Eric M Vogel

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5320012/publications.pdf

Version: 2024-02-01

153	8,839	44	91
papers	citations	h-index	g-index
153	153	153	11196
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Towards a better understanding of the forming and resistive switching behavior of Ti-doped HfO _{<i>x</i>} RRAM. Journal of Materials Chemistry C, 2022, 10, 5896-5904.	5.5	16
2	Impact of oxygen concentration at the HfOx/Ti interface on the behavior of HfOx filamentary memristors. Journal of Materials Science, 2022, 57, 9299-9311.	3.7	8
3	Impact of titanium doping and pulsing conditions on the analog temporal response of hafnium oxide based memristor synapses. Journal of Applied Physics, 2022, 131, .	2.5	11
4	In-Cu alloy substrates for low-temperature chemical vapor deposition of Mo2C. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2021, 39, 012201.	2.1	6
5	Protein interactions with chemical vapor deposited graphene modified by substrate. 2D Materials, 2021, 8, 025015.	4.4	3
6	Quantum Statistical Transport Phenomena in Memristive Computing Architectures. Physical Review Applied, $2021,15,.$	3.8	2
7	Graphene synthesized by chemical vapor deposition as a hydrogen isotope permeation barrier. Carbon, 2021, 176, 106-117.	10.3	14
8	A SPICE compact model for forming-free, low-power graphene-insulator-graphene ReRAM technology. Emergent Materials, 2021, 4, 1055-1065.	5.7	5
9	Protein blocking inhibits ambient degradation of self-assembled monolayers for affinity biosensing. Applied Surface Science, 2021, 557, 149843.	6.1	2
10	Fabrication and characterization of a self-aligned gate stack for electronics applications. Applied Physics Letters, 2021, 119, .	3.3	4
11	Bottom-up nanoscale patterning and selective deposition on silicon nanowires. Nanotechnology, 2021, , .	2.6	2
12	Bottom-Up Masking of Si/Ge Surfaces and Nanowire Heterostructures <i>via</i> Surface-Initiated Polymerization and Selective Etching. ACS Nano, 2020, 14, 282-288.	14.6	9
13	Measurement of gas-concentration-driven permeation for the examination of permeability, solubility, and diffusivity in varying materials. Review of Scientific Instruments, 2020, 91, 105105.	1.3	4
14	Synthetic Engineering of Morphology and Electronic Band Gap in Lateral Heterostructures of Monolayer Transition Metal Dichalcogenides. ACS Nano, 2020, 14, 6323-6330.	14.6	24
15	The synthesis mechanism of Mo ₂ C on Ag-Cu alloy substrates by chemical vapor deposition and the impact of substrate choice. 2D Materials, 2020, 7, 035022.	4.4	10
16	Substrate dependent resistive switching in amorphous-HfO _x memristors: an experimental and computational investigation. Journal of Materials Chemistry C, 2020, 8, 5092-5101.	5.5	25
17	Impact of the thermal environment on the analog temporal response of HfOx-based neuromorphic devices. Applied Physics Letters, 2020, 116 , .	3.3	13
18	Experimental and computational analysis of thermal environment in the operation of HfO2 memristors. AlP Advances, 2020, 10 , .	1.3	13

