
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5321330/publications.pdf Version: 2024-02-01

IOHN L RINN

#	Article	IF	CITATIONS
1	From genotype to phenotype: genetics of mammalian long non-coding RNAs in vivo. Nature Reviews Genetics, 2022, 23, 229-243.	16.3	53
2	Mosaic cis-regulatory evolution drives transcriptional partitioning of HERVH endogenous retrovirus in the human embryo. ELife, 2022, 11, .	6.0	31
3	Evolutionary divergence of Firre localization and expression. Rna, 2022, , rna.079070.121.	3.5	8
4	An in vivo screen of noncoding loci reveals that <i>Daedalus</i> is a gatekeeper of an Ikaros-dependent checkpoint during haematopoiesis. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	2
5	Identification of human long noncoding RNAs associated with nonalcoholic fatty liver disease and metabolic homeostasis. Journal of Clinical Investigation, 2021, 131, .	8.2	23
6	Myosin 7b is a regulatory long noncoding RNA (lncMYH7b) in the human heart. Journal of Biological Chemistry, 2021, 296, 100694.	3.4	11
7	Defective insulin receptor signaling in hPSCs skews pluripotency and negatively perturbs neural differentiation. Journal of Biological Chemistry, 2021, 296, 100495.	3.4	2
8	Nuclear compartmentalization of TERT mRNA and TUG1 IncRNA is driven by intron retention. Nature Communications, 2021, 12, 3308.	12.8	25
9	Genome-wide binding analysis of 195 DNA binding proteins reveals "reservoir―promoters and human specific SVA-repeat family regulation. PLoS ONE, 2021, 16, e0237055.	2.5	2
10	Genome-wide CRISPR interference screen identifies long non-coding RNA loci required for differentiation and pluripotency. PLoS ONE, 2021, 16, e0252848.	2.5	12
11	Diverse epigenetic mechanisms maintain parental imprints within the embryonic and extraembryonic lineages. Developmental Cell, 2021, 56, 2995-3005.e4.	7.0	33
12	Noncoding RNAs: biology and applications—a Keystone Symposia report. Annals of the New York Academy of Sciences, 2021, 1506, 118-141.	3.8	13
13	Common variants in signaling transcription-factor-binding sites drive phenotypic variability in red blood cell traits. Nature Genetics, 2020, 52, 1333-1345.	21.4	24
14	Mitoregulin Controls β-Oxidation in Human and Mouse Adipocytes. Stem Cell Reports, 2020, 14, 590-602.	4.8	31
15	Expanded encyclopaedias of DNA elements in the human and mouse genomes. Nature, 2020, 583, 699-710.	27.8	1,252
16	The Tug1 IncRNA locus is essential for male fertility. Genome Biology, 2020, 21, 237.	8.8	61
17	Cis and trans effects differentially contribute to the evolution of promoters and enhancers. Genome Biology, 2020, 21, 210.	8.8	35
18	Trans- and cis-acting effects of Firre on epigenetic features of the inactive X chromosome. Nature Communications, 2020, 11, 6053.	12.8	33

#	Article	IF	CITATIONS
19	Single-Cell Profiling of Ebola Virus Disease InÂVivo Reveals Viral and Host Dynamics. Cell, 2020, 183, 1383-1401.e19.	28.9	79
20	Long Noncoding RNAs: Molecular Modalities to Organismal Functions. Annual Review of Biochemistry, 2020, 89, 283-308.	11.1	183
21	RNA is essential for PRC2 chromatin occupancy and function in human pluripotent stem cells. Nature Genetics, 2020, 52, 931-938.	21.4	99
22	The Sox2 transcription factor binds RNA. Nature Communications, 2020, 11, 1805.	12.8	77
23	Resolving mechanisms of immuneâ€mediated disease in primary <scp>CD</scp> 4 T cells. EMBO Molecular Medicine, 2020, 12, e12112.	6.9	30
24	The Firre locus produces a trans-acting RNA molecule that functions in hematopoiesis. Nature Communications, 2019, 10, 5137.	12.8	60
