
Jeanette E Eckel-Passow

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5321372/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Glioma Groups Based on 1p/19q, <i>IDH</i> , and <i>TERT</i> Promoter Mutations in Tumors. New England Journal of Medicine, 2015, 372, 2499-2508.	27.0	1,632
2	Genome-wide association study of glioma subtypes identifies specific differences in genetic susceptibility to glioblastoma and non-glioblastoma tumors. Nature Genetics, 2017, 49, 789-794.	21.4	259
3	Adult infiltrating gliomas with WHO 2016 integrated diagnosis: additional prognostic roles of ATRX and TERT. Acta Neuropathologica, 2017, 133, 1001-1016.	7.7	245
4	Measure transcript integrity using RNA-seq data. BMC Bioinformatics, 2016, 17, 58.	2.6	187
5	Genomic Analysis Reveals That Immune Function Genes Are Strongly Linked to Clinical Outcome in the North Central Cancer Treatment Group N9831 Adjuvant Trastuzumab Trial. Journal of Clinical Oncology, 2015, 33, 701-708.	1.6	171
6	Variants near TERT and TERC influencing telomere length are associated with high-grade glioma risk. Nature Genetics, 2014, 46, 731-735.	21.4	161
7	Genomic and Phenotypic Characterization of a Broad Panel of Patient-Derived Xenografts Reflects the Diversity of Glioblastoma. Clinical Cancer Research, 2020, 26, 1094-1104.	7.0	124
8	A new statistic for identifying batch effects in high-throughput genomic data that uses guided principal component analysis. Bioinformatics, 2013, 29, 2877-2883.	4.1	118
9	Genome-wide association study identifies multiple risk loci for renal cell carcinoma. Nature Communications, 2017, 8, 15724.	12.8	106
10	Delineation of <i>MGMT</i> Hypermethylation as a Biomarker for Veliparib-Mediated Temozolomide-Sensitizing Therapy of Glioblastoma. Journal of the National Cancer Institute, 2015, 108, djv369.	6.3	102
11	Management of diffuse low-grade gliomas in adults — use of molecular diagnostics. Nature Reviews Neurology, 2017, 13, 340-351.	10.1	95
12	The Efficacy of the Wee1 Inhibitor MK-1775 Combined with Temozolomide Is Limited by Heterogeneous Distribution across the Blood–Brain Barrier in Glioblastoma. Clinical Cancer Research, 2015, 21, 1916-1924.	7.0	86
13	Telomere maintenance and the etiology of adult glioma. Neuro-Oncology, 2015, 17, 1445-1452.	1.2	70
14	Understanding inherited genetic risk of adult glioma – a review. Neuro-Oncology Practice, 2016, 3, 10-16.	1.6	62
15	Tumor Sequencing and Patient-Derived Xenografts in the Neoadjuvant Treatment of Breast Cancer. Journal of the National Cancer Institute, 2017, 109, .	6.3	61
16	The influence of obesity-related factors in the etiology of renal cell carcinoma—A mendelian randomization study. PLoS Medicine, 2019, 16, e1002724.	8.4	59
17	A microRNA biomarker panel for the non-invasive detection of bladder cancer. Oncotarget, 2016, 7, 86290-86299.	1.8	58
18	Sex-specific glioma genome-wide association study identifies new risk locus at 3p21.31 in females, and finds sex-differences in risk at 8q24.21. Scientific Reports, 2018, 8, 7352.	3.3	56

