
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5322275/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A New Generation of the IMAGIC Image Processing System. Journal of Structural Biology, 1996, 116, 17-24.	2.8	1,182
2	Myelin basic protein—diverse conformational states of an intrinsically unstructured protein and its roles in myelin assembly and multiple sclerosis. Micron, 2004, 35, 503-542.	2.2	230
3	Deimination of Myelin Basic Protein. 1. Effect of Deimination of Arginyl Residues of Myelin Basic Protein on Its Structure and Susceptibility to Digestion by Cathepsin D. Biochemistry, 2000, 39, 5374-5381.	2.5	182
4	Structural Polymorphism and Multifunctionality of Myelin Basic Protein. Biochemistry, 2009, 48, 8094-8104.	2.5	178
5	A Tale of Two Citrullines—Structural and Functional Aspects of Myelin Basic Protein Deimination in Health and Disease. Neurochemical Research, 2007, 32, 137-158.	3.3	140
6	Cardiolipin exposure onÂthe outer mitochondrial membrane modulates α-synuclein. Nature Communications, 2018, 9, 817.	12.8	136
7	Peptidylarginine deiminase 2 (PAD2) overexpression in transgenic mice leads to myelin loss in the central nervous system. DMM Disease Models and Mechanisms, 2008, 1, 229-240.	2.4	124
8	Deimination of membrane-bound myelin basic protein in multiple sclerosis exposes an immunodominant epitope. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 4422-4427.	7.1	123
9	Myelin management by the 18.5â€kDa and 21.5â€kDa classic myelin basic protein isoforms. Journal of Neurochemistry, 2013, 125, 334-361.	3.9	112
10	Three-dimensional Structure of Myelin Basic Protein. Journal of Biological Chemistry, 1997, 272, 4269-4275.	3.4	89
11	Deimination of Myelin Basic Protein. 2. Effect of Methylation of MBP on Its Deimination by Peptidylarginine Deiminase. Biochemistry, 2000, 39, 5382-5388.	2.5	80
12	White Matter Rafting––Membrane Microdomains in Myelin. Neurochemical Research, 2007, 32, 213-228.	3.3	79
13	Three-dimensional Structure of Myelin Basic Protein. Journal of Biological Chemistry, 1997, 272, 4261-4268.	3.4	77
14	MyelStones: the executive roles of myelin basic protein in myelin assembly and destabilization in multiple sclerosis. Biochemical Journal, 2015, 472, 17-32.	3.7	76
15	Membrane-anchoring and Charge Effects in the Interaction of Myelin Basic Protein with Lipid Bilayers Studied by Site-directed Spin Labeling. Journal of Biological Chemistry, 2003, 278, 29041-29047.	3.4	75
16	Cryoelectron Microscopy of Protein–Lipid Complexes of Human Myelin Basic Protein Charge Isomers Differing in Degree of Citrullination. Journal of Structural Biology, 2000, 129, 80-95.	2.8	72
17	Characterization of a Recombinant Murine 18.5-kDa Myelin Basic Protein. Protein Expression and Purification, 2000, 20, 285-299.	1.3	69
18	An Immunodominant Epitope of Myelin Basic Protein Is an Amphipathic α-Helix. Journal of Biological Chemistry, 2004, 279, 5757-5764.	3.4	67

#	Article	IF	CITATIONS
19	The Classic Basic Protein of Myelin – Conserved Structural Motifs and the Dynamic Molecular Barcode Involved in Membrane Adhesion and Protein-Protein Interactions. Current Protein and Peptide Science, 2009, 10, 196-215.	1.4	65
20	Binding of the Proline-Rich Segment of Myelin Basic Protein to SH3 Domains:  Spectroscopic, Microarray, and Modeling Studies of Ligand Conformation and Effects of Posttranslational Modifications. Biochemistry, 2008, 47, 267-282.	2.5	64
21	Interactions of intrinsically disordered <i>Thellungiella salsuginea</i> dehydrins TsDHN-1 and TsDHN-2 with membranes— synergistic effects of lipid composition and temperature on secondary structure. Biochemistry and Cell Biology, 2010, 88, 791-807.	2.0	58