25	Linking long noncoding RNA to drug resistance. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 21963-21965.	7.1	11
26	Single-cell imaging reveals unexpected heterogeneity of telomerase reverse transcriptase expression across human cancer cell lines. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 18488-18497.	7.1	27
27	RNA-seq as a tool for evaluating human embryo competence. Genome Research, 2019, 29, 1705-1718.	5.5	31
28	High-throughput functional analysis of IncRNA core promoters elucidates rules governing tissue specificity. Genome Research, 2019, 29, 344-355.	5.5	100
29	llluminating Genomic Dark Matter with RNA Imaging. Cold Spring Harbor Perspectives in Biology, 2019, 11, a032094.	5.5	17
30	Interchromosomal interactions: A genomic love story of kissing chromosomes. Journal of Cell Biology, 2019, 218, 27-38.	5.2	98
31	Differential contribution of steadyâ€state <scp>RNA</scp> and active transcription in chromatin organization. EMBO Reports, 2019, 20, e48068.	4.5	61
32	In vivo Firre and Dxz4 deletion elucidates roles for autosomal gene regulation. ELife, 2019, 8, .	6.0	18
33	Inter-chromosomal Contact Properties in Live-Cell Imaging and in Hi-C. Molecular Cell, 2018, 69, 1039-1045.e3.	9.7	60
34	A TAD boundary is preserved upon deletion of the CTCF-rich Firre locus. Nature Communications, 2018, 9, 1444.	12.8	97
35	An Integrated Genome-wide CRISPRa Approach to Functionalize IncRNAs in Drug Resistance. Cell, 2018, 173, 649-664.e20.	28.9	238
36	A CLK3-HMGA2 Alternative Splicing Axis Impacts Human Hematopoietic Stem Cell Molecular Identity throughout Development. Cell Stem Cell, 2018, 22, 575-588.e7.	11.1	40

#	Article	IF	CITATIONS
37	Highâ€throughput identification of <scp>RNA</scp> nuclear enrichment sequences. EMBO Journal, 2018, 37, .	7.8	99
38	Genetic determinants and epigenetic effects of pioneer-factor occupancy. Nature Genetics, 2018, 50, 250-258.	21.4	139
39	Spatiotemporal allele organization by allele-specific CRISPR live-cell imaging (SNP-CLINC). Nature Structural and Molecular Biology, 2018, 25, 176-184.	8.2	75
40	Genetic Models Reveal cis and trans Immune-Regulatory Activities for lincRNA-Cox2. Cell Reports, 2018, 25, 1511-1524.e6.	6.4	73
41	Enhancers in the Peril lincRNA locus regulate distant but not local genes. Genome Biology, 2018, 19, 219.	8.8	20
42	Aligning Single-Cell Developmental and Reprogramming Trajectories Identifies Molecular Determinants of Myogenic Reprogramming Outcome. Cell Systems, 2018, 7, 258-268.e3.	6.2	65
43	Reorganization of <i>interâ€</i> chromosomal interactions in the 2q37â€deletion syndrome. EMBO Journal, 2018, 37, .	7.8	13
44	Dynamic changes during the treatment of pancreatic cancer. Oncotarget, 2018, 9, 14764-14790.	1.8	21
45	Chromatin environment, transcriptional regulation, and splicing distinguish lincRNAs and mRNAs. Genome Research, 2017, 27, 27-37.	5.5	207
46	Group 1 Innate Lymphoid Cell Lineage Identity Is Determined by a cis-Regulatory Element Marked by a Long Non-coding RNA. Immunity, 2017, 47, 435-449.e8.	14.3	57
47	p53 regulates enhancer accessibility and activity in response to DNA damage. Nucleic Acids Research, 2017, 45, 9889-9900.	14.5	61
48	<i>Neat1</i> is a p53-inducible lincRNA essential for transformation suppression. Genes and Development, 2017, 31, 1095-1108.	5.9	179
49	IncRNA requirements for mouse acute myeloid leukemia and normal differentiation. ELife, 2017, 6, .	6.0	54
50	Live-cell mapping of organelle-associated RNAs via proximity biotinylation combined with protein-RNA crosslinking. ELife, 2017, 6, .	6.0	143
