
Diane Mathis

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5320162/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	IL-17A–producing γÎ⊤ cells promote muscle regeneration in a microbiota-dependent manner. Journal of Experimental Medicine, 2022, 219, .	8.5	17
2	FoxP3 associates with enhancer-promoter loops to regulate T-specific gene expression Science Immunology, 2022, 7, eabj9836.	11.9	12
3	Gut CD4+ T cell phenotypes are a continuum molded by microbes, not by TH archetypes. Nature Immunology, 2021, 22, 216-228.	14.5	116
4	PPARÎ ³ marks splenic precursors of multiple nonlymphoid-tissue Treg compartments. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	21
5	Interleukin-6 produced by enteric neurons regulates the number and phenotype of microbe-responsive regulatory TÂcells in the gut. Immunity, 2021, 54, 499-513.e5.	14.3	63
6	Tissue regulatory T cells: regulatory chameleons. Nature Reviews Immunology, 2021, 21, 597-611.	22.7	109
7	Single-cell analysis of FOXP3 deficiencies in humans and mice unmasks intrinsic and extrinsic CD4+ T cell perturbations. Nature Immunology, 2021, 22, 607-619.	14.5	35
8	Interferon-α-producing plasmacytoid dendritic cells drive the loss of adipose tissue regulatory TÂcells during obesity. Cell Metabolism, 2021, 33, 1610-1623.e5.	16.2	48
9	Profound Treg perturbations correlate with COVID-19 severity. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	104
10	Aire regulates chromatin looping by evicting CTCF from domain boundaries and favoring accumulation of cohesin on superenhancers. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	12
11	Microbial bile acid metabolites modulate gut RORγ+Âregulatory T cell homeostasis. Nature, 2020, 577, 410-415.	27.8	568
12	Developmental and cellular age direct conversion of CD4+ T cells into RORγ+ or Helios+ colon Treg cells. Journal of Experimental Medicine, 2020, 217, .	8.5	50
13	pH-Gated Succinate Secretion Regulates Muscle Remodeling in Response to Exercise. Cell, 2020, 183, 62-75.e17.	28.9	129
14	An Immunologic Mode of Multigenerational Transmission Governs a Gut Treg Setpoint. Cell, 2020, 181, 1276-1290.e13.	28.9	110
15	Visceral adipose tissue Tregs and the cells that nurture them. Immunological Reviews, 2020, 295, 114-125.	6.0	49
16	Sex-specific adipose tissue imprinting of regulatory T cells. Nature, 2020, 579, 581-585.	27.8	141
17	Neuronal, stromal, and T-regulatory cell crosstalk in murine skeletal muscle. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 5402-5408.	7.1	32
18	γδT cells and adipocyte IL-17RC control fat innervation and thermogenesis. Nature, 2020, 578, 610-614.	27.8	117

#	Article	IF	CITATIONS
19	Discovery of surrogate agonists for visceral fat Treg cells that modulate metabolic indices in vivo. ELife, 2020, 9, .	6.0	21
20	Organismal immunometabolism: advances in both directions. Nature Reviews Immunology, 2019, 19, 83-84.	22.7	7
21	Distinct immunocyte-promoting and adipocyte-generating stromal components coordinate adipose tissue immune and metabolic tenors. Science Immunology, 2019, 4, .	11.9	169
22	T cell anergy in perinatal mice is promoted by T reg cells and prevented by IL-33. Journal of Experimental Medicine, 2019, 216, 1328-1344.	8.5	27
23	T cell receptor specificity drives accumulation of a reparative population of regulatory T cells within acutely injured skeletal muscle. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 26727-26733.	7.1	43
24	Methods of Isolation and Analysis of TREG Immune Infiltrates from Injured and Dystrophic Skeletal Muscle. Methods in Molecular Biology, 2019, 1899, 229-237.	0.9	3
25	PAHSAs attenuate immune responses and promote \hat{I}^2 cell survival in autoimmune diabetic mice. Journal of Clinical Investigation, 2019, 129, 3717-3731.	8.2	55
26	T _{reg} cells limit IFN-γ production to control macrophage accrual and phenotype during skeletal muscle regeneration. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E2585-E2593.	7.1	114