JEANETTE E ECKEL-PASSOW

#	Article	IF	CITATIONS
19	Loss of histone H3 lysine 36 trimethylation is associated with an increased risk of renal cell carcinoma-specific death. Modern Pathology, 2016, 29, 34-42.	5.5	55
20	Clear Cell Type A and B Molecular Subtypes in Metastatic Clear Cell Renal Cell Carcinoma: Tumor Heterogeneity and Aggressiveness. European Urology, 2017, 71, 979-985.	1.9	52
21	Sex-specific gene and pathway modeling of inherited glioma risk. Neuro-Oncology, 2019, 21, 71-82.	1.2	52
22	Software comparison for evaluating genomic copy number variation for Affymetrix 6.0 SNP array platform. BMC Bioinformatics, 2011, 12, 220.	2.6	51
23	Molecular profiling of long-term IDH-wildtype glioblastoma survivors. Neuro-Oncology, 2019, 21, 1458-1469.	1.2	47
24	Generative Adversarial Networks to Synthesize Missing T1 and FLAIR MRI Sequences for Use in a Multisequence Brain Tumor Segmentation Model. Radiology, 2021, 299, 313-323.	7.3	46
25	Tissue microarrays: one size does not fit all. Diagnostic Pathology, 2010, 5, 48.	2.0	42
26	Experimental Design and Analysis of Antibody Microarrays: Applying Methods from cDNA Arrays. Cancer Research, 2005, 65, 2985-2989.	0.9	41
27	Loss of PBRM1 and BAP1 expression is less common in non–clear cell renal cell carcinoma than in clear cell renal cell carcinoma. Urologic Oncology: Seminars and Original Investigations, 2015, 33, 23.e9-23.e14.	1.6	40
28	A Heritable Missense Polymorphism in <i>CDKN2A</i> Confers Strong Risk of Childhood Acute Lymphoblastic Leukemia and Is Preferentially Selected during Clonal Evolution. Cancer Research, 2015, 75, 4884-4894.	0.9	38
29	Impact of atopy on risk of glioma: a Mendelian randomisation study. BMC Medicine, 2018, 16, 42.	5.5	38
30	Prevalent Homozygous Deletions of Type I Interferon and Defensin Genes in Human Cancers Associate with Immunotherapy Resistance. Clinical Cancer Research, 2018, 24, 3299-3308.	7.0	37
31	Heterogeneous delivery across the blood-brain barrier limits the efficacy of an EGFR-targeting antibody drug conjugate in glioblastoma. Neuro-Oncology, 2021, 23, 2042-2053.	1.2	37
32	Multicenter Validation of Enhancer of Zeste Homolog 2 Expression as an Independent Prognostic Marker in Localized Clear Cell Renal Cell Carcinoma. Journal of Clinical Oncology, 2017, 35, 3706-3713.	1.6	34
33	Determining the frequency of pathogenic germline variants from exome sequencing in patients with castrate-resistant prostate cancer. BMJ Open, 2016, 6, e010332.	1.9	32
34	Influence of obesity-related risk factors in the aetiology of glioma. British Journal of Cancer, 2018, 118, 1020-1027.	6.4	32
35	Identification of a novel percent mammographic density locus at 12q24. Human Molecular Genetics, 2012, 21, 3299-3305.	2.9	31
36	Multiplex matrix network analysis of protein complexes in the human TCR signalosome. Science Signaling, 2016, 9, rs7.	3.6	30

JEANETTE E ECKEL-PASSOW

#	Article	IF	CITATIONS
37	Urinary mRNA biomarker panel for the detection of urothelial carcinoma. Oncotarget, 2016, 7, 38731-38740.	1.8	30
38	Higher Expression of Topoisomerase II Alpha Is an Independent Marker of Increased Risk of Cancer-specific Death in Patients with Clear Cell Renal Cell Carcinoma. European Urology, 2014, 66, 929-935.	1.9	29
39	Mutational Landscapes of Sequential Prostate Metastases and Matched Patient Derived Xenografts during Enzalutamide Therapy. PLoS ONE, 2015, 10, e0145176.	2.5	26
40	BAP1 and PBRM1 in metastatic clear cell renal cell carcinoma: tumor heterogeneity and concordance with paired primary tumor. BMC Urology, 2017, 17, 19.	1.4	26
41	Transcriptome-Wide Association Study Identifies New Candidate Susceptibility Genes for Glioma. Cancer Research, 2019, 79, 2065-2071.	0.9	26
42	Mendelian randomisation study of the relationship between vitamin D and risk of glioma. Scientific Reports, 2018, 8, 2339.	3.3	23
43	Using germline variants to estimate glioma and subtype risks. Neuro-Oncology, 2019, 21, 451-461.	1.2	23
44	Glioma risk associated with extent of estimated European genetic ancestry in African Americans and Hispanics. International Journal of Cancer, 2020, 146, 739-748.	5.1	23
45	Ageâ€specific genomeâ€wide association study in glioblastoma identifies increased proportion of â€`lower grade glioma'â€like features associated with younger age. International Journal of Cancer, 2018, 143, 2359-2366.	5.1	21
46	Statistical considerations on prognostic models for glioma. Neuro-Oncology, 2016, 18, 609-623.	1.2	20
47	CpGtools: a python package for DNA methylation analysis. Bioinformatics, 2021, 37, 1598-1599.	4.1	19
48	Adult diffuse glioma GWAS by molecular subtype identifies variants in <i>D2HGDH</i> and <i>FAM20C</i> . Neuro-Oncology, 2020, 22, 1602-1613.	1.2	19
49	Somatic expression of ENRAGE is associated with obesity status among patients with clear cell renal cell carcinoma. Carcinogenesis, 2014, 35, 822-827.	2.8	18
50	Genes associated with histopathologic features of triple negative breast tumors predict molecular subtypes. Breast Cancer Research and Treatment, 2016, 157, 117-131.	2.5	18
51	Concordance of PDâ€l and PDâ€l (B7â€H1) in paired primary and metastatic clear cell renal cell carcinoma. Cancer Medicine, 2020, 9, 1152-1160.	2.8	17
52	Coffee consumption and risk of renal cell carcinoma. Cancer Causes and Control, 2017, 28, 857-866.	1.8	16
53	Effects of Heterozygous Variants in the Leptin-Melanocortin Pathway on Roux-en-Y Gastric Bypass Outcomes: a 15-Year Case–Control Study. Obesity Surgery, 2022, 32, 2632-2640.	2.1	15
54	Association of gastric emptying with postprandial appetite and satiety sensations in obesity. Obesity, 2021, 29, 1497-1507.	3.0	13

