
Eduardo Santero

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5320722/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The integration host factor stimulates interaction of RNA polymerase with NIFA, the transcriptional activator for nitrogen fixation operons. Cell, 1990, 63, 11-22.	28.9	371
2	Growth phase-dependent expression of the Pseudomonas putida KT2440 transcriptional machinery analysed with a genome-wide DNA microarray. Environmental Microbiology, 2006, 8, 165-177.	3.8	123
3	Role of integration host factor in stimulating transcription from the σ54-dependent nifH promoter. Journal of Molecular Biology, 1992, 227, 602-620.	4.2	112
4	In vivo gene regulation in Salmonella spp. by a salicylate-dependent control circuit. Nature Methods, 2007, 4, 937-942.	19.0	84
5	Transcriptome Analysis of <i>Pseudomonas putida</i> in Response to Nitrogen Availability. Journal of Bacteriology, 2008, 190, 416-420.	2.2	75
6	Regulation of the Pseudomonas sp. Strain ADP Cyanuric Acid Degradation Operon. Journal of Bacteriology, 2005, 187, 155-167.	2.2	72
7	NtrC-Dependent Regulatory Network for Nitrogen Assimilation in <i>Pseudomonas putida</i> . Journal of Bacteriology, 2009, 191, 6123-6135.	2.2	70
8	Nitrogen Control of Atrazine Utilization in Pseudomonas sp. StrainADP. Applied and Environmental Microbiology, 2003, 69, 6987-6993.	3.1	69
9	The LysRâ€ŧype regulator AtzR binding site: DNA sequences involved in activation, repression and cyanuric acidâ€dependent repositioning. Molecular Microbiology, 2007, 66, 410-427.	2.5	66
10	Atrazine biodegradation in the lab and in the field: enzymatic activities and gene regulation. Microbial Biotechnology, 2009, 2, 178-185.	4.2	64
11	Hierarchical management of carbon sources is regulated similarly by the CbrA/B systems in Pseudomonas aeruginosa and Pseudomonas putida. Microbiology (United Kingdom), 2014, 160, 2243-2252.	1.8	62
12	Identification and Functional Characterization of Sphingomonas macrogolitabida Strain TFA Genes Involved in the First Two Steps of the Tetralin Catabolic Pathway. Journal of Bacteriology, 2003, 185, 2026-2030.	2.2	53
13	Engineering Salmonella as intracellular factory for effective killing of tumour cells. Scientific Reports, 2016, 6, 30591.	3.3	53
14	Taxonomic and Functional Metagenomic Profiling of the Microbial Community in the Anoxic Sediment of a Sub-saline Shallow Lake (Laguna de Carrizo, Central Spain). Microbial Ecology, 2011, 62, 824-837.	2.8	51
15	Proteomic and transcriptional characterization of aromatic degradation pathways in Rhodoccocus sp. strainâ€TFB. Proteomics, 2006, 6, S119-S132.	2.2	49
16	Lack of CbrB in <i>Pseudomonas putida</i> affects not only amino acids metabolism but also different stress responses and biofilm development. Environmental Microbiology, 2010, 12, 1748-1761.	3.8	46
17	Genomic analysis of the nitrate-respiring Sphingopyxis granuli (formerly Sphingomonas) Tj ETQq1 1 0.784314 rg	BT/Qverlc	ock 10 Tf 50
18	Regulation of the atrazine-degradative genes in Pseudomonas sp. strain ADP. FEMS Microbiology	1.8	42

Letters, 2010, 310, 1-8.

