Thomas Salez

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/532059/publications.pdf

Version: 2024-02-01

		331670	3	30143
80	1,552	21		37
papers	citations	h-index		g-index
81	81	81		1546

times ranked

citing authors

docs citations

all docs

#	Article	IF	CITATIONS
1	Soft-lubrication interactions between a rigid sphere and an elastic wall. Journal of Fluid Mechanics, 2022, 933, .	3.4	12
2	Contactless Rheology of Soft Gels Over a Broad Frequency Range. Physical Review Applied, 2022, 17, .	3.8	5
3	Mechanical properties of 2D aggregates of oil droplets as model mono-crystals. Soft Matter, 2021, 17, 1194-1201.	2.7	4
4	Capillary levelling of immiscible bilayer films. Journal of Fluid Mechanics, 2021, 911, .	3.4	3
5	Growth Mechanism of Polymer Membranes Obtained by H-Bonding Across Immiscible Liquid Interfaces. ACS Macro Letters, 2021, 10, 204-209.	4.8	5
6	Nonlinear amplification of adhesion forces in interleaved books. European Physical Journal E, 2021, 44, 71.	1.6	1
7	Time dependence of advection-diffusion coupling for nanoparticle ensembles. Physical Review Fluids, 2021, 6, .	2.5	9
8	Une force de portance élastohydrodynamique en matière molle. , 2021, , 10-15.	0.1	0
9	Contactless rheology of finite-size air-water interfaces. Physical Review Research, 2021, 3, .	3.6	9
10	Stochastic inference of surface-induced effects using Brownian motion. Physical Review Research, $2021, 3, .$	3.6	4
11	Universal self-similar attractor in the bending-driven levelling of thin viscous films. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2021, 477, .	2.1	3
12	Dewetting of a thin polymer film under shear. Polymer, 2021, 235, 124283.	3.8	4
13	Nanobubble-induced flow of immersed glassy polymer films. Physical Review Fluids, 2021, 6, .	2.5	3
14	Microscopic Picture of Erosion and Sedimentation Processes in Dense Granular Flows. Physical Review Letters, 2020, 125, 208002.	7.8	3
15	Axisymmetric Stokes flow due to a point-force singularity acting between two coaxially positioned rigid no-slip disks. Journal of Fluid Mechanics, 2020, 904, .	3.4	6
16	Symmetrization of Thin Freestanding Liquid Films via a Capillary-Driven Flow. Physical Review Letters, 2020, 124, 184502.	7.8	6
17	Cooperative strings and glassy dynamics in various confined geometries. Physical Review E, 2020, 101, 032122.	2.1	5
18	Rotation of a submerged finite cylinder moving down a soft incline. Soft Matter, 2020, 16, 4000-4007.	2.7	10

#	Article	IF	Citations
19	Direct Measurement of the Elastohydrodynamic Lift Force at the Nanoscale. Physical Review Letters, 2020, 124, 054502.	7.8	21
20	Using <i>M</i> _w Dependence of Surface Dynamics of Glassy Polymers to Probe the Length Scale of Free-Surface Mobility. Macromolecules, 2020, 53, 1084-1089.	4.8	13
21	Rearrangement of two dimensional aggregates of droplets under compression: Signatures of the energy landscape from crystal to glass. Physical Review Research, 2020, 2, .	3.6	8
22	Lift induced by slip inhomogeneities in lubricated contacts. Physical Review Fluids, 2020, 5, .	2.5	6
23	Capillary deformation of ultrathin glassy polymer films by air nanobubbles. Physical Review Research, 2020, 2, .	3.6	6
24	Probing the adsorption/desorption of amphiphilic polymers at the air–water interface during large interfacial deformations. Soft Matter, 2019, 15, 6200-6206.	2.7	6
25	Molecular Dynamics Simulation of the Capillary Leveling of a Glass-Forming Liquid. Journal of Physical Chemistry B, 2019, 123, 8543-8549.	2.6	4
26	Shearing-induced contact pattern formation in hydrogels sliding in polymer solution. Soft Matter, 2019, 15, 1953-1959.	2.7	1
27	Microfluidic probing of the complex interfacial rheology of multilayer capsules. Soft Matter, 2019, 15, 2782-2790.	2.7	12
28	Hydroelastic wake on a thin elastic sheet floating on water. Physical Review Fluids, 2019, 4, .	2.5	4
29	Asymptotic regimes in elastohydrodynamic and stochastic leveling on a viscous film. Physical Review Fluids, 2019, 4, .	2.5	13
30	Surface energy of strained amorphous solids. Nature Communications, 2018, 9, 982.	12.8	53
31	Emergent Strain Stiffening in Interlocked Granular Chains. Physical Review Letters, 2018, 120, 088001.	7.8	17
32	Adhesion-induced fingering instability in thin elastic films under strain. European Physical Journal E, 2018, 41, 36.	1.6	8
33	Elastowetting of Soft Hydrogel Spheres. Langmuir, 2018, 34, 3894-3900.	3.5	14
34	Adsorption-induced slip inhibition for polymer melts on ideal substrates. Nature Communications, 2018, 9, 1172.	12.8	11
35	Adsorption dynamics of hydrophobically modified polymers at an air-water interface. European Physical Journal E, 2018, 41, 101.	1.6	8
36	Influence of outer-layer finite-size effects on the dewetting dynamics of a thin polymer film embedded in an immiscible matrix. Soft Matter, 2018, 14, 6256-6263.	2.7	7