#	Article	IF	CITATIONS
19	Preblocking Procedure to Mitigate Nonselective Protein Adsorption for Carboxyl-SAMs Used in Biosensing. Journal of Physical Chemistry C, 2019, 123, 16778-16786.	3.1	7
20	General model for mass transport to planar and nanowire biosensor surfaces. Journal of Applied Physics, 2019, 125, 114502.	2.5	3
21	Disorder and Weak Localization near Charge Neutral Point in Tiâ€cleaned Single‣ayer Graphene. Physica Status Solidi (B): Basic Research, 2019, 256, 1800541.	1.5	1
22	The impact of defect density, grain size, and Cu orientation on thermal oxidation of graphene-coated Cu. Applied Surface Science, 2019, 478, 959-968.	6.1	12
23	Total lonizing Dose Effects and Proton-Induced Displacement Damage on MoS ₂ -Interlayer-MoS ₂ Tunneling Junctions. IEEE Transactions on Nuclear Science, 2019, 66, 420-427.	2.0	6
24	Epitaxial and atomically thin graphene–metal hybrid catalyst films: the dual role of graphene as the support and the chemically-transparent protective cap. Energy and Environmental Science, 2018, 11, 1610-1616.	30.8	34
25	Strain relaxation via formation of cracks in compositionally modulated two-dimensional semiconductor alloys. Npj 2D Materials and Applications, 2018, 2, .	7.9	23
26	Low-temperature, plasma assisted, cyclic synthesis of MoS2. Journal of Vacuum Science and Technology B:Nanotechnology and Microelectronics, 2018, 36, .	1.2	6
27	Plasma-assisted synthesis of MoS ₂ . 2D Materials, 2018, 5, 015005.	4.4	19
28	Impact of Synthesized MoS ₂ Wafer-Scale Quality on Fermi Level Pinning in Vertical Schottky-Barrier Heterostructures. ACS Applied Materials & Schottky-Barrier Heterostructures.	8.0	5
29	Material Constraints and Scaling of 2-D Vertical Heterostructure Interlayer Tunnel Field-Effect Transistors. IEEE Transactions on Electron Devices, 2017, 64, 2714-2720.	3.0	7
30	<i>In situ</i> thermal oxidation kinetics in few layer MoS ₂ . 2D Materials, 2017, 4, 025058.	4.4	49
31	Direct correlation between potentiometric and impedance biosensing of antibody-antigen interactions using an integrated system. Applied Physics Letters, 2017, 111, .	3.3	14
32	Comprehensive Capacitance–Voltage Simulation and Extraction Tool Including Quantum Effects for High-k on Si <italic>x</italic> Celâ² <italic>x</italic> xxXXAs: Part I—Model Description and Validation. IEEE Transactions on Electron Devices, 2017, 64, 3786-3793.	3.0	3
33	Comprehensive Capacitance–Voltage Simulation and Extraction Tool Including Quantum Effects for High- \$k\$ on SixGe1â°x and InxGa1â°xAs: Part Il—Fits and Extraction From Experimental Data. IEEE Transactions on Electron Devices, 2017, 64, 3794-3801.	3.0	4
34	Solution-Processed Doping of Trilayer WSe ₂ with Redox-Active Molecules. Chemistry of Materials, 2017, 29, 7296-7304.	6.7	25
35	Interfacial Li-Ion Storage between Graphene Layers. ECS Transactions, 2017, 77, 19-25.	0.5	2
36	ALD TiOxas a top-gate dielectric and passivation layer for InGaZnO115ISFETs. Semiconductor Science and Technology, 2017, 32, 114004.	2.0	4

#	Article	IF	CITATIONS
37	Spatio-temporal pattern recognition in neural circuits with memory-transistor-driven memristive synapses. , $2017, \dots$		5
38	Band structure effects on resonant tunneling in III-V quantum wells versus two-dimensional vertical heterostructures. Journal of Applied Physics, 2016, 119 , .	2.5	22
39	Resonant Light-Induced Heating in Hybrid Cavity-Coupled 2D Transition-Metal Dichalcogenides. ACS Photonics, 2016, 3, 700-707.	6.6	27
40	Graphene-Molybdenum Disulfide-Graphene Tunneling Junctions with Large-Area Synthesized Materials. ACS Applied Materials & Samp; Interfaces, 2016, 8, 8702-8709.	8.0	16
41	Field-effect transistors based on wafer-scale, highly uniform few-layer p-type WSe ₂ . Nanoscale, 2016, 8, 2268-2276.	5.6	58
42	A potentiometric biosensor for rapid on-site disease diagnostics. Biosensors and Bioelectronics, 2016, 79, 669-678.	10.1	81
43	Two-dimensional layered transition-metal dichalcogenides for versatile properties and applications. MRS Bulletin, 2015, 40, 558-563.	3.5	39
44	Flexible MoS ₂ Field-Effect Transistors for Gate-Tunable Piezoresistive Strain Sensors. ACS Applied Materials & Distriction (2015), 7, 12850-12855.	8.0	127
45	Enhanced Resonant Tunneling in Symmetric 2D Semiconductor Vertical Heterostructure Transistors. ACS Nano, 2015, 9, 5000-5008.	14.6	50
46	Gold-coated graphene field-effect transistors for quantitative analysis of protein–antibody interactions. 2D Materials, 2015, 2, 044008.	4.4	32
47	Controlled Doping of Largeâ€Area Trilayer MoS ₂ with Molecular Reductants and Oxidants. Advanced Materials, 2015, 27, 1175-1181.	21.0	183
48	Layer-by-Layer Evolution of Structure, Strain, and Activity for the Oxygen Evolution Reaction in Graphene-Templated Pt Monolayers. ACS Applied Materials & Samp; Interfaces, 2015, 7, 6180-6188.	8.0	40
49	Highly Uniform Trilayer Molybdenum Disulfide for Waferâ€Scale Device Fabrication. Advanced Functional Materials, 2014, 24, 6389-6400.	14.9	99
50	Cleaning graphene with a titanium sacrificial layer. Applied Physics Letters, 2014, 104, .	3. 3	30
51	Tunneling characteristics in chemical vapor deposited graphene–hexagonal boron nitride–graphene junctions. Applied Physics Letters, 2014, 104, .	3.3	49
52	Investigation of switching mechanism in forming-free multi-level resistive memories with atomic layer deposited HfTiO $$ inf $$ nanolaminate. , 2014, , .		1
53	Nonlinear Switching With Ultralow Reset Power in Graphene-Insulator-Graphene Forming-Free Resistive Memories. IEEE Electron Device Letters, 2014, 35, 750-752.	3.9	16
54	Electrical and chemical characteristics of Al2O3/InP metal-oxide-semiconductor capacitors. Applied Physics Letters, 2013, 102, 132903.	3 . 3	37