22	Direct three-dimensional reconstruction for macromolecular complexes from electron micrographs. Ultramicroscopy, 1983, 12, 309-319.	1.9	57
23	Interaction of the 18.5-kD isoform of myelin basic protein with Ca2+-calmodulin: Effects of deimination assessed by intrinsic Trp fluorescence spectroscopy, dynamic light scattering, and circular dichroism. Protein Science, 2003, 12, 1507-1521.	7.6	56
24	Myelin Basic Protein as a "PI(4,5)P ₂ -Modulin― A New Biological Function for a Major Central Nervous System Protein. Biochemistry, 2008, 47, 10372-10382.	2.5	56
25	The Effects of Deimination of Myelin Basic Protein on Structures Formed by Its Interaction with Phosphoinositide- Containing Lipid Monolayers. Journal of Structural Biology, 2001, 136, 30-45.	2.8	54
26	Recognition Pliability Is Coupled to Structural Heterogeneity: A Calmodulin Intrinsically Disordered Binding Region Complex. Structure, 2012, 20, 522-533.	3.3	51
27	Divalent cations induce a compaction of intrinsically disordered myelin basic protein. Biochemical and Biophysical Research Communications, 2010, 391, 224-229.	2.1	50
28	An Arg/Lys→Gln mutant of recombinant murine myelin basic protein as a mimic of the deiminated form implicated in multiple sclerosis. Protein Expression and Purification, 2002, 25, 330-341.	1.3	49
29	Backbone Dynamics of the 18.5kDa Isoform of Myelin Basic Protein Reveals Transient α-Helices and a Calmodulin-Binding Site. Biophysical Journal, 2008, 94, 4847-4866.	0.5	48
30	Myelin Basic Protein Cleaves Cell Adhesion Molecule L1 and Promotes Neuritogenesis and Cell Survival. Journal of Biological Chemistry, 2014, 289, 13503-13518.	3.4	48
31	Molecular "Negativity―May Underlie Multiple Sclerosis: Role of the Myelin Basic Protein Family in the Pathogenesis of MS. International Review of Neurobiology, 2007, 79, 149-172.	2.0	47
32	Effect of Arginine Loss in Myelin Basic Protein, as Occurs in Its Deiminated Charge Isoform, on Mediation of Actin Polymerization and Actin Binding to a Lipid Membrane in Vitroâ€. Biochemistry, 2005, 44, 3524-3534.	2.5	46
33	Assembly of Tubulin by Classic Myelin Basic Protein Isoforms and Regulation by Post-Translational Modificationâ€. Biochemistry, 2005, 44, 16672-16683.	2.5	46
34	Charge effects modulate actin assembly by classic myelin basic protein isoforms. Biochemical and Biophysical Research Communications, 2005, 329, 362-369.	2.1	45
35	Structural Changes of Surfactant Protein A Induced by Cations Reorient the Protein on Lipid Bilayers. Journal of Structural Biology, 1998, 122, 297-310.	2.8	44
36	Solid-state NMR spectroscopy of 18.5 kDa myelin basic protein reconstituted with lipid vesicles: Spectroscopic characterisation and spectral assignments of solvent-exposed protein fragments. Biochimica Et Biophysica Acta - Biomembranes, 2007, 1768, 3193-3205.	2.6	43

GEORGE HARAUZ

#	Article	IF	CITATIONS
37	Solid-State NMR Spectroscopy of Membrane-Associated Myelin Basic Protein—Conformation and Dynamics of an Immunodominant Epitope. Biophysical Journal, 2010, 99, 1247-1255.	O.5	40
38	Phosphorylation of <i>Thellungiella salsuginea</i> Dehydrins TsDHN-1 and TsDHN-2 Facilitates Cation-Induced Conformational Changes and Actin Assembly. Biochemistry, 2011, 50, 9587-9604.	2.5	38
39	Marburg's Variant of Multiple Sclerosis Correlates with a Less Compact Structure of Myelin Basic Protein. Molecular Cell Biology Research Communications: MCBRC: Part B of Biochemical and Biophysical Research Communications, 1999, 1, 48-51.	1.6	37