#	Article	IF	CITATIONS
55	Assessing the clinical use of clear cell renal cell carcinoma molecular subtypes identified by RNA expression analysis1These authors contributed equally to the writing of this article Urologic Oncology: Seminars and Original Investigations, 2015, 33, 68.e17-68.e23.	1.6	10
56	Functional analysis of low-grade glioma genetic variants predicts key target genes and transcription factors. Neuro-Oncology, 2021, 23, 638-649.	1.2	9
57	Statistical analysis of comparative tumor growth repeated measures experiments in the ovarian cancer patient derived xenograft (PDX) setting. Scientific Reports, 2021, 11, 8076.	3.3	9
58	Precision Medicine for Obesity. Digestive Disease Interventions, 2021, 05, 239-248.	0.2	9
59	Molecular subtyping of tumors from patients with familial glioma. Neuro-Oncology, 2018, 20, 810-817.	1.2	8
60	Identification of DNA methylation signatures associated with poor outcome in lower-risk Stage, Size, Grade and Necrosis (SSIGN) score clear cell renal cell cancer. Clinical Epigenetics, 2021, 13, 12.	4.1	8
61	Validation of Gene Expression Signatures to Identify Low-risk Clear-cell Renal Cell Carcinoma Patients at Higher Risk for Disease-related Death. European Urology Focus, 2016, 2, 608-615.	3.1	7
62	Preclinical modeling in glioblastoma patient-derived xenograft (GBM PDX) xenografts to guide clinical development of lisavanbulin—a novel tumor checkpoint controller targeting microtubules. Neuro-Oncology, 2022, 24, 384-395.	1.2	7
63	Pediatric brain tumor cell lines exhibit miRNA-depleted, Y RNA-enriched extracellular vesicles. Journal of Neuro-Oncology, 2022, 156, 269-279.	2.9	7
64	The immunogenetics of viral antigen response is associated with subtype-specific glioma risk and survival. American Journal of Human Genetics, 2022, 109, 1105-1116.	6.2	7
65	Identification of factors associated with duplicate rate in ChIP-seq data. PLoS ONE, 2019, 14, e0214723.	2.5	6
66	RBBP4-p300 axis modulates expression of genes essential for cell survival and is a potential target for therapy in glioblastoma. Neuro-Oncology, 2022, 24, 1261-1272.	1.2	6
67	Inherited genetics of adult diffuse glioma and polygenic risk scores—a review. Neuro-Oncology Practice, 2022, 9, 259-270.	1.6	3
68	Re: Samira A. Brooks, A. Rose Brannon, Joel S. Parker, et al. ClearCode34: A Prognostic Risk Predictor for Localized Clear Cell Renal Cell Carcinoma. Eur Urol 2014;66:77–84. European Urology, 2014, 66, e90-e91.	1.9	2
69	The association of copy number variation and percent mammographic density. BMC Research Notes, 2015, 8, 297.	1.4	2
70	Aberrant Regulation of the LEF-1 Locus in Monoclonal B Cell Lymphocytosis (MBL) and Chronic Lymphocytic Leukemia (CLL): A Possible Role for Epigenetic Regulation Blood, 2009, 114, 669-669.	1.4	2
71	8q24 clear cell renal cell carcinoma germline variant is associated with VHL mutation status and clinical aggressiveness. BMC Urology, 2020, 20, 173.	1.4	1
72	Experimental Design of Preclinical Experiments: Number of PDX Lines versus Subsampling within PDX Lines. Neuro-Oncology, 2021, 23, 2066-2075.	1.2	1

#	Article	IF	CITATIONS
73	Glioma: interaction of acquired and germline genetics. Aging, 2021, 13, 19085-19087.	3.1	1
74	Overexpression of the LEF-1 and TCF4 Transcription Factors in B-CLL: Further Evidence for a Role of the Wnt Signaling Pathway in B-CLL Biology and Leukemogenesis. Blood, 2008, 112, 544-544.	1.4	1
75	TMOD-18. THE PATIENT DERIVED XENOGRAFT NATIONAL RESOURCE: A COMPREHENSIVE COLLECTION OF HIGH-GRADE GLIOMA MODELS FOR PRE-CLINICAL AND TRANSLATIONAL STUDIES. Neuro-Oncology, 2018, 20, vi272-vi272.	1.2	Ο
76	Whole Genome Copy Number Variation Analysis of Chronic Lymphocytic Leukemia (CLL) Cells From Early-Intermediate Stage, High Risk CLL Patients Prior to First Treatment Reveals New Loss of Heterozygosity and Duplication Events in the CLL Genome Blood, 2009, 114, 1265-1265.	1.4	0
77	Complex Interstitial Deletions of 11q and Copy-Neutral Loss of Heterozygosity of 11q Are Detected by Whole Genome Copy Number Variation Analysis of Early-Intermediate Stage, High Risk Chronic Lymphocytic Leukemia Patients Blood, 2009, 114, 1245-1245.	1.4	0