EDUARDO SANTERO

#	Article	IF	CITATIONS
19	Transcriptional activation of the <scp>CrcZ</scp> and <scp>CrcY</scp> regulatory <scp>RNAs</scp> by the <scp>CbrB</scp> response regulator in <i><scp>P</scp>seudomonas putida</i> . Molecular Microbiology, 2013, 89, 189-205.	2.5	40
20	Genetic Analysis of Biodegradation of Tetralin by a <i>Sphingomonas</i> Strain. Applied and Environmental Microbiology, 1999, 65, 1806-1810.	3.1	40
21	Combination of degradation pathways for naphthalene utilization in <scp><i>R</i></scp> <i>hodococcus</i> sp. strain <scp>TFB</scp> . Microbial Biotechnology, 2014, 7, 100-113.	4.2	38
22	Development of Genetic Tools for the Manipulation of the Planctomycetes. Frontiers in Microbiology, 2016, 7, 914.	3.5	38
23	Regulation of glutamate dehydrogenase expression in <i>Pseudomonas putida</i> results from its direct repression by NtrC under nitrogenâ€imiting conditions. Molecular Microbiology, 2010, 78, 305-319.	2.5	33
24	Functional Metagenomics of a Biostimulated Petroleum-Contaminated Soil Reveals an Extraordinary Diversity of Extradiol Dioxygenases. Applied and Environmental Microbiology, 2016, 82, 2467-2478.	3.1	33
25	Identification of an Extradiol Dioxygenase Involved in Tetralin Biodegradation: Gene Sequence Analysis and Purification and Characterization of the Gene Product. Journal of Bacteriology, 2000, 182, 789-795.	2.2	31
26	A new generation of vectors with increased induction ratios by overimposing a second regulatory level by attenuation. Nucleic Acids Research, 2005, 33, e169-e169.	14.5	30
27	Stable long-term indigo production by overexpression of dioxygenase genes using a chromosomal integrated cascade expression circuit. Journal of Biotechnology, 2005, 116, 113-124.	3.8	30
28	ThnY Is a Ferredoxin Reductase-like Iron-Sulfur Flavoprotein That Has Evolved to Function as a Regulator of Tetralin Biodegradation Gene Expression. Journal of Biological Chemistry, 2011, 286, 1709-1718.	3.4	24
29	Complex interplay between the LysRâ€ŧype regulator AtzR and its binding site mediates <i>atzDEF</i> activation in response to two distinct signals. Molecular Microbiology, 2010, 76, 331-347.	2.5	22
30	Molecular and biochemical characterization of the tetralin degradation pathway in <i>Rhodococcus</i> sp. strain TFB. Microbial Biotechnology, 2009, 2, 262-273.	4.2	21
31	Improved Expression Systems for Regulated Expression in Salmonella Infecting Eukaryotic Cells. PLoS ONE, 2011, 6, e23055.	2.5	21
32	Activation and repression of a σ ^N â€dependent promoter naturally lacking upstream activation sequences. Molecular Microbiology, 2009, 73, 419-433.	2.5	20
33	Isolation and genomic characterization of the ibuprofenâ€degrading bacterium <i>Sphingomonas</i> strain <scp>MPO218</scp> . Environmental Microbiology, 2021, 23, 267-280.	3.8	20
34	Improved cytotoxic effects of S almonella â€producing cytosine deaminase in tumour cells. Microbial Biotechnology, 2015, 8, 169-176.	4.2	18
35	Integrated Response to Inducers by Communication between a Catabolic Pathway and Its Regulatory System. Journal of Bacteriology, 2007, 189, 3768-3775.	2.2	17
36	Coâ€ordinated regulation of two divergent promoters through higherâ€order complex formation by the LysRâ€ŧype regulator ThnR. Molecular Microbiology, 2009, 73, 1086-1100.	2.5	17

Eduardo Santero

#	Article	IF	CITATIONS
37	Distinct roles for NtrC and GlnK in nitrogen regulation of the <i>Pseudomonas</i> sp. strain ADP cyanuric acid utilization operon. FEMS Microbiology Letters, 2009, 300, 222-229.	1.8	17
38	Identification of a complete dibenzothiophene biodesulfurization operon and its regulator by functional metagenomics. Environmental Microbiology, 2020, 22, 91-106.	3.8	17
39	Tetralin-Induced and ThnR-Regulated Aldehyde Dehydrogenase and β-Oxidation Genes in Sphingomonas macrogolitabida Strain TFA. Applied and Environmental Microbiology, 2010, 76, 110-118.	3.1	16
40	Transcriptional Organization and Regulatory Elements of a Pseudomonas sp. Strain ADP Operon Encoding a LysR-Type Regulator and a Putative Solute Transport System. Journal of Bacteriology, 2012, 194, 6560-6573.	2.2	16
41	Novel Tools to Analyze the Function of Salmonella Effectors Show That SvpB Ectopic Expression Induces Cell Cycle Arrest in Tumor Cells. PLoS ONE, 2013, 8, e78458.	2.5	16
42	Unraveling the role of the CbrA histidine kinase in the signal transduction of the CbrAB two-component system in Pseudomonas putida. Scientific Reports, 2019, 9, 9110.	3.3	16
43	An <scp>A</scp> â€tract at the <scp>AtzR</scp> binding site assists <scp>DNA</scp> binding, inducerâ€dependent repositioning and transcriptional activation of the <scp>P<i>atzDEF</i></scp> promoter. Molecular Microbiology, 2013, 90, 72-87.	2.5	15
44	The Regulatory Hierarchy Following Signal Integration by the CbrAB Two-Component System: Diversity of Responses and Functions. Genes, 2022, 13, 375.	2.4	13
45	Site-directed mutagenesis of an extradiol dioxygenase involved in tetralin biodegradation identifies residues important for activity or substrate specificity. Microbiology (United Kingdom), 2003, 149, 1559-1567.	1.8	12
46	Glutamate Dehydrogenases: Enzymology, Physiological Role and Biotechnological Relevance. , 0, , .		12
47	Harnessing the power of microbial metabolism. Current Opinion in Microbiology, 2016, 31, 63-69.	5.1	11
48	SuhB, a small non oding RNA involved in catabolite repression of tetralin degradation genes in <i>Sphingopyxis granuli</i> strain TFA. Environmental Microbiology, 2018, 20, 3671-3683.	3.8	11
49	Biodegradation of Tetralin: Genomics, Gene Function and Regulation. Genes, 2019, 10, 339.	2.4	11
50	The CbrB Regulon: Promoter dissection reveals novel insights into the CbrAB expression network in Pseudomonas putida. PLoS ONE, 2018, 13, e0209191.	2.5	10
51	Extracytoplasmic Function σ Factors as Tools for Coordinating Stress Responses. International Journal of Molecular Sciences, 2021, 22, 3900.	4.1	10
52	Genetic Characterization of the Ibuprofen-Degradative Pathway of Rhizorhabdus wittichii MPO218. Applied and Environmental Microbiology, 2022, 88, .	3.1	10
53	Involvement of a Putative Cyclic AMP Receptor Protein (CRP)-Like Binding Sequence and a CRP-Like Protein in Glucose-Mediated Catabolite Repression of <i>thn</i> Genes in Rhodococcus sp. Strain TFB. Applied and Environmental Microbiology, 2012, 78, 5460-5462.	3.1	7
54	Redox proteins of hydroxylating bacterial dioxygenases establish a regulatory cascade that prevents gratuitous induction of tetralin biodegradation genes. Scientific Reports, 2016, 6, 23848.	3.3	7