51	LINC00520 is induced by Src, STAT3, and PI3K and plays a functional role in breast cancer. Oncotarget, 2016, 7, 81981-81994.	1.8	48
52	Function and evolution of local repeats in the Firre locus. Nature Communications, 2016, 7, 11021.	12.8	75
53	A distant trophoblast-specific enhancer controls HLA-G expression at the maternal–fetal interface. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 5364-5369.	7.1	90
54	The long non-coding RNA Morrbid regulates Bim and short-lived myeloid cell lifespan. Nature, 2016, 537, 239-243.	27.8	234

#	Article	IF	CITATIONS
55	InÂVivo Characterization of Linc-p21 Reveals Functional cis -Regulatory DNA Elements. Cell Reports, 2016, 16, 2178-2186.	6.4	94
56	Integrative analyses reveal a long noncoding RNA-mediated sponge regulatory network in prostate cancer. Nature Communications, 2016, 7, 10982.	12.8	267
57	Widespread RNA binding by chromatin-associated proteins. Genome Biology, 2016, 17, 28.	8.8	197
58	Basset: learning the regulatory code of the accessible genome with deep convolutional neural networks. Genome Research, 2016, 26, 990-999.	5.5	790
59	"Cat's Cradling―the 3D Genome by the Act of LncRNA Transcription. Molecular Cell, 2016, 62, 657-664.	9.7	128
60	Transcriptional silencing of long noncoding RNA GNG12-AS1 uncouples its transcriptional and product-related functions. Nature Communications, 2016, 7, 10406.	12.8	77
61	Diverse Phenotypes and Specific Transcription Patterns in Twenty Mouse Lines with Ablated LincRNAs. PLoS ONE, 2015, 10, e0125522.	2.5	51
62	Multiplexable, locus-specific targeting of long RNAs with CRISPR-Display. Nature Methods, 2015, 12, 664-670.	19.0	268
63	The histone chaperone CAF-1 safeguards somatic cell identity. Nature, 2015, 528, 218-224.	27.8	244
64	Discovery and annotation of long noncoding RNAs. Nature Structural and Molecular Biology, 2015, 22, 5-7.	8.2	581
65	DeCoN: Genome-wide Analysis of InÂVivo Transcriptional Dynamics during Pyramidal Neuron Fate Selection in Neocortex. Neuron, 2015, 85, 275-288.	8.1	248
66	Visualization of IncRNA by Single-Molecule Fluorescence In Situ Hybridization. Methods in Molecular Biology, 2015, 1262, 3-19.	0.9	68
67	Strand-specific RNA sequencing in Plasmodium falciparum malaria identifies developmentally regulated long non-coding RNA and circular RNA. BMC Genomics, 2015, 16, 454.	2.8	160
68	Spatiotemporal expression and transcriptional perturbations by long noncoding RNAs in the mouse brain. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 6855-6862.	7.1	152
69	Integrative genomic analysis reveals widespread enhancer regulation by p53 in response to DNA damage. Nucleic Acids Research, 2015, 43, 4447-4462.	14.5	84
70	Integrative Analyses of Human Reprogramming Reveal Dynamic Nature of Induced Pluripotency. Cell, 2015, 162, 412-424.	28.9	206
71	Localization and abundance analysis of human IncRNAs at single-cell and single-molecule resolution. Genome Biology, 2015, 16, 20.	8.8	565
72	Targeted disruption of DNMT1, DNMT3A and DNMT3B in human embryonic stem cells. Nature Genetics, 2015, 47, 469-478.	21.4	409

#	Article	IF	CITATIONS
73	Linking RNA biology to IncRNAs. Genome Research, 2015, 25, 1456-1465.	5.5	158
74	A comparison of genetically matched cell lines reveals the equivalence of human iPSCs and ESCs. Nature Biotechnology, 2015, 33, 1173-1181.	17.5	235
75	Genome-wide RNA-Seq of Human Motor Neurons Implicates Selective ER Stress Activation in Spinal Muscular Atrophy. Cell Stem Cell, 2015, 17, 569-584.	11.1	108