40	The Effects of Threonine Phosphorylation on the Stability and Dynamics of the Central Molecular Switch Region of 18.5-kDa Myelin Basic Protein. PLoS ONE, 2013, 8, e68175.	2.5	37
41	Structured Functional Domains of Myelin Basic Protein: Cross Talk between Actin Polymerization and Ca2+-Dependent Calmodulin Interaction. Biophysical Journal, 2011, 101, 1248-1256.	0.5	36
42	Classical 18.5â€and 21.5â€kDa isoforms of myelin basic protein inhibit calcium influx into oligodendroglial cells, in contrast to golli isoforms. Journal of Neuroscience Research, 2011, 89, 467-480.	2.9	36
43	Fuzzy complexes of myelin basic protein: NMR spectroscopic investigations of a polymorphic organizational linker of the central nervous systemThis paper is one of a selection of papers published in this special issue entitled "Canadian Society of Biochemistry, Molecular & amp; Cellular Biology 52nd Annual Meeting — Protein Folding: Principles and Diseases €•and has undergone the	2.0	35
44	Journal's usual peer review process Diochemistry and Cell Diology, 2010, 88, 143-155. Solution NMR structure of an immunodominant epitope of myelin basic protein. Conformational dependence on environment of an intrinsically unstructured protein. FEBS Journal, 2006, 273, 601-614.	4.7	34
45	Proline substitutions and threonine pseudophosphorylation of the SH3 ligand of 18.5â€kDa myelin basic protein decrease its affinity for the Fynâ€SH3 domain and alter process development and protein localization in oligodendrocytes. Journal of Neuroscience Research, 2012, 90, 28-47.	2.9	34
46	Interactions of Thellungiella salsuginea dehydrins TsDHN-1 and TsDHN-2 with membranes at cold and ambient temperatures—Surface morphology and single-molecule force measurements show phase separation, and reveal tertiary and quaternary associations. Biochimica Et Biophysica Acta - Biomembranes, 2013, 1828, 967-980.	2.6	34
47	Influence of Membrane Surface Charge and Post-Translational Modifications to Myelin Basic Protein on Its Ability To Tether the Fyn-SH3 Domain to a Membrane in Vitro. Biochemistry, 2009, 48, 2385-2393.	2.5	33
48	Myelin basic protein binds microtubules to a membrane surface and to actin filaments in vitro: Effect of phosphorylation and deimination. Biochimica Et Biophysica Acta - Biomembranes, 2011, 1808, 761-773.	2.6	33
49	Myelin basic protein has multiple calmodulin-binding sites. Biochemical and Biophysical Research Communications, 2003, 308, 313-319.	2.1	32
50	Classic 18.5- and 21.5-kDa Myelin Basic Protein Isoforms Associate with Cytoskeletal and SH3-Domain Proteins in the Immortalized N19-Oligodendroglial Cell Line Stimulated by Phorbol Ester and IGF-1. Neurochemical Research, 2012, 37, 1277-1295.	3.3	32
51	Conformational choreography of a molecular switch region in myelin basic protein—Molecular dynamics shows induced folding and secondary structure type conversion upon threonyl phosphorylation in both aqueous and membrane-associated environments. Biochimica Et Biophysica Acta - Biomembranes. 2011, 1808, 674-683.	2.6	31
52	Analogous structural motifs in myelin basic protein and in MARCKS. Molecular and Cellular Biochemistry, 2000, 209, 155-163.	3.1	30
53	Electron paramagnetic resonance spectroscopy and molecular modelling of the interaction of myelin basic protein (MBP) with calmodulin (CaM)—diversity and conformational adaptability of MBP CaM-targets. Journal of Structural Biology, 2004, 148, 353-369.	2.8	30