27	Single-cell gene expression reveals a landscape of regulatory T cell phenotypes shaped by the TCR. Nature Immunology, 2018, 19, 291-301.	14.5	312
28	FoxP3 scanning mutagenesis reveals functional variegation and mild mutations with atypical autoimmune phenotypes. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E253-E262.	7.1	22
29	Identification and validation of a tumor-infiltrating Treg transcriptional signature conserved across species and tumor types. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E10672-E10681.	7.1	108
30	Molecular diversification of regulatory T cells in nonlymphoid tissues. Science Immunology, 2018, 3, .	11.9	123
31	TCR Transgenic Mice Reveal Stepwise, Multi-site Acquisition of the Distinctive Fat-Treg Phenotype. Cell, 2018, 174, 285-299.e12.	28.9	165
32	The transcriptional regulator Aire binds to and activates super-enhancers. Nature Immunology, 2017, 18, 263-273.	14.5	130
33	Mining the Human Gut Microbiota for Immunomodulatory Organisms. Cell, 2017, 168, 928-943.e11.	28.9	554
34	An Intestinal Organ Culture System Uncovers a Role for the Nervous System in Microbe-Immune Crosstalk. Cell, 2017, 168, 1135-1148.e12.	28.9	182
35	<i>Flicr</i> , a long noncoding RNA, modulates Foxp3 expression and autoimmunity. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E3472-E3480.	7.1	141
36	Imaging the emergence and natural progression of spontaneous autoimmune diabetes. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E7776-E7785.	7.1	64

#	Article	IF	CITATIONS
37	Protective major histocompatibility complex allele prevents type 1 diabetes by shaping the intestinal microbiota early in ontogeny. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 9671-9676.	7.1	75
38	Different molecular complexes that mediate transcriptional induction and repression by FoxP3. Nature Immunology, 2017, 18, 1238-1248.	14.5	117
39	Tissue Tregs. Annual Review of Immunology, 2016, 34, 609-633.	21.8	442
40	IL-33, Imprimatur of Adipocyte Thermogenesis. Cell, 2016, 166, 794-795.	28.9	6
41	Network pharmacology of JAK inhibitors. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 9852-9857.	7.1	59
42	Singular role for T-BET ⁺ CXCR3 ⁺ regulatory T cells in protection from autoimmune diabetes. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 14103-14108.	7.1	89
43	Identifying species of symbiont bacteria from the human gut that, alone, can induce intestinal Th17 cells in mice. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E8141-E8150.	7.1	331
44	Aire Inhibits the Generation of a Perinatal Population of Interleukin-17A-Producing Î ³ δT Cells to Promote Immunologic Tolerance. Immunity, 2016, 45, 999-1012.	14.3	54
45	Parsing the Interferon Transcriptional Network and Its Disease Associations. Cell, 2016, 164, 564-578.	28.9	250
46	Unstable FoxP3 ⁺ T regulatory cells in NZW mice. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 1345-1350.	7.1	26
47	Promiscuity Promotes Tolerance. Journal of Immunology, 2016, 196, 2913-2914.	0.8	1
48	Poor Repair of Skeletal Muscle in Aging Mice Reflects a Defect in Local, Interleukin-33-Dependent Accumulation of Regulatory T Cells. Immunity, 2016, 44, 355-367.	14.3	383
49	Rapid, high efficiency isolation of pancreatic ß-cells. Scientific Reports, 2015, 5, 13681.	3.3	17
50	Fatal autoimmunity in mice reconstituted with human hematopoietic stem cells encoding defective FOXP3. Blood, 2015, 125, 3886-3895.	1.4	33
51	Imbalanced signal transduction in regulatory T cells expressing the transcription factor FoxP3. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 14942-14947.	7.1	52
52	Appearance and disappearance of the mRNA signature characteristic of T _{reg} cells in visceral adipose tissue: Age, diet, and PPARγ effects. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 482-487.	7.1	156
