Physics, 2010, 12, 10518.	2.8	10
189	Electrical Characterization of 4-Mercaptophenylamine-Capped Nanoparticles in a Heterometallic Nanoelectrode Gap. Journal of Physical Chemistry C, 2013, 117, 22002-22009.	3.1	10
190	Isolation, Optical Properties and Core Structure of a Water-soluble, Phosphine-stabilized [Au ₉] ³⁺ Cluster. Zeitschrift Fur Naturforschung - Section B Journal of Chemical Sciences, 2013, 68, 569-574.	0.7	10
191	Directed Self-Assembly and Infrared Reflection Absorption Spectroscopy Analysis of Amphiphilic and Zwitterionic Janus Gold Nanoparticles. Langmuir, 2016, 32, 954-962.	3.5	10
192	Single Interdigital Transducer Approach for Gravimetrical SAW Sensor Applications in Liquid Environments. Sensors, 2017, 17, 2931.	3.8	10
193	Cold nanoparticles stabilized with βcyclodextrin-2-amino-4-(4-chlorophenyl)thiazole complex: A novel system for drug transport. PLoS ONE, 2017, 12, e0185652.	2.5	10
194	Controlling the Electronic Contact at the Terpyridine/Metal Interface. Journal of Physical Chemistry C, 2019, 123, 21367-21375.	3.1	10
195	Elucidation of the Active Sites for Monodisperse FePt and Pt Nanocrystal Catalysts for p-WSe ₂ Photocathodes. Journal of Physical Chemistry C, 2020, 124, 11877-11885.	3.1	10
196	Solid Phase Supported "Click―Chemistry Approach for the Preparation of Water Soluble Gold Nanoparticle Dimers. Journal of Cluster Science, 2012, 23, 1049-1059.	3.3	9
197	Molecular and Electronic Structure of the Cluster [Au ₈ (PPh ₃) ₈](NO ₃) ₂ . European Journal of Inorganic Chemistry, 2016, 2016, 975-981.	2.0	9
198	Au Nanoparticles as Template for Defect Formation in Memristive SrTiO3 Thin Films. Nanomaterials, 2018, 8, 869.	4.1	9

#	Article	IF	CITATIONS
199	Perovskite Catalyst for In-Cylinder Coating to Reduce Raw Pollutant Emissions of Internal Combustion Engines. ACS Omega, 2022, 7, 5340-5349.	3.5	9
200	Impedanzspektroskopische Untersuchungen an Zeolithen mit eingelagerten Metallclustern. Chemie-Ingenieur-Technik, 1995, 67, 583-586.	0.8	8
201	Size- and Ligand-Specific Bioresponse of Gold Clusters and Nanoparticles: Challenges and Perspectives. Structure and Bonding, 2013, , 189-241.	1.0	8
202	Guided immobilisation of single gold nanoparticles by chemical electron beam lithography. Beilstein Journal of Nanotechnology, 2013, 4, 336-344.	2.8	8
203	In situ monitoring of DeNO x -SCR on zeolite catalysts by means of simultaneous impedance and DRIFT spectroscopy. Procedia Engineering, 2015, 120, 257-260.	1.2	8
204	In Situ Spectroscopic Studies of Proton Transport in Zeolite Catalysts for NH3-SCR. Catalysts, 2016, 6, 204.	3.5	8
205	Stepwise Growth of Ruthenium Terpyridine Complexes on Au Surfaces. Journal of Physical Chemistry C, 2019, 123, 6537-6548.	3.1	8
206	1D Conductance in Cetineites: A New Class of Chemically Synthesized Nanoporous Semiconductors. Physica Status Solidi (B): Basic Research, 2000, 218, 151-154.	1.5	7
207	Electrical detection of different amines with proton-conductive H-ZSM-5. Studies in Surface Science and Catalysis, 2005, , 2049-2056.	1.5	7
208	Polydiacetylene stabilized gold nanoparticles – extraordinary high stability and integration into a nanoelectrode device. RSC Advances, 2015, 5, 102981-102992.	3.6	7
209	Surface coupling strength of gold nanoparticles affects cytotoxicity towards neurons. Biomaterials Science, 2017, 5, 1051-1060.	5.4	7
210	Induced pluripotent stem cell-derived vascular networks to screen nano–bio interactions. Nanoscale Horizons, 2021, 6, 245-259.	8.0	7
211	A Theoretical Consideration of Disorder in a Finite 1D Metal Cluster Chain in a Nanoporous Solid. Physica Status Solidi (B): Basic Research, 1998, 205, 223-227.	1.5	6
212	Noble Gases Influence the Conductance of Cetineiteâ€īype Nanoporous Semiconductors. Angewandte Chemie - International Edition, 2007, 46, 6372-6375.	13.8	6
213	Preparation and Measurement of Combinatorial Screen Printed Libraries for the Electrochemical Analysis of Liquids. ACS Combinatorial Science, 2009, 11, 138-142.	3.3	6
214	Zeolite H-ZSM-5: A Microporous Proton Conductor for the in situ Monitoring of DeNOx-SCR. Materials Research Society Symposia Proceedings, 2011, 1330, 30301.	0.1	6