#	Article	IF	CITATIONS
55	Spike-Timing-Dependent Plasticity Using Biologically Realistic Action Potentials and Low-Temperature Materials. IEEE Nanotechnology Magazine, 2013, 12, 450-459.	2.0	28
56	Logic Gates and Ring Oscillators Based on Ambipolar Nanocrystalline-Silicon TFTs. Active and Passive Electronic Components, 2013, 2013, 1-7.	0.3	11
57	Multilevel Switching in Forming-Free Resistive Memory Devices With Atomic Layer Deposited \${m HfTiO}_{x}\$ Nanolaminate. IEEE Electron Device Letters, 2013, 34, 867-869.	3.9	37
58	Low-Temperature Fabrication of Spiking Soma Circuits Using Nanocrystalline-Silicon TFTs. IEEE Transactions on Neural Networks and Learning Systems, 2013, 24, 1466-1472.	11.3	2
59	Chemical and electrical characterization of the HfO2/InAlAs interface. Journal of Applied Physics, 2013, 114, .	2.5	22
60	Forming-free resistive switching with low current operation in graphene-insulator-graphene structures. , 2013, , .		2
61	Reducing Extrinsic Performance-Limiting Factors in Graphene Grown by Chemical Vapor Deposition. ACS Nano, 2012, 6, 3224-3229.	14.6	216
62	Issues with characterizing transport properties of graphene field effect transistors. Solid State Communications, 2012, 152, 1311-1316.	1.9	19
63	Noise effects in field-effect transistor biological sensor detection circuits. , 2012, , .		2
64	SPICE macromodel of silicon-on-insulator-field-effect-transistor-based biological sensors. Sensors and Actuators B: Chemical, 2012, 161, 163-170.	7.8	27
65	Submicron Ambipolar Nanocrystalline Silicon Thin-Film Transistors and Inverters. IEEE Transactions on Electron Devices, 2012, 59, 359-366.	3.0	18
66	Neural Learning Circuits Utilizing Nano-Crystalline Silicon Transistors and Memristors. IEEE Transactions on Neural Networks and Learning Systems, 2012, 23, 565-573.	11.3	110
67	Ambipolar nano-crystalline-silicon TFTs with submicron dimensions and reduced threshold voltage shift. , $2011, , .$		7
68	Spike timing-dependent synaptic plasticity using memristors and nano-crystalline silicon TFT memories. , 2011, , .		8
69	One-Step Selective Chemistry for Silicon-on-Insulator Sensor Geometries. Langmuir, 2011, 27, 7337-7340.	3.5	24
70	The effect of chemical residues on the physical and electrical properties of chemical vapor deposited graphene transferred to SiO2. Applied Physics Letters, 2011, 99, .	3.3	829
71	Effective mobility of single-layer graphene transistors as a function of channel dimensions. Journal of Applied Physics, 2011, 109, .	2.5	114
72	Large-Area Graphene Single Crystals Grown by Low-Pressure Chemical Vapor Deposition of Methane on Copper. Journal of the American Chemical Society, 2011, 133, 2816-2819.	13.7	1,161