76	Mechanisms of Long Non-coding RNAs in Mammalian Nervous System Development, Plasticity, Disease, and Evolution. Neuron, 2015, 88, 861-877.	8.1	366
77	Silent pericentromeric repeats speak out. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 15008-15009.	7.1	8
78	Dissecting neural differentiation regulatory networks through epigenetic footprinting. Nature, 2015, 518, 355-359.	27.8	172
79	Transposable elements modulate human RNA abundance and splicing via specific RNA-protein interactions. Genome Biology, 2014, 15, 537.	8.8	88
80	'Lnc'-ing enhancers to MYC regulation. Cell Research, 2014, 24, 643-644.	12.0	23
81	Gene co-regulation by Fezf2 selects neurotransmitter identity and connectivity of corticospinal neurons. Nature Neuroscience, 2014, 17, 1046-1054.	14.8	121
82	RNase-mediated protein footprint sequencing reveals protein-binding sites throughout the human transcriptome. Genome Biology, 2014, 15, R3.	9.6	76
83	The dynamics and regulators of cell fate decisions are revealed by pseudotemporal ordering of single cells. Nature Biotechnology, 2014, 32, 381-386.	17.5	4,652
84	'Oming in on RNA–protein interactions. Genome Biology, 2014, 15, 401.	9.6	32
85	Topological organization of multichromosomal regions by the long intergenic noncoding RNA Firre. Nature Structural and Molecular Biology, 2014, 21, 198-206.	8.2	565
86	The multilayered complexity of ceRNA crosstalk and competition. Nature, 2014, 505, 344-352.	27.8	3,223
87	lncRNAs: Linking RNA to Chromatin. Cold Spring Harbor Perspectives in Biology, 2014, 6, a018614-a018614.	5.5	118
88	RNA and dynamic nuclear organization. Science, 2014, 345, 1240-1241.	12.6	119
89	DNMT1-interacting RNAs block gene-specific DNA methylation. Nature, 2013, 503, 371-376.	27.8	446
90	Poly-combing the genome for RNA. Nature Structural and Molecular Biology, 2013, 20, 1344-1346.	8.2	6

#	Article	IF	CITATIONS
91	Scaffold function of long non-coding RNA HOTAIR in protein ubiquitination. Nature Communications, 2013, 4, 2939.	12.8	382
92	Sixty years of genome biology. Genome Biology, 2013, 14, 113.	9.6	6
93	Differential analysis of gene regulation at transcript resolution with RNA-seq. Nature Biotechnology, 2013, 31, 46-53.	17.5	3,256
94	Control of somatic tissue differentiation by the long non-coding RNA TINCR. Nature, 2013, 493, 231-235.	27.8	810
95	Peptidomic discovery of short open reading frame–encoded peptides in human cells. Nature Chemical Biology, 2013, 9, 59-64.	8.0	529
96	Identifying Recent Adaptations in Large-Scale Genomic Data. Cell, 2013, 152, 703-713.	28.9	325
97	Long noncoding RNAs regulate adipogenesis. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 3387-3392.	7.1	371
98	Ribosome profiling reveals resemblance between long non-coding RNAs and 5′ leaders of coding RNAs. Development (Cambridge), 2013, 140, 2828-2834.	2.5	237
99	Transcriptional and Epigenetic Dynamics during Specification of Human Embryonic Stem Cells. Cell, 2013, 153, 1149-1163.	28.9	419
100	Pint lincRNA connects the p53 pathway with epigenetic silencing by the Polycomb repressive complex 2. Genome Biology, 2013, 14, R104.	9.6	224
101	<i>linc-HOXA1</i> is a noncoding RNA that represses <i>Hoxa1</i> transcription in <i>cis</i> . Genes and Development, 2013, 27, 1260-1271.	5.9	120
102	Multiple knockout mouse models reveal lincRNAs are required for life and brain development. ELife, 2013, 2, e01749.	6.0	609
103	Suppression of progenitor differentiation requires the long noncoding RNA ANCR. Genes and Development, 2012, 26, 338-343.	5.9	391
