Jean-François Bodart

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5321682/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Protein phosphatase 2A holoenzymes regulate leucine-rich repeat kinase 2 phosphorylation and accumulation. Neurobiology of Disease, 2021, 157, 105426.	4.4	7
2	Effects of glyphosate and a commercial formulation Roundup® exposures on maturation of Xenopus laevis oocytes. Environmental Science and Pollution Research, 2020, 27, 3697-3705.	5.3	8
3	Effects of Ferrocenyl 4-(Imino)-1,4-Dihydro-quinolines on Xenopus laevis Prophase I - Arrested Oocytes: Survival and Hormonal-Induced M-Phase Entry. International Journal of Molecular Sciences, 2020, 21, 3049.	4.1	3
4	Animal experimentation in transgenesis: evaluating course design in large classrooms. FEBS Open Bio, 2020, 10, 954-968.	2.3	1
5	Hydrogen Sulfide Impairs Meiosis Resumption in Xenopus laevis Oocytes. Cells, 2020, 9, 237.	4.1	3
6	FRET-Based Enzyme Activity Reporter: Practical Hints for Kinases as Indicators of Virulence. , 2018, , .		0
7	Maturation of Xenopus laevis oocytes under cadmium and lead exposures: Cell biology investigations. Aquatic Toxicology, 2017, 193, 105-110.	4.0	12
8	From Nitric Oxide Toward S-Nitrosylation: Expanding Roles in Gametes and Embryos. , 2017, , .		0
9	Gasotransmitters in Gametogenesis and Early Development: Holy Trinity for Assisted Reproductive Technology—A Review. Oxidative Medicine and Cellular Longevity, 2016, 2016, 1-12.	4.0	5
10	Cadmium but not lead exposure affects Xenopus laevis fertilization and embryo cleavage. Aquatic Toxicology, 2016, 177, 1-7.	4.0	17
11	Synthesis, Structure, and Antiproliferative Activity of Ruthenium(II) Arene Complexes of Indenoisoquinoline Derivatives. Organometallics, 2016, 35, 2868-2872.	2.3	14
12	Xenopus laevis as a Model to Identify Translation Impairment. Journal of Visualized Experiments, 2015, , .	0.3	0
13	Hydrogen Sulfide Donor Protects Porcine Oocytes against Aging and Improves the Developmental Potential of Aged Porcine Oocytes. PLoS ONE, 2015, 10, e0116964.	2.5	11
14	Xenopus laevis oocyte maturation is affected by metal chlorides. Toxicology in Vitro, 2015, 29, 1124-1131.	2.4	13
15	Nitric Oxide Donors-Nitroso-n-Acetyl Penicillamine (SNAP) Alters Meiotic Spindle Morphogenesis inXenopusOocytes. Journal of Cellular Biochemistry, 2015, 116, 2445-2454.	2.6	8
16	Endogenously produced hydrogen sulfide is involved in porcine oocyte maturation inÂvitro. Nitric Oxide - Biology and Chemistry, 2015, 51, 24-35.	2.7	12
17	Novel Reporter for Faithful Monitoring of ERK2 Dynamics in Living Cells and Model Organisms. PLoS ONE, 2015, 10, e0140924.	2.5	5
18	PhosphoTyrosyl Phosphatase Activator of Plasmodium falciparum: Identification of Its Residues Involved in Binding to and Activation of PP2A. International Journal of Molecular Sciences, 2014, 15, 2431-2453.	4.1	19