#	Article	IF	Citations
73	Control and stability of self-assembled monolayers under biosensing conditions. Journal of Materials Chemistry, 2011, 21, 4384.	6.7	55
74	Hebbian Learning in Spiking Neural Networks With Nanocrystalline Silicon TFTs and Memristive Synapses. IEEE Nanotechnology Magazine, 2011, 10, 1066-1073.	2.0	142
75	Interfacial chemistry of oxides on InxGa($1\hat{a}^2$ x)As and implications for MOSFET applications. Current Opinion in Solid State and Materials Science, 2011, 15, 188-207.	11.5	119
76	Comparison of Methods to Bias Fully Depleted SOI-Based MOSFET Nanoribbon pH Sensors. IEEE Transactions on Electron Devices, 2011, 58, 1752-1760.	3.0	21
77	Investigation of Tunneling Current in $\frac{SiO}_{2}\$ hbox $\frac{HfO}_{2}\$ Gate Stacks for Flash Memory Applications. IEEE Transactions on Electron Devices, 2011, 58, 4189-4195.	3.0	5
78	Is interfacial chemistry correlated to gap states for high-k/III–V interfaces?. Microelectronic Engineering, 2011, 88, 1061-1065.	2.4	62
79	Remote phonon and surface roughness limited universal electron mobility of In0.53Ga0.47As surface channel MOSFETs. Microelectronic Engineering, 2011, 88, 1083-1086.	2.4	27
80	Submicron ambipolar nanocrystalline-silicon TFTs with high-K gate dielectrics. , 2011, , .		2
81	Effect of post deposition anneal on the characteristics of HfO2/InP metal-oxide-semiconductor capacitors. Applied Physics Letters, 2011, 99, .	3.3	51
82	(Invited) Band-Edge Effective Work Functions by Controlling HfO ₂ /TiN Interfacial Composition for Gate-Last CMOS. ECS Transactions, 2011, 35, 285-295.	0.5	3
83	High-k Oxide Growth on III-V Surfaces: Chemical Bonding and MOSFET Performance. ECS Transactions, 2011, 35, 403-413.	0.5	6
84	Transport Properties of Graphene Transistors. ECS Transactions, 2011, 35, 229-237.	0.5	1
85	Impact of Semiconductor and Interface-State Capacitance on Metal/High-k/GaAs Capacitance–Voltage Characteristics. IEEE Transactions on Electron Devices, 2010, 57, 2599-2606.	3.0	38
86	(Invited) Electrical and Physical Properties of High-k Gate Dielectrics on In _x Ga _{1-x} As. ECS Transactions, 2010, 28, 209-219.	0.5	3
87	Hydrogenated amorphous silicon nanowire transistors with Schottky barrier source/drain junctions. Applied Physics Letters, 2010, 97, .	3.3	8
88	SPICE simulation of nanoscale non-crystalline silicon TFTs in spiking neuron circuits. , 2010, , .		11
89	First-principles study of metal–graphene interfaces. Journal of Applied Physics, 2010, 108, .	2.5	358
90	First-Principles and Quantum Transport Studies of Metal-Graphene End Contacts. Materials Research Society Symposia Proceedings, 2010, 1259, 1.	0.1	2