215	Preferential Adhesion of Silver Nanoparticles Onto Crystal Faces of α-Cyclodextrin/Carboxylic Acids Inclusion Compounds. Journal of Nanoscience and Nanotechnology, 2012, 12, 8929-8934.	0.9	6
216	Highly nâ€ŧype doped InGaN films for efficient direct solar hydrogen generation. Physica Status Solidi C: Current Topics in Solid State Physics, 2012, 9, 964-967.	0.8	6

#	Article	IF	CITATIONS
217	Assessing the Intracellular Integrity of Phosphineâ€Stabilized Ultrasmall Cytotoxic Gold Nanoparticles Enabled by Fluorescence Labeling. Advanced Healthcare Materials, 2016, 5, 3118-3128.	7.6	6
218	Storage and Oxidation of Oxygen-Free and Oxygenated Hydrocarbons on a Pt–Pd Series Production Oxidation Catalyst. Topics in Catalysis, 2019, 62, 376-385.	2.8	6
219	Generation and Characterization of Multilayer Systems Consisting of Au55(PPh3)12Cl6 Double Layers and SiO2 Barrier Films. European Journal of Inorganic Chemistry, 2005, 2005, 3670-3678.	2.0	5
220	Ion specific effects on the immobilisation of charged gold nanoparticles on metal surfaces. RSC Advances, 2018, 8, 1717-1724.	3.6	5
221	Anomalous Discharge Behavior of Graphite Nanosheet Electrodes in Lithium-Oxygen Batteries. Materials, 2020, 13, 43.	2.9	5
222	Transport through Redox-Active Ru-Terpyridine Complexes Integrated in Single Nanoparticle Devices. Journal of Physical Chemistry C, 2020, 124, 4881-4889.	3.1	5
223	Simulating Metaphyseal Fracture Healing in the Distal Radius. Biomechanics, 2021, 1, 29-42.	1.2	5
224	Electronic Properties of Compact and Diluted Metal-Clusters by Impedance Spectroscopy. Materials Research Society Symposia Proceedings, 1992, 272, 167.	0.1	4
225	Preparation, structural, and optical features of two-dimensional cross-linked DNA/gold-nanoparticle conjugates. Colloid and Polymer Science, 2006, 284, 1265-1273.	2.1	4
226	An Easy Singleâ€ 5 tep Synthesis of Platinum Nanoparticles Embedded in Carbon. Chemistry - A European Journal, 2008, 14, 8776-8779.	3.3	4
227	Enhanced photoacoustic signal from DNA assembled gold nanoparticle networks. Materials Research Express, 2014, 1, 045015.	1.6	4
228	Electrochemical stability and electron transfer across 4-methyl-4′-(n-mercaptoalkyl) biphenyl monolayers on Au(100)-(1×1) electrodes in 1-hexyl-3-methylimidazolium hexafluorophosphate ionic liquid. Electrochimica Acta, 2017, 231, 44-52.	5.2	4
229	DNA introduces an independent temperature responsiveness to thermosensitive microgels and enables switchable plasmon coupling as well as controlled uptake and release. Nanoscale, 2021, 13, 2875-2882.	5.6	4
230	Labelling via [Al18F]2+ Using Precomplexed Al-NODA Moieties. Pharmaceuticals, 2021, 14, 818.	3.8	4
231	Can We Determine the Barrier Resistance for Electron Transport in Ligand Stabilized Nanoparticles from Integral Conductance Measurements?. Materials Research Society Symposia Proceedings, 1999, 581, 77.	0.1	3
232	Electrical and Optical Properties of Cetineite-Type Rb-, Sr-, and Ba-Oxoselenoantimonates(III). European Journal of Inorganic Chemistry, 2008, 2008, 369-372.	2.0	3
233	Zirconium phosphate-based porous heterostructures: A new class of materials for ammonia sensing. Sensors and Actuators B: Chemical, 2015, 217, 175-180.	7.8	3
234	Optimizing Discharge Capacity of Graphite Nanosheet Electrodes for Lithium–Oxygen Batteries. Batteries, 2020, 6, 36.	4.5	3

#	Article	IF	CITATIONS
235	PTFE Enhances Discharge Performance of Carbon Cathodes in Potassiumâ€Oxygen Batteries. Batteries and Supercaps, 2021, 4, 1620.	4.7	3
236	Sorption and Reaction of Biomass Derived HC Blends and Their Constituents on a Commercial Pt–Pd/Al2O3 Oxidation Catalyst. Catalysis Letters, 2022, 152, 1880-1894.	2.6	3
237	DNA-Mediated Assembly of Metal Nanoparticles: Fabrication, Structural Features, and Electrical Properties. Nanostructure Science and Technology, 2009, , 11-41.	0.1	3
238	The effects of oxygen pressure on the discharge performance of potassium–oxygen batteries. Sustainable Energy and Fuels, 2022, 6, 1992-2000.	4.9	3
239	Impact of device design on the electronic and optoelectronic properties of integrated Ru-terpyridine complexes. Beilstein Journal of Nanotechnology, 2022, 13, 219-229.	2.8	3