#	Article	IF	CITATIONS
37	Transient deformation of a droplet near a microfluidic constriction: A quantitative analysis. Physical Review Fluids, $2018, 3, .$	2.5	10
38	Cooperative strings in glassy nanoparticles. Soft Matter, 2017, 13, 141-146.	2.7	14
39	Glass transition at interfaces. Europhysics News, 2017, 48, 24-28.	0.3	6
40	van der Waals interaction between a moving nano-cylinder and a liquid thin film. Soft Matter, 2017, 13, 3822-3830.	2.7	4
41	Existence of a Critical Layer Thickness in PS/PMMA Nanolayered Films. Macromolecules, 2017, 50, 4064-4073.	4.8	40
42	Correction: Cooperative strings in glassy nanoparticles. Soft Matter, 2017, 13, 3457-3458.	2.7	0
43	Elastocapillary bending of microfibers around liquid droplets. Soft Matter, 2017, 13, 720-724.	2.7	20
44	One-Step Fabrication of pH-Responsive Membranes and Microcapsules through Interfacial H-Bond Polymer Complexation. Scientific Reports, 2017, 7, 1265.	3.3	17
45	Molecular dynamics simulation of the capillary leveling of viscoelastic polymer films. Journal of Chemical Physics, 2017, 146, 203327.	3.0	2
46	Elastohydrodynamic wake and wave resistance. Journal of Fluid Mechanics, 2017, 829, 538-550.	3.4	9
47	Morphological evolution of microscopic dewetting droplets with slip. Journal of Fluid Mechanics, 2017, 828, 271-288.	3.4	9
48	Liquid Droplets Act as "Compass Needles―for the Stresses in a Deformable Membrane. Physical Review Letters, 2017, 118, 198002.	7.8	17
49	Rotation of an immersed cylinder sliding near a thin elastic coating. Physical Review Fluids, 2017, 2, .	2.5	37
50	Elastocapillary levelling of thin viscous films on soft substrates. Physical Review Fluids, 2017, 2, .	2.5	13
51	Why can't you separate interleaved books?. Physics Today, 2016, 69, 74-75.	0.3	4
52	Wake and wave resistance on viscous thin films. Journal of Fluid Mechanics, 2016, 792, 829-849.	3.4	8
53	Self-sustained lift and low friction via soft lubrication. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 5847-5849.	7.1	74
54	Capillary Leveling of Freestanding Liquid Nanofilms. Physical Review Letters, 2016, 117, 167801.	7.8	8

#	Article	IF	CITATIONS
55	Slip-mediated dewetting of polymer microdroplets. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 1168-1173.	7.1	24
56	Self-Amplification of Solid Friction in Interleaved Assemblies. Physical Review Letters, 2016, 116, 015502.	7.8	25
57	Solid capillarity: when and how does surface tension deform soft solids?. Soft Matter, 2016, 12, 2993-2996.	2.7	77
58	Elastohydrodynamics of a sliding, spinning and sedimenting cylinder near a soft wall. Journal of Fluid Mechanics, 2015, 779, 181-196.	3.4	47
59	Symmetry plays a key role in the erasing of patterned surface features. Applied Physics Letters, 2015, 107, 053103.	3.3	8
60	Influence of slip on the Plateau–Rayleigh instability on a fibre. Nature Communications, 2015, 6, 7409.	12.8	76
61	Cooperative strings and glassy interfaces. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 8227-8231.	7.1	70
62	Indentation of a rigid sphere into an elastic substrate with surface tension and adhesion. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2015, 471, 20140727.	2.1	60
63	Universal contact-line dynamics at the nanoscale. Soft Matter, 2015, 11, 9247-9253.	2.7	12
64	La transition vitreuse aux interfaces. , 2015, , 24-27.	0.1	0
65	A Direct Quantitative Measure of Surface Mobility in a Glassy Polymer. Science, 2014, 343, 994-999.	12.6	192
66	Viscoelastic effects and anomalous transient levelling exponents in thin films. Europhysics Letters, 2014, 106, 36003.	2.0	9
67	Approach to universal self-similar attractor for the levelling of thin liquid films. Soft Matter, 2014, 10, 8608-8614.	2.7	17
68	Capillary levelling of a cylindrical hole in a viscous film. Soft Matter, 2014, 10, 2550.	2.7	31
69	Two-phase flow in a chemically active porous medium. Journal of Chemical Physics, 2014, 141, 244704.	3.0	0
70	Intermediate asymptotics of the capillary-driven thin-film equation. European Physical Journal E, 2013, 36, 82.	1.6	16
71	From adhesion to wetting of a soft particle. Soft Matter, 2013, 9, 10699.	2.7	65
72	Relaxation and intermediate asymptotics of a rectangular trench in a viscous film. Physical Review E, 2013, 88, 035001.	2.1	14

#	Article	IF	CITATIONS
73	Capillary leveling of stepped films with inhomogeneous molecular mobility. Soft Matter, 2013, 9, 8297.	2.7	11
74	Self-Similarity and Energy Dissipation in Stepped Polymer Films. Physical Review Letters, 2012, 109, 128303.	7.8	47
75	Capillary-driven flow induced by a stepped perturbation atop a viscous film. Physics of Fluids, 2012, 24,	4.0	30
76	Beyond Tanner's Law: Crossover between Spreading Regimes of a Viscous Droplet on an Identical Film. Physical Review Letters, 2012, 109, 154501.	7.8	34
77	Numerical solutions of thin-film equations for polymer flows. European Physical Journal E, 2012, 35, 114.	1.6	30
78	Photoassociative creation of ultracold heteronuclear ⁶ Li ⁴⁰ K [*] molecules. Europhysics Letters, 2011, 96, 33001.	2.0	29
79	Large atom number dual-species magneto-optical trap for fermionic 6Li and 40K atoms. European Physical Journal D, 2011, 65, 223-242.	1.3	31
80	Stretching a Solid Modifies its Wettability … Or Does it?. ChemistryViews, 0, , .	0.0	1