Thomas Salez

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/532059/publications.pdf

Version: 2024-02-01

		377584	371746
80	1,552	21	37
papers	citations	h-index	g-index
81	81	81	1788
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	A Direct Quantitative Measure of Surface Mobility in a Glassy Polymer. Science, 2014, 343, 994-999.	6.0	192
2	Solid capillarity: when and how does surface tension deform soft solids? Soft Matter, 2016, 12, 2993-2996.	1.2	77
3	Influence of slip on the Plateau–Rayleigh instability on a fibre. Nature Communications, 2015, 6, 7409.	5.8	76
4	Self-sustained lift and low friction via soft lubrication. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 5847-5849.	3.3	74
5	Cooperative strings and glassy interfaces. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 8227-8231.	3.3	70
6	From adhesion to wetting of a soft particle. Soft Matter, 2013, 9, 10699.	1.2	65
7	Indentation of a rigid sphere into an elastic substrate with surface tension and adhesion. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2015, 471, 20140727.	1.0	60
8	Surface energy of strained amorphous solids. Nature Communications, 2018, 9, 982.	5.8	53
9	Self-Similarity and Energy Dissipation in Stepped Polymer Films. Physical Review Letters, 2012, 109, 128303.	2.9	47
10	Elastohydrodynamics of a sliding, spinning and sedimenting cylinder near a soft wall. Journal of Fluid Mechanics, 2015, 779, 181-196.	1.4	47
11	Existence of a Critical Layer Thickness in PS/PMMA Nanolayered Films. Macromolecules, 2017, 50, 4064-4073.	2.2	40
12	Rotation of an immersed cylinder sliding near a thin elastic coating. Physical Review Fluids, 2017, 2, .	1.0	37
13	Beyond Tanner's Law: Crossover between Spreading Regimes of a Viscous Droplet on an Identical Film. Physical Review Letters, 2012, 109, 154501.	2.9	34
14	Large atom number dual-species magneto-optical trap for fermionic 6Li and 40K atoms. European Physical Journal D, 2011, 65, 223-242.	0.6	31
15	Capillary levelling of a cylindrical hole in a viscous film. Soft Matter, 2014, 10, 2550.	1.2	31
16	Capillary-driven flow induced by a stepped perturbation atop a viscous film. Physics of Fluids, 2012, 24,	1.6	30
17	Numerical solutions of thin-film equations for polymer flows. European Physical Journal E, 2012, 35, 114.	0.7	30
18	Photoassociative creation of ultracold heteronuclear ⁶ Li ⁴⁰ K [*] molecules. Europhysics Letters, 2011, 96, 33001.	0.7	29

#	Article	IF	Citations
19	Self-Amplification of Solid Friction in Interleaved Assemblies. Physical Review Letters, 2016, 116, 015502.	2.9	25
20	Slip-mediated dewetting of polymer microdroplets. Proceedings of the National Academy of Sciences of the United States of America, 2016 , 113 , 1168 - 1173 .	3.3	24
21	Direct Measurement of the Elastohydrodynamic Lift Force at the Nanoscale. Physical Review Letters, 2020, 124, 054502.	2.9	21
22	Elastocapillary bending of microfibers around liquid droplets. Soft Matter, 2017, 13, 720-724.	1.2	20
23	Approach to universal self-similar attractor for the levelling of thin liquid films. Soft Matter, 2014, 10, 8608-8614.	1.2	17
24	One-Step Fabrication of pH-Responsive Membranes and Microcapsules through Interfacial H-Bond Polymer Complexation. Scientific Reports, 2017, 7, 1265.	1.6	17
25	Liquid Droplets Act as "Compass Needles―for the Stresses in a Deformable Membrane. Physical Review Letters, 2017, 118, 198002.	2.9	17
26	Emergent Strain Stiffening in Interlocked Granular Chains. Physical Review Letters, 2018, 120, 088001.	2.9	17
27	Intermediate asymptotics of the capillary-driven thin-film equation. European Physical Journal E, 2013, 36, 82.	0.7	16
28	Relaxation and intermediate asymptotics of a rectangular trench in a viscous film. Physical Review E, 2013, 88, 035001.	0.8	14
29	Cooperative strings in glassy nanoparticles. Soft Matter, 2017, 13, 141-146.	1.2	14
30	Elastowetting of Soft Hydrogel Spheres. Langmuir, 2018, 34, 3894-3900.	1.6	14
31	Using <i>M</i> _w Dependence of Surface Dynamics of Glassy Polymers to Probe the Length Scale of Free-Surface Mobility. Macromolecules, 2020, 53, 1084-1089.	2.2	13
32	Elastocapillary levelling of thin viscous films on soft substrates. Physical Review Fluids, 2017, 2, .	1.0	13
33	Asymptotic regimes in elastohydrodynamic and stochastic leveling on a viscous film. Physical Review Fluids, 2019, 4, .	1.0	13
34	Universal contact-line dynamics at the nanoscale. Soft Matter, 2015, 11, 9247-9253.	1.2	12
35	Microfluidic probing of the complex interfacial rheology of multilayer capsules. Soft Matter, 2019, 15, 2782-2790.	1.2	12
36	Soft-lubrication interactions between a rigid sphere and an elastic wall. Journal of Fluid Mechanics, 2022, 933, .	1.4	12