54	Solution NMR and CD spectroscopy of an intrinsically disordered, peripheral membrane protein: evaluation of aqueous and membrane-mimetic solvent conditions for studying the conformational adaptability of the 18.5ÅkDa isoform of myelin basic protein (MBP). European Biophysics Journal, 2008, 37, 1015-1029.	2.2	30

#	Article	IF	CITATIONS
55	Solution Nuclear Magnetic Resonance Structure and Molecular Dynamics Simulations of a Murine 18.5 kDa Myelin Basic Protein Segment (S72–S107) in Association with Dodecylphosphocholine Micelles. Biochemistry, 2012, 51, 7475-7487.	2.5	30
56	Induced Secondary Structure and Polymorphism in an Intrinsically Disordered Structural Linker of the CNS: Solid-State NMR and FTIR Spectroscopy of Myelin Basic Protein Bound to Actin. Biophysical Journal, 2009, 96, 180-191.	0.5	29
57	Misincorporation of the proline homologue Aze (azetidine-2-carboxylic acid) into recombinant myelin basic protein. Phytochemistry, 2010, 71, 502-507.	2.9	29
58	α-Synuclein mutation impairs processing of endomembrane compartments and promotes exocytosis and seeding of α-synuclein pathology. Cell Reports, 2021, 35, 109099.	6.4	29
59	The interaction of zinc with membrane-associated 18.5ÂkDa myelin basic protein: an attenuated total reflectance-Fourier transform infrared spectroscopic study. Amino Acids, 2010, 39, 739-750.	2.7	28
60	In vitro study of the direct effect of extracellular hemoglobin on myelin components. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2015, 1852, 92-103.	3.8	28
61	Hemoglobin as a source of iron overload in multiple sclerosis: does multiple sclerosis share risk factors with vascular disorders?. Cellular and Molecular Life Sciences, 2014, 71, 1789-1798.	5.4	26
62	Partitioning of myelin basic protein into membrane microdomains in a spontaneously demyelinating mouse model for multiple sclerosisThis paper is one of a selection of papers published in this Special Issue, entitled CSBMCB — Membrane Proteins in Health and Disease Biochemistry and Cell Biology, 2006, 84, 993-1005.	2.0	25
63	Secondary Structure and Solvent Accessibility of a Calmodulin-Binding C-Terminal Segment of Membrane-Associated Myelin Basic Protein. Biochemistry, 2010, 49, 8955-8966.	2.5	25
64	Interactions of the 18.5-kDa isoform of myelin basic protein with Ca2+-calmodulin: in vitro studies using fluorescence microscopy and spectroscopy. Biochemistry and Cell Biology, 2002, 80, 395-406.	2.0	24
65	Nucleusâ€localized 21.5â€kDa myelin basic protein promotes oligodendrocyte proliferation and enhances neurite outgrowth in coculture, unlike the plasma membraneâ€associated 18.5â€kDa isoform. Journal of Neuroscience Research, 2013, 91, 349-362.	2.9	24
66	Terminal deletion mutants of myelin basic protein: new insights into self-association and phospholipid interactions. Micron, 2003, 34, 25-37.	2.2	23
67	Proton detection for signal enhancement in solid-state NMR experiments on mobile species in membrane proteins. Journal of Biomolecular NMR, 2015, 63, 375-388.	2.8	23
68	Lateral self-assembly of 18.5-kDa myelin basic protein (MBP) charge component-C1 on membranes. Biochimica Et Biophysica Acta - Biomembranes, 2012, 1818, 2636-2647.	2.6	22
69	The formation of helical tubular vesicles by binary monolayers containing a nickel-chelating lipid and phosphoinositides in the presence of basic polypeptides. Chemistry and Physics of Lipids, 2002, 114, 103-111.	3.2	21
70	Interaction of Myelin Basic Protein with Actin in the Presence of Dodecylphosphocholine Micelles. Biochemistry, 2010, 49, 6903-6915.	2.5	21
71	Zinc induces disorder-to-order transitions in free and membrane-associated Thellungiella salsuginea dehydrins TsDHN-1 and TsDHN-2: a solution CD and solid-state ATR-FTIR study. Amino Acids, 2011, 40, 1485-1502.	2.7	21
