
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5323182/publications.pdf Version: 2024-02-01

IAN E KDELIZE

#	Article	IF	CITATIONS
1	Phylogenetics and Evolution of Potato Virus V: Another Potyvirus that Originated in the Andes. Plant Disease, 2022, 106, 691-700.	1.4	8
2	Innovative Digital Technologies to Monitor and Control Pest and Disease Threats in Root, Tuber, and Banana (RT&B) Cropping Systems: Progress and Prospects. , 2022, , 261-288.		4
3	Potato Zero-Tillage and Mulching Is Promising in Achieving Agronomic Gain in Asia. Agronomy, 2022, 12, 1494.	3.0	3
4	Molecular Diversity and Pathogenicity of <i>Ralstonia solanacearum</i> Species Complex Associated With Bacterial Wilt of Potato in Rwanda. Plant Disease, 2021, 105, 770-779.	1.4	9
5	Challenge of Virus Disease Threats to Ensuring Sustained Uptake of Vitamin-A-Rich Sweetpotato in Africa. Plant Pathology in the 21st Century, 2021, , 73-94.	0.9	4
6	Phytosanitary Interventions for Safe Global Germplasm Exchange and the Prevention of Transboundary Pest Spread: The Role of CGIAR Germplasm Health Units. Plants, 2021, 10, 328.	3.5	35
7	Breeding Progress for Vitamin A, Iron and Zinc Biofortification, Drought Tolerance, and Sweetpotato Virus Disease Resistance in Sweetpotato. Frontiers in Sustainable Food Systems, 2021, 5, .	3.9	23
8	The Phylogeography of Potato Virus X Shows the Fingerprints of Its Human Vector. Viruses, 2021, 13, 644.	3.3	12
9	Transcriptome analysis provides insights into the responses of sweet potato to sweet potato virus disease (SPVD). Virus Research, 2021, 295, 198293.	2.2	14
10	A Primer on the Analysis of High-Throughput Sequencing Data for Detection of Plant Viruses. Microorganisms, 2021, 9, 841.	3.6	36
11	Serological survey and metagenomic discovery of potato viruses in Rwanda and Burundi reveals absence of PVY in Burundi and first report of TRV in potatoes in sub-Saharan Africa. Virus Research, 2021, 302, 198487.	2.2	8
12	Interlaboratory Comparison Study on Ribodepleted Total RNA High-Throughput Sequencing for Plant Virus Diagnostics and Bioinformatic Competence. Pathogens, 2021, 10, 1174.	2.8	12
13	Loop-Mediated Isothermal Amplification assays for on-site detection of the main sweetpotato infecting viruses. Journal of Virological Methods, 2021, 298, 114301.	2.1	8
14	Potato Virus A Isolates from Three Continents: Their Biological Properties, Phylogenetics, and Prehistory. Phytopathology, 2021, 111, 217-226.	2.2	24
15	High throughput sequencing for the detection and characterization of new virus found in arracacha (Arracacia xanthorrhiza). Scientia Agropecuaria, 2021, 12, 471-480.	1.0	Ο
16	A temperature-dependent phenology model for the greenhouse whitefly Trialeurodes vaporariorum (Hemiptera: Aleyrodidae). Virus Research, 2020, 289, 198107.	2.2	13
17	A temperature-driven model for potato yellow vein virus transmission efficacy by Trialeurodes vaporariorum (Hemiptera: Aleyrodidae). Virus Research, 2020, 289, 198109.	2.2	7
18	Identification and Control of Latent Bacteria in in vitro Cultures of Sweetpotato [Ipomoea batatas (L.) Lam]. Frontiers in Plant Science, 2020, 11, 903.	3.6	10

#	Article	IF	CITATIONS
19	Global Cropland Connectivity: A Risk Factor for Invasion and Saturation by Emerging Pathogens and Pests. BioScience, 2020, 70, 744-758.	4.9	30
20	Storage Root Yield of Sweetpotato as Influenced by <i>Sweetpotato leaf curl virus</i> and Its Interaction With <i>Sweetpotato feathery mottle virus</i> and <i>Sweetpotato chlorotic stunt virus</i> in Kenya. Plant Disease, 2020, 104, 1477-1486.	1.4	12