#	Article	IF	CITATIONS
19	Optimization of ERK Activity Biosensors for both Ratiometric and Lifetime FRET Measurements. Sensors, 2014, 14, 1140-1154.	3.8	42
20	The spatio-temporal dynamics of PKA activity profile during mitosis and its correlation to chromosome segregation. Cell Cycle, 2014, 13, 3232-3240.	2.6	20
21	Insulin loaded iron magnetic nanoparticle–graphene oxide composites: synthesis, characterization and application for in vivo delivery of insulin. RSC Advances, 2014, 4, 865-875.	3.6	33
22	Dual Effects of Hydrogen Sulfide Donor on Meiosis and Cumulus Expansion of Porcine Cumulus-Oocyte Complexes. PLoS ONE, 2014, 9, e99613.	2.5	11
23	Plasmodium falciparumencodes a conserved active inhibitor-2 for Protein Phosphatase type 1: perspectives for novel anti-plasmodial therapy. BMC Biology, 2013, 11, 80.	3.8	37
24	From FRET Imaging to Practical Methodology for Kinase Activity Sensing in Living Cells. Progress in Molecular Biology and Translational Science, 2013, 113, 145-216.	1.7	26
25	Dual Targeting of Insulin and Venus Kinase Receptors of Schistosoma mansoni for Novel Anti-schistosome Therapy. PLoS Neglected Tropical Diseases, 2013, 7, e2226.	3.0	45
26	Ultrasensitive MAPK/Erk activation in absence of protein synthesis in Xenopus oocytes. MAP Kinase, 2013, 2, .	0.3	1
27	Signal propagation of the MAPK cascade in Xenopus oocytes: role of bistability and ultrasensitivity for a mixed problem. Journal of Mathematical Biology, 2012, 64, 1-39.	1.9	11
28	A Dynamical Model of Oocyte Maturation Unveils Precisely Orchestrated Meiotic Decisions. PLoS Computational Biology, 2012, 8, e1002329.	3.2	5
29	Nitric Oxide-Donor SNAP Induces Xenopus Eggs Activation. PLoS ONE, 2012, 7, e41509.	2.5	9
30	Calcium Dynamics During Physiological Acidification in Xenopus Oocyte. Journal of Membrane Biology, 2010, 236, 233-245.	2.1	12
31	Cellular and in vivo toxicity of functionalized nanodiamond in Xenopus embryos. Journal of Materials Chemistry, 2010, 20, 8064.	6.7	98
32	Survey of O-GlcNAc level variations in Xenopus laevis from oogenesis to early development. Glycoconjugate Journal, 2009, 26, 301-311.	2.7	21
33	NMR observation of Tau in Xenopus oocytes. Journal of Magnetic Resonance, 2008, 192, 252-257.	2.1	100
34	Microinjection of recombinant O-GlcNAc transferase potentiates Xenopus oocytes M-phase entry. Biochemical and Biophysical Research Communications, 2008, 369, 539-546.	2.1	38
35	Identification of Structural and Functional O-Linked N-Acetylglucosamine-bearing Proteins in Xenopus laevis Oocyte. Molecular and Cellular Proteomics, 2008, 7, 2229-2245.	3.8	70
36	O-Linked N-Acetylglucosaminyltransferase Inhibition Prevents G2/M Transition in Xenopus laevis Oocytes. Journal of Biological Chemistry, 2007, 282, 12527-12536.	3.4	63

#	Article	IF	CITATIONS
37	Intracellular acidification delays hormonal G2/M transition and inhibits G2/M transition triggered by thiophosphorylated MAPK inXenopus oocytes. Journal of Cellular Biochemistry, 2006, 98, 287-300.	2.6	18
38	Modulation of O-GlcNAc glycosylation duringXenopus oocyte maturation. Journal of Cellular Biochemistry, 2004, 93, 999-1010.	2.6	39
39	Xp38Â/SAPK3 promotes meiotic G2/M transition in Xenopus oocytes and activates Cdc25C. EMBO Journal, 2003, 22, 5746-5756.	7.8	42
40	Xp42Mpk1 Activation Is Not Required for Germinal Vescicle Breakdown but for Raf Complete Phosphorylation in Insulin-stimulated Xenopus Oocytes. Journal of Biological Chemistry, 2003, 278, 49714-49720.	3.4	24
41	Minireview: Metaphase arrest in amphibian oocytes: Interaction between CSF and MPF sets the equilibrium. Molecular Reproduction and Development, 2002, 61, 570-574.	2.0	11
42	Differential effects of 6-DMAP, olomoucine and roscovitine on Xenopus oocytes and eggs. Zygote, 2000, 8, 3-14.	1.1	19
43	Inhibition of protein tyrosine phosphatases blocks calcium-induced activation of metaphase II-arrested oocytes ofXenopus laevis. FEBS Letters, 1999, 457, 175-178.	2.8	15
44	Activation of Xenopus Eggs by the Kinase Inhibitor 6-DMAP Suggests a Differential Regulation of Cyclin B and p39mos Proteolysis. Experimental Cell Research, 1999, 253, 413-421.	2.6	21
45	Procaine-induced maturation of Xenopus oocytes is mediated by a transient activation of M-Phase promoting factor. Zygote, 1997, 5, 11-19.	1.1	8