104	Systematic identification of long noncoding RNAs expressed during zebrafish embryogenesis. Genome Research, 2012, 22, 577-591.	5.5	809
105	Computational analysis of noncoding RNAs. Wiley Interdisciplinary Reviews RNA, 2012, 3, 759-778.	6.4	50
106	Identification of proteins binding coding and non-coding human RNAs using protein microarrays. BMC Genomics, 2012, 13, 633.	2.8	35
107	Programming human pluripotent stem cells into white and brown adipocytes. Nature Cell Biology, 2012, 14, 209-219.	10.3	209
108	Transposable elements reveal a stem cell-specific class of long noncoding RNAs. Genome Biology, 2012, 13, R107.	9.6	462

#	Article	IF	CITATIONS
109	Differential gene and transcript expression analysis of RNA-seq experiments with TopHat and Cufflinks. Nature Protocols, 2012, 7, 562-578.	12.0	11,433
110	Modular regulatory principles of large non-coding RNAs. Nature, 2012, 482, 339-346.	27.8	2,036
111	Genome Regulation by Long Noncoding RNAs. Annual Review of Biochemistry, 2012, 81, 145-166.	11.1	3,665
112	Targeted RNA sequencing reveals the deep complexity of the human transcriptome. Nature Biotechnology, 2012, 30, 99-104.	17.5	437
113	As we come to the end of 2011, several members of the Genome Biology Editorial Board give their views on the state of play in genomics. Genome Biology, 2011, 12, 137.	9.6	0
114	Integrative annotation of human large intergenic noncoding RNAs reveals global properties and specific subclasses. Genes and Development, 2011, 25, 1915-1927.	5.9	3,208
115	RNA–protein interactions in human health and disease. Seminars in Cell and Developmental Biology, 2011, 22, 359-365.	5.0	131
116	Improving RNA-Seq expression estimates by correcting for fragment bias. Genome Biology, 2011, 12, R22.	9.6	1,164
117	A global transcriptional analysis of Plasmodium falciparum malaria reveals a novel family of telomere-associated lncRNAs. Genome Biology, 2011, 12, R56.	9.6	124
118	lincRNAs act in the circuitry controlling pluripotency and differentiation. Nature, 2011, 477, 295-300.	27.8	1,749
119	Non-coding RNAs as regulators of embryogenesis. Nature Reviews Genetics, 2011, 12, 136-149.	16.3	558
120	To repress or not to repress: This is the guardian's question. Trends in Cell Biology, 2011, 21, 344-353.	7.9	52
121	The Reality of Pervasive Transcription. PLoS Biology, 2011, 9, e1000625.	5.6	380
122	Chromatin signature of embryonic pluripotency is established during genome activation. Nature, 2010, 464, 922-926.	27.8	340
123	Long non-coding RNA HOTAIR reprograms chromatin state to promote cancer metastasis. Nature, 2010, 464, 1071-1076.	27.8	4,648
124	Genome-wide measurement of RNA secondary structure in yeast. Nature, 2010, 467, 103-107.	27.8	713
125	Ab initio reconstruction of cell type–specific transcriptomes in mouse reveals the conserved multi-exonic structure of lincRNAs. Nature Biotechnology, 2010, 28, 503-510.	17.5	1,251
126	Large intergenic non-coding RNA-RoR modulates reprogramming of human induced pluripotent stem cells. Nature Genetics, 2010, 42, 1113-1117.	21.4	902

#	Article	IF	CITATIONS
127	DNA methylation and epigenetic control of cellular differentiation. Cell Cycle, 2010, 9, 3880-3883.	2.6	127
128	The Emerging Non-Coding RNA World. Modecular Medicine and Medicinal, 2010, , 17-49.	0.4	1
129	Large non-coding RNAs: missing links in cancer?. Human Molecular Genetics, 2010, 19, R152-R161.	2.9	466
130	RNA traffic control of chromatin complexes. Current Opinion in Genetics and Development, 2010, 20, 142-148.	3.3	161