#	Article	IF	CITATIONS
37	The linear mitochondrial genome of the quarantine chytrid Synchytrium endobioticum; insights into the evolution and recent history of an obligate biotrophic plant pathogen. BMC Evolutionary Biology, 2018, 18, 136.	3.2	30
38	Genome sequences of two diploid wild relatives of cultivated sweetpotato reveal targets for genetic improvement. Nature Communications, 2018, 9, 4580.	12.8	181
39	First Report of <i>Potato virus S</i> Naturally Infecting Arracacha (<i>Arracacia xanthorrhiza</i>) in Peru. Plant Disease, 2018, 102, 460-460.	1.4	6
40	Molecular and pathobiological characterization of 61 <i>Potato mopâ€ŧop virus</i> fullâ€ŀength cDNAs reveals great variability of the virus in the centre of potato domestication, novel genotypes and evidence for recombination. Molecular Plant Pathology, 2017, 18, 864-877.	4.2	14
41	R/Avr gene expression study of Rpi-vnt1.1 transgenic potato resistant to the Phytophthora infestans clonal lineage EC-1. Plant Cell, Tissue and Organ Culture, 2017, 131, 259-268.	2.3	16
42	Utilization of engineered resistance to viruses in crops of the developing world, with emphasis on sub-Saharan Africa. Current Opinion in Virology, 2017, 26, 90-97.	5.4	26
43	VirusDetect: An automated pipeline for efficient virus discovery using deep sequencing of small RNAs. Virology, 2017, 500, 130-138.	2.4	191
44	Complete sequence and variability of a new subgroup B nepovirus infecting potato in central Peru. Archives of Virology, 2017, 162, 885-889.	2.1	16
45	ICTV Virus Taxonomy Profile: Potyviridae. Journal of General Virology, 2017, 98, 352-354.	2.9	416
46	Diversity, Pathogenicity, and Current Occurrence of Bacterial Wilt Bacterium Ralstonia solanacearum in Peru. Frontiers in Plant Science, 2017, 8, 1221.	3.6	31
47	Horizontal Gene Transfer Contributes to Plant Evolution: The Case of Agrobacterium T-DNAs. Frontiers in Plant Science, 2017, 8, 2015.	3.6	44
48	Salicylic Acid Perturbs sRNA-Gibberellin Regulatory Network in Immune Response of Potato to Potato virus Y Infection. Frontiers in Plant Science, 2017, 8, 2192.	3.6	41
49	Using Small RNA-seq Data to Detect siRNA Duplexes Induced by Plant Viruses. Genes, 2017, 8, 163.	2.4	22
50	Using Small RNA Deep Sequencing Data to Detect Human Viruses. BioMed Research International, 2016, 2016, 1-9.	1.9	33
51	A novel sweet potato potyvirus open reading frame (ORF) is expressed via polymerase slippage and suppresses RNA silencing. Molecular Plant Pathology, 2016, 17, 1111-1123.	4.2	61
52	Marker-free PLRV resistant potato mediated by Cre-loxP excision and RNAi. Transgenic Research, 2016, 25, 813-828.	2.4	18
53	Rpi-blb2 gene from Solanum bulbocastanum confers extreme resistance to late blight disease in potato. Plant Cell, Tissue and Organ Culture, 2016, 125, 269-281.	2.3	26
54	Degeneration in sweetpotato due to viruses, virus leaned planting material and reversion: a review. Plant Pathology, 2015, 64, 1-15.	2.4	61