#	Article	IF	CITATIONS
37	Capillary leveling of stepped films with inhomogeneous molecular mobility. Soft Matter, 2013, 9, 8297.	1.2	11
38	Adsorption-induced slip inhibition for polymer melts on ideal substrates. Nature Communications, 2018, 9, 1172.	5 . 8	11
39	Rotation of a submerged finite cylinder moving down a soft incline. Soft Matter, 2020, 16, 4000-4007.	1.2	10
40	Transient deformation of a droplet near a microfluidic constriction: A quantitative analysis. Physical Review Fluids, $2018, 3, .$	1.0	10
41	Viscoelastic effects and anomalous transient levelling exponents in thin films. Europhysics Letters, 2014, 106, 36003.	0.7	9
42	Elastohydrodynamic wake and wave resistance. Journal of Fluid Mechanics, 2017, 829, 538-550.	1.4	9
43	Morphological evolution of microscopic dewetting droplets with slip. Journal of Fluid Mechanics, 2017, 828, 271-288.	1.4	9
44	Time dependence of advection-diffusion coupling for nanoparticle ensembles. Physical Review Fluids, $2021, 6, .$	1.0	9
45	Contactless rheology of finite-size air-water interfaces. Physical Review Research, 2021, 3, .	1.3	9
46	Symmetry plays a key role in the erasing of patterned surface features. Applied Physics Letters, 2015, 107, 053103.	1.5	8
47	Wake and wave resistance on viscous thin films. Journal of Fluid Mechanics, 2016, 792, 829-849.	1.4	8
48	Capillary Leveling of Freestanding Liquid Nanofilms. Physical Review Letters, 2016, 117, 167801.	2.9	8
49	Adhesion-induced fingering instability in thin elastic films under strain. European Physical Journal E, 2018, 41, 36.	0.7	8
50	Adsorption dynamics of hydrophobically modified polymers at an air-water interface. European Physical Journal E, 2018, 41, 101.	0.7	8
51	Rearrangement of two dimensional aggregates of droplets under compression: Signatures of the energy landscape from crystal to glass. Physical Review Research, 2020, 2, .	1.3	8
52	Influence of outer-layer finite-size effects on the dewetting dynamics of a thin polymer film embedded in an immiscible matrix. Soft Matter, 2018, 14, 6256-6263.	1.2	7
53	Glass transition at interfaces. Europhysics News, 2017, 48, 24-28.	0.1	6
54	Probing the adsorption/desorption of amphiphilic polymers at the air–water interface during large interfacial deformations. Soft Matter, 2019, 15, 6200-6206.	1.2	6

#	Article	lF	CITATIONS
55	Axisymmetric Stokes flow due to a point-force singularity acting between two coaxially positioned rigid no-slip disks. Journal of Fluid Mechanics, 2020, 904, .	1.4	6
56	Symmetrization of Thin Freestanding Liquid Films via a Capillary-Driven Flow. Physical Review Letters, 2020, 124, 184502.	2.9	6
57	Lift induced by slip inhomogeneities in lubricated contacts. Physical Review Fluids, 2020, 5, .	1.0	6
58	Capillary deformation of ultrathin glassy polymer films by air nanobubbles. Physical Review Research, 2020, 2, .	1.3	6
59	Cooperative strings and glassy dynamics in various confined geometries. Physical Review E, 2020, 101, 032122.	0.8	5
60	Growth Mechanism of Polymer Membranes Obtained by H-Bonding Across Immiscible Liquid Interfaces. ACS Macro Letters, 2021, 10, 204-209.	2.3	5
61	Contactless Rheology of Soft Gels Over a Broad Frequency Range. Physical Review Applied, 2022, 17, .	1.5	5
62	Why can't you separate interleaved books?. Physics Today, 2016, 69, 74-75.	0.3	4
63	van der Waals interaction between a moving nano-cylinder and a liquid thin film. Soft Matter, 2017, 13, 3822-3830.	1.2	4
64	Molecular Dynamics Simulation of the Capillary Leveling of a Glass-Forming Liquid. Journal of Physical Chemistry B, 2019, 123, 8543-8549.	1.2	4
65	Mechanical properties of 2D aggregates of oil droplets as model mono-crystals. Soft Matter, 2021, 17, 1194-1201.	1.2	4
66	Stochastic inference of surface-induced effects using Brownian motion. Physical Review Research, 2021, 3, .	1.3	4
67	Hydroelastic wake on a thin elastic sheet floating on water. Physical Review Fluids, 2019, 4, .	1.0	4
68	Dewetting of a thin polymer film under shear. Polymer, 2021, 235, 124283.	1.8	4
69	Microscopic Picture of Erosion and Sedimentation Processes in Dense Granular Flows. Physical Review Letters, 2020, 125, 208002.	2.9	3
70	Capillary levelling of immiscible bilayer films. Journal of Fluid Mechanics, 2021, 911, .	1.4	3
71	Universal self-similar attractor in the bending-driven levelling of thin viscous films. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2021, 477, .	1.0	3
72	Nanobubble-induced flow of immersed glassy polymer films. Physical Review Fluids, 2021, 6, .	1.0	3

#	Article	IF	CITATIONS
73	Molecular dynamics simulation of the capillary leveling of viscoelastic polymer films. Journal of Chemical Physics, 2017, 146, 203327.	1.2	2
74	Shearing-induced contact pattern formation in hydrogels sliding in polymer solution. Soft Matter, 2019, 15, 1953-1959.	1.2	1
75	Nonlinear amplification of adhesion forces in interleaved books. European Physical Journal E, 2021, 44, 71.	0.7	1
76	Stretching a Solid Modifies its Wettability $\hat{a} \in \ \mid$ Or Does it?. ChemistryViews, 0, , .	0.0	1
77	Two-phase flow in a chemically active porous medium. Journal of Chemical Physics, 2014, 141, 244704.	1.2	O
78	Correction: Cooperative strings in glassy nanoparticles. Soft Matter, 2017, 13, 3457-3458.	1.2	0
79	Une force de portance élastohydrodynamique en matià re molle. , 2021, , 10-15.	0.1	O
80	La transition vitreuse aux interfaces. , 2015, , 24-27.	0.1	0