72	Molecular dynamics exposes ?-helices in myelin basic protein. Journal of Molecular Modeling, 2003, 9, 290-297.	1.8	20

#	Article	IF	CITATIONS
73	Copper Uptake Induces Self-Assembly of 18.5 kDa Myelin Basic ProteinÂ(MBP). Biophysical Journal, 2010, 99, 3020-3028.	0.5	20
74	Interaction of Myelin Basic Protein with Myelin-like Lipid Monolayers at Air–Water Interface. Langmuir, 2018, 34, 6095-6108.	3.5	19
75	Interactions of the 18.5 kDa isoform of myelin basic protein with Ca2+-calmodulin: in vitro studies using gel shift assays. Molecular and Cellular Biochemistry, 2002, 241, 45-52.	3.1	18
76	Letter to the Editor: Backbone resonance assignments of the 18.5 kDa isoform of murine myelin basic protein (MBP). Journal of Biomolecular NMR, 2004, 29, 545-546.	2.8	18
77	Interaction of myelin basic protein with cytoskeletal and signaling proteins in cultured primary oligodendroglial cells. BMC Research Notes, 2014, 7, 387.	1.4	18
78	Representation of rotations by unit quaternions. Ultramicroscopy, 1990, 33, 209-213.	1.9	17
79	Expression and properties of the recombinant murine Golli-myelin basic protein isoform J37. Journal of Neuroscience Research, 2003, 71, 777-784.	2.9	17
80	Kinetics of human peptidylarginine deiminase 2 (hPAD2)— Reduction of Ca ²⁺ dependence by phospholipids and assessment of proposed inhibition by paclitaxel side chains. Biochemistry and Cell Biology, 2008, 86, 437-447.	2.0	17
81	Thermodynamic Analysis of the Disorder-to-α-Helical Transition of 18.5-kDa Myelin Basic Protein Reveals an Equilibrium Intermediate Representing the Most Compact Conformation. Journal of Molecular Biology, 2015, 427, 1977-1992.	4.2	17
82	The BG21 Isoform of Golli Myelin Basic Protein Is Intrinsically Disordered with a Highly Flexible Amino-Terminal Domain. Biochemistry, 2007, 46, 9700-9712.	2.5	16
83	Myelin basic protein co-distributes with other PI(4,5)P2-sequestering proteins in Triton X-100 detergent-resistant membrane microdomains. Neuroscience Letters, 2009, 450, 32-36.	2.1	16
84	Regulation of cell proliferation by nucleocytoplasmic dynamics of postnatal and embryonic exon-II-containing MBP isoforms. Biochimica Et Biophysica Acta - Molecular Cell Research, 2014, 1843, 517-530.	4.1	16
85	Cation-mediated conformational variants of surfactant protein A. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 1999, 1453, 23-34.	3.8	15
86	The 21.5-kDa isoform of myelin basic protein has a non-traditional PY-nuclear-localization signal. Biochemical and Biophysical Research Communications, 2012, 422, 670-675.	2.1	15
87	Substitutions mimicking deimination and phosphorylation of 18.5-kDa myelin basic protein exert local structural effects that subtly influence its global folding. Biochimica Et Biophysica Acta - Biomembranes, 2016, 1858, 1262-1277.	2.6	15
88	Human proteolipid protein (PLP) mediates winding and adhesion of phospholipid membranes but prevents their fusion. Biochimica Et Biophysica Acta - Biomembranes, 1998, 1415, 85-100.	2.6	14
89	Monitoring Cleaved Caspase-3 Activity and Apoptosis of Immortalized Oligodendroglial Cells using Live-cell Imaging and Cleaveable Fluorogenic-dye Substrates Following Potassium-induced Membrane Depolarization. Journal of Visualized Experiments, 2012, , .	0.3	14
90	Potential role of ferric hemoglobin in MS pathogenesis: Effects of oxidative stress and extracellular methemoglobin or its degradation products on myelin components. Free Radical Biology and Medicine, 2017, 112, 494-503.	2.9	14