Eduardo Santero

#	Article	IF	CITATIONS
55	Genetic dissection of independent and cooperative transcriptional activation by the LysR-type activator ThnR at close divergent promoters. Scientific Reports, 2016, 6, 24538.	3.3	7
56	The response of Sphingopyxis granuli strain TFA to the hostile anoxic condition. Scientific Reports, 2019, 9, 6297.	3.3	7
57	Two paralogous EcfG I_f factors hierarchically orchestrate the activation of the General Stress Response in Sphingopyxis granuli TFA. Scientific Reports, 2020, 10, 5177.	3.3	7
58	Characterization of a <scp> <i>dszEABC</i> </scp> operon providing fast growth on dibenzothiophene and construction of broadâ€hostâ€range biodesulfurization catalysts. Environmental Microbiology, 2022, , .	3.8	7
59	A <i>Pseudomonas putida cbrB</i> transposon insertion mutant displays a biofilm hyperproducing phenotype that is resistant to dispersal. Environmental Microbiology Reports, 2016, 8, 622-629.	2.4	6
60	Development of an inducible lytic system for functional metagenomic screening. Scientific Reports, 2019, 9, 3887.	3.3	6
61	The Ferredoxin ThnA3 Negatively Regulates Tetralin Biodegradation Gene Expression via ThnY, a Ferredoxin Reductase That Functions as a Regulator of the Catabolic Pathway. PLoS ONE, 2013, 8, e73910.	2.5	6
62	Involvement of poly(3â€hydroxybutyrate) synthesis in catabolite repression of tetralin biodegradation genes in <i>Sphingomonas macrogolitabida</i> strain TFA. Environmental Microbiology Reports, 2011, 3, 627-631.	2.4	5
63	Engineered Salmonella allows real-time heterologous gene expression monitoring within infected zebrafish embryos. Journal of Biotechnology, 2012, 157, 413-416.	3.8	5
64	Mechanism of Antiactivation at the Pseudomonas sp. Strain ADP σ ^N -Dependent P <i>atzT</i> Promoter. Applied and Environmental Microbiology, 2016, 82, 4350-4362.	3.1	4
65	Genetic evidence of a high-affinity cyanuric acid transport system inPseudomonassp. ADP. FEMS Microbiology Letters, 2014, 352, 150-156.	1.8	3
66	Identification of two fnr genes and characterisation of their role in the anaerobic switch in Sphingopyxis granuli strain TFA. Scientific Reports, 2020, 10, 21019.	3.3	2
67	The functional differences between paralogous regulators define the control of the general stress response in <i>Sphingopyxis granuli</i> <scp>TFA</scp> . Environmental Microbiology, 2022, 24, 1918-1931.	3.8	2
68	Detection by metagenomic functional analysis and improvement by experimental evolution of β-lactams resistance genes present in oil contaminated soils. Scientific Reports, 2022, 12, .	3.3	2
69	Understanding the metabolism of the tetralin degrader Sphingopyxis granuli strain TFA through genome-scale metabolic modelling. Scientific Reports, 2020, 10, 8651.	3.3	1
70	REGULATION OF THE ATRAZINE DEGRADATIVE PATHWAY IN Pseudomonas. , 2007, , 31-39.		0
71	ThnY is a ferredoxin reductase-like iron-sulfur flavoprotein that has evolved to function as a regulator of tetralin biodegradation gene expression Journal of Biological Chemistry, 2012, 287, 27451.	3.4	Ο
72	Molecular Methods to Analyze the Effect of Proteins Expressed by Salmonella During Its Intracellular Stage. Methods in Molecular Biology, 2018, 1734, 55-70.	0.9	0