131	A Large Intergenic Noncoding RNA Induced by p53 Mediates Global Gene Repression in the p53 Response. Cell, 2010, 142, 409-419.	28.9	1,919
132	Lin28a transgenic mice manifest size and puberty phenotypes identified in human genetic association studies. Nature Genetics, 2010, 42, 626-630.	21.4	282
133	Unbiased Reconstruction of a Mammalian Transcriptional Network Mediating Pathogen Responses. Science, 2009, 326, 257-263.	12.6	473
134	HOXA3 Modulates Injury-Induced Mobilization and Recruitment of Bone Marrow-Derived Cells. Stem Cells, 2009, 27, 1654-1665.	3.2	37
135	Chromatin signature reveals over a thousand highly conserved large non-coding RNAs in mammals. Nature, 2009, 458, 223-227.	27.8	3,801
136	Many human large intergenic noncoding RNAs associate with chromatin-modifying complexes and affect gene expression. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 11667-11672.	7.1	2,709
137	Hierarchical Maintenance of MLL Myeloid Leukemia Stem Cells Employs a Transcriptional Program Shared with Embryonic Rather Than Adult Stem Cells. Cell Stem Cell, 2009, 4, 129-140.	11.1	326
138	A Systems Biology Approach to Anatomic Diversity of Skin. Journal of Investigative Dermatology, 2008, 128, 776-782.	0.7	78
139	Myo2p, a class V myosin in budding yeast, associates with a large ribonucleic acid–protein complex that contains mRNAs and subunits of the RNA-processing body. Rna, 2008, 14, 491-502.	3.5	29
140	A dermal <i>HOX</i> transcriptional program regulates site-specific epidermal fate. Genes and Development, 2008, 22, 303-307.	5.9	165
141	Mechanisms of an autoimmunity syndrome in mice caused by a dominant mutation in Aire. Journal of Clinical Investigation, 2008, 118, 1712-1726.	8.2	143
142	Genome-Wide Analysis of KAP1 Binding Suggests Autoregulation of KRAB-ZNFs. PLoS Genetics, 2007, 3, e89.	3.5	166
143	Ras/Erk MAPK Signaling in Epidermal Homeostasis and Neoplasia. Cell Cycle, 2007, 6, 2928-2931.	2.6	119
144	Functional Demarcation of Active and Silent Chromatin Domains in Human HOX Loci by Noncoding RNAs. Cell, 2007, 129, 1311-1323.	28.9	3,835

#	Article	IF	CITATIONS
145	A histone H3 lysine 27 demethylase regulates animal posterior development. Nature, 2007, 449, 689-694.	27.8	718
146	Spontaneous autoimmunity prevented by thymic expression of a single self-antigen. Journal of Experimental Medicine, 2006, 203, 2727-2735.	8.5	240
147	Anatomic Demarcation by Positional Variation in Fibroblast Gene Expression Programs. PLoS Genetics, 2006, 2, e119.	3.5	413
148	Design Issues in Implementing a Portable Sample Tracking and Analysis Research Support (STARS) System for PCR Based Microarray Research. , 2006, , .		0
149	Sexual dimorphism in mammalian gene expression. Trends in Genetics, 2005, 21, 298-305.	6.7	231
150	CREB Binds to Multiple Loci on Human Chromosome 22. Molecular and Cellular Biology, 2004, 24, 3804-3814.	2.3	160
151	Clobal Identification of Human Transcribed Sequences with Genome Tiling Arrays. Science, 2004, 306, 2242-2246.	12.6	983
152	Major Molecular Differences between Mammalian Sexes Are Involved in Drug Metabolism and Renal Function. Developmental Cell, 2004, 6, 791-800.	7.0	151
153	The transcriptional activity of human Chromosome 22. Genes and Development, 2003, 17, 529-540.	5.9	253
154	Distribution of NF-κB-binding sites across human chromosome 22. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 12247-12252.	7.1	298
155	Expression of Shal potassium channel subunits in the adult and developing cochlear nucleus of the mouse. Hearing Research, 2000, 147, 31-45.	2.0	18