240	Amperometric measurements with a nitrosyl cation conducting ceramic membrane. Physical Chemistry Chemical Physics, 2003, 5, 5199-5202.	2.8	2
241	Hierarchical Structures of Carbon Nanotubes and Arrays of Chromiumâ€Capped Silicon Nanopillars: Formation and Electrical Properties. Chemistry - A European Journal, 2012, 18, 11614-11620.	3.3	2
242	Integration of Individual Functionalized Gold Nanoparticles into Nanoelectrode Configurations: Recent Advances. European Journal of Inorganic Chemistry, 2020, 2020, 3798-3810.	2.0	2
243	On structure/property-relations in nanoporous semiconductors of the cetineite-type. Studies in Surface Science and Catalysis, 2000, 129, 683-690.	1.5	1
244	A Computational Study of the Translational Motion of Protons in Zeolite H-ZSM-5. Materials Research Society Symposia Proceedings, 2000, 658, 741.	0.1	1
245	Assembly of Gold Nanoparticles on DNA Strands. Materials Research Society Symposia Proceedings, 2002, 761, 1.	0.1	1
246	Development of a High-Throughput Impedance Spectroscopy Screening System (HT-IS) for Characterisation of Novel Nanoscaled Gas Sensing Materials. Materials Research Society Symposia Proceedings, 2005, 876, 1.	0.1	1
247	Electrical characterization of single biphenyl-propanethiol capped 4nm Au nanoparticles. , 2010, , .		1
248	Size dependent photoacoustic signal response of gold nanoparticles using a multispectral laser diode system. , 2012, , .		1
249	Cellular uptake of fluorophore-labeled glyco-DNA–gold nanoparticles. Journal of Nanoparticle Research, 2013, 15, 1.	1.9	1
250	DNA-Based Assembly of Metal Nanoparticles: Structure and Functionality. Nanoscience and Technology, 2007, , 263-282.	1.5	1
251	Ladungstransfer — chemisch, physikalisch und biologisch betrachtet. Nachrichten Aus Der Chemie, 1999, 47, 641-647.	0.0	0
252	Bonding of Guest Molecules in the Tubes of Nanoporous Cetineite Crystals. Materials Research Society Symposia Proceedings, 2000, 658, 491.	0.1	0

#	Article	IF	CITATIONS
253	Assembly of Gold Nanoparticles on DNA Strands. Materials Research Society Symposia Proceedings, 2002, 735, 941.	0.1	0
254	In-sity X-ray detection of Xe adsorption in cetineites. Studies in Surface Science and Catalysis, 2005, 158, 933-938.	1.5	0
255	Gold Nanoparticles: Assembly and Electrical Properties in 1?3 Dimensions. ChemInform, 2005, 36, no.	0.0	0
256	Highly Efficient Silver Nanoparticle Formation on Dialdehyde-Modified DNA. Materials Research Society Symposia Proceedings, 2007, 1061, 1.	0.1	0
257	Honoring the scientific lifework of Günter Schmid on the occasion of his 70th birthday. Journal of Cluster Science, 2007, 18, 1-3.	3.3	0
258	Cytotoxicity: Small 18/2009. Small, 2009, 5, NA-NA.	10.0	0
259	Electrical Properties of Thin Layers Consisting of Surface Functionalized Silicon Nanoparticles. Materials Research Society Symposia Proceedings, 2011, 1359, 199.	0.1	0
260	Neuron Adhesion: Control of Cell Adhesion and Neurite Outgrowth by Patterned Gold Nanoparticles with Tunable Attractive or Repulsive Surface Properties (Small 21/2012). Small, 2012, 8, 3226-3226.	10.0	0
261	Combinatorial Approaches for Synthesis of Metal Oxides: Processing and Sensing Application. , 2013, , 117-166.		0
262	Ultrathin Nanowires: Features of Transport in Ultrathin Gold Nanowire Structures (Small 6/2013). Small, 2013, 9, 960-960.	10.0	0
263	Challenging material patterning: Fine lithography on coarse substrates. Scanning, 2014, 36, 362-367.	1.5	0
264	Resistive Switching: Resistive Switching of Individual, Chemically Synthesized TiO2Nanoparticles (Small 48/2015). Small, 2015, 11, 6504-6504.	10.0	0
265	Cellular Uptake: Assessing the Intracellular Integrity of Phosphine-Stabilized Ultrasmall Cytotoxic Gold Nanoparticles Enabled by Fluorescence Labeling (Adv. Healthcare Mater. 24/2016). Advanced Healthcare Materials, 2016, 5, 3088-3088.	7.6	0
266	Impedometric Screening of Gas-Sensitive Inorganic Materials. , 2009, , 273-293.		0
267	In-situ Electrical Measurements on Nanostructures in a Scanning Electron Microscope. , 0, , 595-596.		0
268	A Model of the Potassium-Oxygen Battery and its Application in Cathode Design. Journal of the Electrochemical Society, 0, , .	2.9	0