#	Article	IF	CITATIONS
55	Deep Sequencing of Virus-Derived Small Interfering RNAs and RNA from Viral Particles Shows Highly Similar Mutational Landscapes of a Plant Virus Population. Journal of Virology, 2015, 89, 4760-4769.	3.4	84
56	Variation of Resistance to Different Strains of Ralstonia Solanacearum in Highland Tropics Adapted Potato Genotypes. American Journal of Potato Research, 2015, 92, 258-265.	0.9	10
57	The genome of cultivated sweet potato contains <i>Agrobacterium</i> T-DNAs with expressed genes: An example of a naturally transgenic food crop. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 5844-5849.	7.1	236
58	Synergistic interactions of begomoviruses with <i>Sweet potato chlorotic stunt virus</i> (genus) Tj ETQq0 0 0 rg Molecular Plant Pathology, 2015, 16, 459-471.	BT /Overlo 4.2	ock 10 Tf 50 51
59	Resistencia a Phytophthora infestans linaje clonal EC-1 en Solanum tuberosum mediante la introducción del gen RB. Revista Peruana De Biologia, 2015, 22, 063-070.	0.3	2
60	Evaluación del genÂque codifica la enzimaÂβHPMEH para la inhibición de la marchitez bacteriana causada porÂRalstonia solanacearum. Revista Peruana De Biologia, 2015, 22, 193.	0.3	1
61	siRNA Deep Sequencing and Assembly: Piecing Together Viral Infections. , 2014, , 21-38.		10
62	The complete genome sequences of two isolates of potato black ringspot virus and their relationship to other isolates and nepoviruses. Archives of Virology, 2014, 159, 811-815.	2.1	15
63	Methods in virus diagnostics: From ELISA to next generation sequencing. Virus Research, 2014, 186, 20-31.	2.2	326
64	Complete genome sequences of new divergent potato virus X isolates and discrimination between strains in a mixed infection using small RNAs sequencing approach. Virus Research, 2014, 191, 45-50.	2.2	34
65	Sweetpotato plant regeneration via an improved somatic embryogenesis protocol. Scientia Horticulturae, 2013, 161, 95-100.	3.6	11
66	The complete genome sequences of a Peruvian and a Colombian isolate of Andean potato latent virus and partial sequences of further isolates suggest the existence of two distinct potato-infecting tymovirus species. Virus Research, 2013, 173, 431-435.	2.2	29
67	The complete nucleotide sequence of sweet potato C6 virus: a carlavirus lacking a cysteine-rich protein. Archives of Virology, 2013, 158, 1393-1396.	2.1	25
68	WEEVIL RESISTANT SWEETPOTATO THROUGH BIOTECHNOLOGY. Acta Horticulturae, 2013, , 91-98.	0.2	3
69	Agrotransformación y evaluación de la resistencia a Phytophthora infestansen Solanum tuberosum L. variedad Désirée. Revista Peruana De Biologia, 2013, 20, 205-210.	0.3	1
70	Sweetpotato Viruses: 15 Years of Progress on Understanding and Managing Complex Diseases. Plant Disease, 2012, 96, 168-185.	1.4	186
71	Complete genome sequence of a potyvirus infecting yam beans (Pachyrhizus spp.) in Peru. Archives of Virology, 2012, 157, 773-776.	2.1	24
72	Sequence characterization of a Peruvian isolate of Sweet potato chlorotic stunt virus: Further variability and a model for p22 acquisition. Virus Research, 2011, 157, 111-115.	2.2	33

#	Article	IF	CITATIONS
73	RNAiâ€mediated resistance to diverse isolates belonging to two virus species involved in Cassava brown streak disease. Molecular Plant Pathology, 2011, 12, 31-41.	4.2	117

Distinct cavemoviruses interact synergistically with sweet potato chlorotic stunt virus (genus) Tj ETQq0 0 0 rgBT /Qverlock 10 Tf 50 702