#	Article	IF	CITATIONS
91	Effect of Cholesterol and Myelin Basic Protein (MBP) Content on Lipid Monolayers Mimicking the Cytoplasmic Membrane of Myelin. Cells, 2020, 9, 529.	4.1	14
92	Formation of membrane lattice structures and their specific interactions with surfactant protein A. American Journal of Physiology - Lung Cellular and Molecular Physiology, 1999, 276, L642-L649.	2.9	12
93	Myelin basic protein component C1 in increasing concentrations can elicit fusion, aggregation, and fragmentation of myelin-like membranes. European Journal of Cell Biology, 2000, 79, 327-335.	3.6	12
94	Parameterization of the proline analogue Aze (azetidine-2-carboxylic acid) for molecular dynamics simulations and evaluation of its effect on homo-pentapeptide conformations. Journal of Molecular Graphics and Modelling, 2013, 39, 118-125.	2.4	12
95	The proline-rich region of 18.5 kDa myelin basic protein binds to the SH3-domain of Fyn tyrosine kinase with the aid of an upstream segment to form a dynamic complex <i>inÂvitro</i> . Bioscience Reports, 2014, 34, e00157.	2.4	12
96	Myelin basic protein (MBP) charge variants show different sphingomyelin-mediated interactions with myelin-like lipid monolayers. Biochimica Et Biophysica Acta - Biomembranes, 2020, 1862, 183077.	2.6	12
97	Structural Studies on the 2.25-MDa Homomultimeric Phosphoenolpyruvate Synthase fromStaphylothermus marinus. Journal of Structural Biology, 1996, 116, 290-301.	2.8	10
98	NMR assignment of an intrinsically disordered protein under physiological conditions: the 18.5ÅkDa isoform of murine myelin basic protein. Biomolecular NMR Assignments, 2007, 1, 61-63.	0.8	9
99	Correlation of geographic distributions of haptoglobin alleles with prevalence of multiple sclerosis (MS) – a narrative literature review. Metabolic Brain Disease, 2017, 32, 19-34.	2.9	9
100	Structure of ribosomes from Thermomyces lanuginosus by electron microscopy and image processing. BBA - Proteins and Proteomics, 1990, 1038, 260-267.	2.1	8
101	Characteristic electron microscopical projections of the small ribosomal subunit from Thermomyces lanuginosus. Biochimica Et Biophysica Acta Gene Regulatory Mechanisms, 1992, 1130, 289-296.	2.4	8
102	Coordinate-free self-organising feature maps. Ultramicroscopy, 1997, 68, 201-214.	1.9	8
103	Purification and spectroscopic characterization of the recombinant BG21 isoform of murine golli myelin basic protein. Journal of Neuroscience Research, 2007, 85, 272-284.	2.9	8
104	Nicheâ€dependent inhibition of neural stem cell proliferation and oligodendrogenesis is mediated by the presence of myelin basic protein. Stem Cells, 2021, 39, 776-786.	3.2	8
105	Visualisation of E. coli ribosomal RNA in situ by electron spectroscopic imaging and image analysis. Micron, 1993, 24, 163-171.	2.2	7
106	Structures of small subunit ribosomal RNAsin situ fromEscherichia coli andThermomyces lanuginosus. Molecular and Cellular Biochemistry, 1995, 148, 165-181.	3.1	7
107	Symmetry in the 2.25 MDa homomultimeric phosphoenolpyruvate synthase fromStaphylothermus marinus: Analyses of negatively stained preparations. Micron, 1998, 29, 161-173.	2.2	7
108	Niche-dependent inhibition of neural stem cell proliferation and oligodendrogenesis is mediated by the presence of myelin basic protein. Stem Cells, 2021, 39, 776-786.	3.2	6

#	Article	IF	CITATIONS
109	Filaments of surfactant protein A specifically interact with corrugated surfaces of phospholipid membranes. American Journal of Physiology - Lung Cellular and Molecular Physiology, 1999, 276, L631-L641.	2.9	5