53	Noninvasive mapping of pancreatic inflammation in recent-onset type-1 diabetes patients. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 2139-2144.	7.1	123
54	Population dynamics of islet-infiltrating cells in autoimmune diabetes. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 1511-1516.	7.1	89

#	Article	IF	CITATIONS
55	Brd4 bridges the transcriptional regulators, Aire and P-TEFb, to promote elongation of peripheral-tissue antigen transcripts in thymic stromal cells. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, E4448-57.	7.1	62
56	Aire controls gene expression in the thymic epithelium with ordered stochasticity. Nature Immunology, 2015, 16, 942-949.	14.5	195
57	ImmVar project: Insights and design considerations for future studies of "healthy―immune variation. Seminars in Immunology, 2015, 27, 51-57.	5.6	53
58	Regulatory T cells generated early in life play a distinct role in maintaining self-tolerance. Science, 2015, 348, 589-594.	12.6	373
59	Antigen- and Cytokine-Driven Accumulation of Regulatory T Cells in Visceral Adipose Tissue of Lean Mice. Cell Metabolism, 2015, 21, 543-557.	16.2	304
60	Individual intestinal symbionts induce a distinct population of RORÎ ³ ⁺ regulatory T cells. Science, 2015, 349, 993-997.	12.6	707
61	Immunological contributions to adipose tissue homeostasis. Seminars in Immunology, 2015, 27, 315-321.	5.6	68
62	Epigenetic modulation of type-1 diabetes via a dual effect on pancreatic macrophages and β cells. ELife, 2014, 3, e04631.	6.0	69
63	Variation and Genetic Control of Gene Expression in Primary Immunocytes across Inbred Mouse Strains. Journal of Immunology, 2014, 193, 4485-4496.	0.8	44
64	Interindividual variation in human T regulatory cells. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, E1111-20.	7.1	112
65	Treg Cells Expressing the Coinhibitory Molecule TIGIT Selectively Inhibit Proinflammatory Th1 and Th17 Cell Responses. Immunity, 2014, 40, 569-581.	14.3	702
66	Ablation of PRDM16 and Beige Adipose Causes Metabolic Dysfunction and a Subcutaneous to Visceral Fat Switch. Cell, 2014, 156, 304-316.	28.9	719
67	Endoscopic photoconversion reveals unexpectedly broad leukocyte trafficking to and from the gut. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 6696-6701.	7.1	154
68	Single-cell mass cytometry of TCR signaling: Amplification of small initial differences results in low ERK activation in NOD mice. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 16466-16471.	7.1	50
69	Denervation protects limbs from inflammatory arthritis via an impact on the microvasculature. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 11419-11424.	7.1	40
70	Type 1 Diabetes in NOD Mice Unaffected by Mast Cell Deficiency. Diabetes, 2014, 63, 3827-3834.	0.6	25
71	Intersection of population variation and autoimmunity genetics in human T cell activation. Science, 2014, 345, 1254665.	12.6	218
72	A Special Population of Regulatory T Cells Potentiates Muscle Repair. Cell, 2013, 155, 1282-1295.	28.9	954

#	Article	IF	CITATIONS
73	Regulatory T cells in nonlymphoid tissues. Nature Immunology, 2013, 14, 1007-1013.	14.5	308
74	Immunological Goings-on in Visceral Adipose Tissue. Cell Metabolism, 2013, 17, 851-859.	16.2	344
75	Regulatory T cells control NK cells in an insulitic lesion by depriving them of IL-2. Journal of Experimental Medicine, 2013, 210, 1153-1165.	8.5	120
76	Convergent and divergent effects of costimulatory molecules in conventional and regulatory CD4 ⁺ T cells. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 1023-1028.	7.1	72
77	A gut feeling about arthritis. ELife, 2013, 2, e01608.	6.0	5
78	Aire unleashes stalled RNA polymerase to induce ectopic gene expression in thymic epithelial cells. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 535-540.	7.1	202