75	Crinivirus. , 2011, , 335-342.		12
76	Analysis of complete genomic sequences of isolates of the Sweet potato feathery mottle virus strains C and EA: molecular evidence for two distinct potyvirus species and two P1 protein domains. Archives of Virology, 2010, 155, 2059-2063.	2.1	34
77	Complete viral genome sequence and discovery of novel viruses by deep sequencing of small RNAs: A generic method for diagnosis, discovery and sequencing of viruses. Virology, 2009, 388, 1-7.	2.4	537
78	Virgaviridae: a new family of rod-shaped plant viruses. Archives of Virology, 2009, 154, 1967-1972.	2.1	161
79	Elimination of antiviral defense by viral RNase III. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 10354-10358.	7.1	128
80	Molecular variability of sweet potato feathery mottle virus and other potyviruses infecting sweet potato in Peru. Archives of Virology, 2008, 153, 473-483.	2.1	48
81	RNA silencingâ€mediated resistance to a crinivirus (Closteroviridae) in cultivated sweetpotato (<i>lpomoea batatas</i> L.) and development of sweetpotato virus disease following coâ€infection with a potyvirus. Molecular Plant Pathology, 2008, 9, 589-598.	4.2	61
82	Analysis of gene content in sweet potato chlorotic stunt virus RNA1 reveals the presence of the p22 RNA silencing suppressor in only a few isolates: implications for viral evolution and synergism. Journal of General Virology, 2008, 89, 573-582.	2.9	67
83	FamilyFlexiviridae: A Case Study in Virion and Genome Plasticity. Annual Review of Phytopathology, 2007, 45, 73-100.	7.8	316
84	Molecular Characterization of the 3'-Terminal Region of Turnip mosaic virus Isolates from Eastern China. Journal of Phytopathology, 2007, 155, 333-341.	1.0	8
85	Comparative and functional genomics of closteroviruses. Virus Research, 2006, 117, 38-51.	2.2	307
86	Self-excision of the antibiotic resistance gene nptll using a heat inducible Cre-loxP system from transgenic potato. Plant Molecular Biology, 2006, 62, 71-82.	3.9	107
87	Viral Class 1 RNase III Involved in Suppression of RNA Silencing. Journal of Virology, 2005, 79, 7227-7238.	3.4	149
88	Occurrence and survival of potato scab pathogens (Streptomyces species) on tuber lesions: quick diagnosis based on a PCR-based assay. Plant Pathology, 2004, 53, 280-287.	2.4	71
89	Coat protein sequence analysis reveals occurrence of new strains of Sweet potato feathery mottle virus in Uganda and Tanzania. Virus Genes, 2003, 27, 49-56.	1.6	21
90	Some molecular characteristics of three viruses from SPVD-affected sweet potato plants in Egypt. Archives of Virology, 2003, 148, 2449-2460.	2.1	41

#	Article	IF	CITATIONS
91	Complete Genome Sequence and Analyses of the Subgenomic RNAs of Sweet Potato Chlorotic Stunt Virus Reveal Several New Features for the Genus Crinivirus. Journal of Virology, 2002, 76, 9260-9270.	3.4	97
92	Title is missing!. Euphytica, 2001, 120, 71-83.	1.2	6
93	Two Serotypes of Sweetpotato feathery mottle virus in Uganda and Their Interaction with Resistant Sweetpotato Cultivars. Phytopathology, 2000, 90, 1250-1255.	2.2	35
94	Transgenic Resistance to PVYO Associated with Post-Transcriptional Silencing of P1 Transgene Is Overcome by PVYN Strains That Carry Highly Homologous P1 Sequences and Recover Transgene Expression at Infection. Molecular Plant-Microbe Interactions, 2000, 13, 366-373.	2.6	33
95	Synergistic Interactions of a Potyvirus and a Phloem-Limited Crinivirus in Sweet Potato Plants. Virology, 2000, 269, 26-36.	2.4	226
96	Comparisons of coat protein gene sequences show that East African isolates of Sweet potato feathery mottle virus form a genetically distinct group. Archives of Virology, 2000, 145, 567-574.	2.1	66
97	Phylogenetic Analysis of 16S rRNA Genes and PCR Analysis of the nec1 Gene from Streptomyces spp. Causing Common Scab, Pitted Scab, and Netted Scab in Finland. Phytopathology, 1999, 89, 462-469.	2.2	78
98	Biological, Serological, and Molecular Differences Among Isolates of Potato A Potyvirus. Phytopathology, 1998, 88, 311-321.	2.2	67
99	A temperatureâ€dependent phenology model for <i>Apanteles subandinus</i> Blanchard, parasitoid of <i>Phthorimaea operculella</i> Zeller and <i>Symmetrischema tangolias</i> (Gyen). Journal of Applied Entomology, 0, , .	1.8	1