110	Expression and purification of the active variant of recombinant murine Golli-interacting protein (GIP)—characterization of its phosphatase activity and interaction with Golli-BG21. Protein Expression and Purification, 2008, 62, 36-43.	1.3	5
111	Myelin basic protein is a glial microtubule-associated protein – Characterization of binding domains, kinetics of polymerization, and regulation by phosphorylation and a lipidic environment. Biochemical and Biophysical Research Communications, 2015, 461, 136-141.	2.1	5
112	Partial magic angle spinning NMR 1H, 13C, 15N resonance assignments of the flexible regions of a monomeric alpha-synuclein: conformation of C-terminus in the lipid-bound and amyloid fibril states. Biomolecular NMR Assignments, 2021, 15, 297-303.	0.8	5
113	Structures of ribosomal subunits from Saccharomyces cerevisiae. Micron and Microscopica Acta, 1992, 23, 273-286.	0.2	4
114	Electron microscopical projections of the large ribosomal subunit from Thermomyces lanuginosus. Biochimica Et Biophysica Acta Gene Regulatory Mechanisms, 1992, 1132, 58-66.	2.4	4
115	Modes of SH3-Domain Interactions of 18.5 kDa Myelin Basic Protein IN Vitro and in Oligodendrocytes. Biophysical Journal, 2011, 100, 229a.	0.5	4
116	Ribosomal proteins ofThermomyces lanuginosus ? characterisation by two-dimensional gel electrophoresis and differential disassembly. Molecular and Cellular Biochemistry, 1995, 143, 21-34.	3.1	3
117	Three-Dimensional Cryoelectron Microscopic Reconstruction of the 2.25-MDa Homomultimeric Phosphoenolpyruvate Synthase fromStaphylothermus marinus. Biochemical and Biophysical Research Communications, 1997, 241, 599-605.	2.1	3
118	Three-dimensional architecture of Thermomyces lanuginosus small subunit ribosomal RNA. Micron, 1997, 28, 13-20.	2.2	3
119	Quaternary Organization of the Staphylothermus marinus Phosphoenolpyruvate Synthase: Angular Reconstitution from Cryoelectron Micrographs with Molecular Modeling. Journal of Structural Biology, 2000, 132, 226-240.	2.8	3
120	"Back to the future―or iron in the MS brain – Commentary on "Perivascular iron deposits are associated with protein nitration in cerebral experimental autoimmune encephalomyelitis. Neuroscience Letters, 2014, 582, 130-132.	2.1	3
121	Angular reconstitution of theStaphylothermus marinus phosphoenolpyruvate synthase. Microscopy Research and Technique, 2000, 49, 233-244.	2.2	2
122	Regulatory effect of the glial Golli-BG21 protein on the full-length murine small C-terminal domain phosphatase (SCP1, or Golli-interacting protein). Biochemical and Biophysical Research Communications, 2014, 447, 633-637.	2.1	2
123	Docking and molecular dynamics simulations of the Fynâ€SH3 domain with free and phospholipid bilayerâ€associated 18.5â€kDa myelin basic protein (MBP)—Insights into a noncanonical and fuzzy interaction. Proteins: Structure, Function and Bioinformatics, 2017, 85, 1336-1350.	2.6	2
124	And Yet it is Modified-Holding a Candle to the Dark Matter of White Matter. Proteomics, 2017, 17, 1700299.	2.2	2
125	Turning White Matter "Inside-Out―by Hyper-deimination of Myelin Basic Protein (MBP). , 2017, , 337-389.		2
126	Over-expression in E. coli and purification of functional full-length murine small C-terminal domain phosphatase (SCP1, or Golli-interacting protein). Protein Expression and Purification, 2014, 101, 106-114.	1.3	1

#	Article	IF	CITATIONS
127	Probing Ribosomal RNA By Electron Spectroscopic Imaging and Three-Dimensional Reconstruction. Microscopy Today, 1997, 5, 10-11.	0.3	Ο
128	Deimination exposes an immunodominant epitope of membraneâ€associated myelin basic protein. FASEB Journal, 2006, 20, A58.	0.5	0