79	Nuclear receptor Nr4a1 modulates both regulatory T-cell (Treg) differentiation and clonal deletion. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 3891-3896.	7.1	101
80	PPAR-Î ³ is a major driver of the accumulation and phenotype of adipose tissue Treg cells. Nature, 2012, 486, 549-553.	27.8	945
81	Gut Immune Maturation Depends on Colonization with a Host-Specific Microbiota. Cell, 2012, 149, 1578-1593.	28.9	1,050
82	The immune system's involvement in obesity-driven type 2 diabetes. Seminars in Immunology, 2012, 24, 436-442.	5.6	137
83	A multiply redundant genetic switch 'locks in' the transcriptional signature of regulatory T cells. Nature Immunology, 2012, 13, 972-980.	14.5	249
84	The neuropeptide neuromedin U promotes autoantibody-mediated arthritis. Arthritis Research and Therapy, 2012, 14, R29.	3.5	15
85	The influence of the microbiota on typeâ€1 diabetes: on the threshold of a leap forward in our understanding. Immunological Reviews, 2012, 245, 239-249.	6.0	81
86	Microbiota and Autoimmune Disease: The Hosted Self. Cell Host and Microbe, 2011, 10, 297-301.	11.0	53
87	Tissular Tregs: A unique population of adipose-tissue-resident Foxp3+CD4+ T cells that impacts organismal metabolism. Seminars in Immunology, 2011, 23, 431-437.	5.6	108
88	Immunometabolism: an emerging frontier. Nature Reviews Immunology, 2011, 11, 81-83.	22.7	410
89	Genomeâ€wide and speciesâ€wide dissection of the genetics of arthritis severity in heterogeneous stock mice. Arthritis and Rheumatism, 2011, 63, 2630-2640.	6.7	20
90	Naturally transmitted segmented filamentous bacteria segregate with diabetes protection in nonobese diabetic mice. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 11548-11553.	7.1	373

#	Article	IF	CITATIONS
91	Stability of the Regulatory T Cell Lineage in Vivo. Science, 2010, 329, 1667-1671.	12.6	611
92	Neutrophils in a mouse model of autoantibodyâ€mediated arthritis: Critical producers of Fc receptor γ, the receptor for C5a, and lymphocyte functionâ°'associated antigen 1. Arthritis and Rheumatism, 2010, 62, 753-764.	6.7	95
93	Deficiency of CXCR2, but not other chemokine receptors, attenuates autoantibodyâ€mediated arthritis in a murine model. Arthritis and Rheumatism, 2010, 62, 1921-1932.	6.7	85
94	Gut-Residing Segmented Filamentous Bacteria Drive Autoimmune Arthritis via T Helper 17 Cells. Immunity, 2010, 32, 815-827.	14.3	1,391
95	Levees of immunological tolerance. Nature Immunology, 2010, 11, 3-6.	14.5	23
96	Genomic definition of multiple ex vivo regulatory T cell subphenotypes. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 5919-5924.	7.1	204
97	Global relevance of Aire binding to hypomethylated lysine-4 of histone-3. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 13016-13021.	7.1	69
98	Aire. Annual Review of Immunology, 2009, 27, 287-312.	21.8	547
99	Neonatal tolerance revisited: a perinatal window for Aire control of autoimmunity. Journal of Experimental Medicine, 2009, 206, 1245-1252.	8.5	148
100	Foxp3+ regulatory T cells: differentiation, specification, subphenotypes. Nature Immunology, 2009, 10, 689-695.	14.5	456
101	Lean, but not obese, fat is enriched for a unique population of regulatory T cells that affect metabolic parameters. Nature Medicine, 2009, 15, 930-939.	30.7	1,790
102	How Punctual Ablation of Regulatory T Cells Unleashes an Autoimmune Lesion within the Pancreatic Islets. Immunity, 2009, 31, 654-664.	14.3	212
103	The Immunological Genome Project: networks of gene expression in immune cells. Nature Immunology, 2008, 9, 1091-1094.	14.5	1,576
104	The K/BxN Arthritis Model. Current Protocols in Immunology, 2008, 81, Unit 15.22.	3.6	153
105	Genetic Inversion in Mast Cell-Deficient Wsh Mice Interrupts Corin and Manifests as Hematopoietic and Cardiac Aberrancy. American Journal of Pathology, 2008, 173, 1693-1701.	3.8	191
106	The AKT–mTOR axis regulates de novo differentiation of CD4+Foxp3+ cells. Journal of Experimental Medicine, 2008, 205, 565-574.	8.5	683
107	Adaptation of TCR Repertoires to Self-Peptides in Regulatory and Nonregulatory CD4+ T Cells. Journal of Immunology, 2007, 178, 7032-7041.	0.8	171
108	Mast cells contribute to initiation of autoantibody-mediated arthritis via IL-1. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 2325-2330.	7.1	168

#	Article	IF	CITATIONS
109	Danger-free autoimmune disease in Aire-deficient mice. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 18193-18198.	7.1	68
110	Inflammatory arthritis can be reined in by CpG-induced DC–NK cell cross talk. Journal of Experimental Medicine, 2007, 204, 1911-1922.	8.5	84
111	Foxp3 Transcription-Factor-Dependent and -Independent Regulation of the Regulatory T Cell Transcriptional Signature. Immunity, 2007, 27, 786-800.	14.3	563
112	Circulating C3 is necessary and sufficient for induction of autoantibodyâ€mediated arthritis in a mouse model. Arthritis and Rheumatism, 2007, 56, 2968-2974.	6.7	21
113	Yes, it does. Nature Reviews Immunology, 2007, 7, 1-1.	22.7	12
114	A decade of AIRE. Nature Reviews Immunology, 2007, 7, 645-650.	22.7	179
115	The K/BxN Mouse Model of Inflammatory Arthritis. Methods in Molecular Medicine, 2007, 136, 269-282.	0.8	85
116	FOXP3 Controls Regulatory T Cell Function through Cooperation with NFAT. Cell, 2006, 126, 375-387.	28.9	1,019
117	Particularities of the vasculature can promote the organ specificity of autoimmune attack. Nature Immunology, 2006, 7, 284-292.	14.5	171
118	Variation in IL-1Â gene expression is a major determinant of genetic differences in arthritis aggressivity in mice. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 12489-12494.	7.1	27
119	Modifier loci condition autoimmunity provoked by Aire deficiency. Journal of Experimental Medicine, 2005, 202, 805-815.	8.5	206
120	Defective Central Tolerance Induction in NOD Mice: Genomics and Genetics. Immunity, 2005, 22, 385-396.	14.3	160
121	The Cellular Mechanism of Aire Control of T Cell Tolerance. Immunity, 2005, 23, 227-239.	14.3	559
122	Back to Central Tolerance. Immunity, 2004, 20, 509-516.	14.3	188
123	The Role of Antibodies in Mouse Models of Rheumatoid Arthritis, and Relevance to Human Disease. Advances in Immunology, 2004, 82, 217-248.	2.2	100
124	Lymphocyte tolerance: central is central. Harvey Lectures, 2003, 99, 95-110.	0.2	0
125	Critical Roles for Interleukin 1 and Tumor Necrosis Factor α in Antibody-induced Arthritis. Journal of Experimental Medicine, 2002, 196, 77-85.	8.5	307
126	Mast Cells: A Cellular Link Between Autoantibodies and Inflammatory Arthritis. Science, 2002, 297, 1689-1692.	12.6	722

#	Article	IF	CITATIONS
127	Projection of an Immunological Self Shadow Within the Thymus by the Aire Protein. Science, 2002, 298, 1395-1401.	12.6	2,159
128	Arthritis Critically Dependent on Innate Immune System Players. Immunity, 2002, 16, 157-168.	14.3	631
129	B-cell Signaling: Protein Kinase CδPuts the Brakes on. Current Biology, 2002, 12, R554-R556.	3.9	3
130	How antibodies to a ubiquitous cytoplasmic enzyme may provoke joint-specific autoimmune disease. Nature Immunology, 2002, 3, 360-365.	14.5	322
131	Autoimmunity provoked by infection: how good is the case for T cell epitope mimicry?. Nature Immunology, 2001, 2, 797-801.	14.5	368
132	Genetic Influences on the End-Stage Effector Phase of Arthritis. Journal of Experimental Medicine, 2001, 194, 321-330.	8.5	134
133	Arthritis Provoked by Linked T and B Cell Recognition of a Glycolytic Enzyme. Science, 1999, 286, 1732-1735.	12.6	575
134	From Systemic T Cell Self-Reactivity to Organ-Specific Autoimmune Disease via Immunoglobulins. Immunity, 1999, 10, 451-461.	14.3	646
135	Organ-Specific Disease Provoked by Systemic Autoimmunity. Cell, 1996, 87, 811-822.	28.9	828
136	Mice lacking MHC class II molecules. Cell, 1991, 66, 1051-1066.	28.9	876