#	Article	lF	CITATIONS
91	Graphene Films with Large Domain Size by a Two-Step Chemical Vapor Deposition Process. Nano Letters, 2010, 10, 4328-4334.	9.1	896
92	Interfacial oxygen and nitrogen induced dipole formation and vacancy passivation for increased effective work functions in TiN/HfO2 gate stacks. Applied Physics Letters, 2010, 96, .	3.3	29
93	Interfacial Chemistry of Oxides on III-V Compound Semiconductors. , 2010, , 131-172.		2
94	Materials Science of Graphene for Novel Device Applications. ECS Transactions, 2009, 19, 185-199.	0.5	2
95	The significance of core-level electron binding energies on the proper analysis of InGaAs interfacial bonding. Applied Physics Letters, 2009, 95, 151905.	3.3	50
96	In-situ Studies of Atomic Layer Deposition Studies on High-Mobility Channel Materials. ECS Transactions, 2009, 25, 115-122.	0.5	0
97	Contact Resistance Studies of Metal on HOPG and Graphene Stacks. , 2009, , .		6
98	Atomic-Layer-Deposited Al2O3 as Gate Dielectrics for Graphene-Based Devices. ECS Transactions, 2009, 19, 225-230.	0.5	14
99	Surface passivation and implications on high mobility channel performance (Invited Paper). Microelectronic Engineering, 2009, 86, 1544-1549.	2.4	41
100	Deposition of HfO2 on InAs by atomic-layer deposition. Microelectronic Engineering, 2009, 86, 1561-1563.	2.4	39
101	Detection of Ga suboxides and their impact on III-V passivation and Fermi-level pinning. Applied Physics Letters, 2009, 94, .	3.3	250
102	Surface Studies of III-V Materials: Oxidation Control and Device Implications. ECS Transactions, 2009, 19, 387-403.	0.5	24
103	Extraction of the Effective Mobility of $\frac{\ln}{0.53}$ hbox $Ga_{0.47}$ hbox $As_{0.47}$ hbox $As_{0.47}$ letters, 2009, 30, 316-318.	3.9	39
104	Structural and Electrical Properties of HfO2/n-In _x Ga _{1-x} As structures (x: 0,) Tj ETQq0 0	0 rgBT /O	verlock 10 Tf 5
105	Technology and metrology of new electronic materials and devices. , 2009, , 166-173.		1
106	Half-cycle atomic layer deposition reaction studies of Al2O3 on (NH4)2S passivated GaAs(100) surfaces. Applied Physics Letters, 2008, 93, .	3.3	94
107	Conformal Al2O3 dielectric layer deposited by atomic layer deposition for graphene-based nanoelectronics. Applied Physics Letters, 2008, 92, .	3.3	245
108	A Gate Dielectric Last Approach to Integrate Organic Based Devices on Plastic Substrates., 2008,,.		8

#	Article	IF	CITATIONS
109	Lithographically Defined Si Nanowire Field Effect Transistors for Biochemical Sensing. , 2008, , .		O
110	Performance enhancement of n-channel inversion type InxGa1â^'xAs metal-oxide-semiconductor field effect transistor using <i>ex situ</i> deposited thin amorphous silicon layer. Applied Physics Letters, 2008, 93, .	3.3	54
111	Indium stability on InGaAs during atomic H surface cleaning. Applied Physics Letters, 2008, 92, .	3.3	62
112	Comparison of n-type and p-type GaAs oxide growth and its effects on frequency dispersion characteristics. Applied Physics Letters, 2008, 93, 113506.	3.3	55
113	Half-cycle atomic layer deposition reaction studies of Al2O3 on In0.2Ga0.8As (100) surfaces. Applied Physics Letters, 2008, 93, .	3.3	138
114	Three-Dimensional Simulation Study of the Improved On/Off Current Ratio in Silicon Nanowire Field-Effect Transistors. Journal of the Korean Physical Society, 2008, 53, 1680-1684.	0.7	0
115	14MHz organic diodes fabricated using photolithographic processes. Applied Physics Letters, 2007, 90, 262105.	3.3	34
116	Frequency dispersion reduction and bond conversion on n-type GaAs by in situ surface oxide removal and passivation. Applied Physics Letters, 2007, 91, 163512.	3.3	88
117	Precise Alignment of Single Nanowires and Fabrication of Nanoelectromechanical Switch and Other Test Structures. IEEE Nanotechnology Magazine, 2007, 6, 256-262.	2.0	52
118	Technology and metrology of new electronic materials and devices. Nature Nanotechnology, 2007, 2, 25-32.	31.5	173
119	Spatial Distributions of Trapping Centers in \$ hbox{HfO}_{2}/hbox{SiO}_{2}\$ Gate Stack. IEEE Transactions on Electron Devices, 2007, 54, 1338-1345.	3.0	56
120	Metrology Challenges for Emerging Research Devices and Materials. IEEE Transactions on Semiconductor Manufacturing, 2006, 19, 397-403.	1.7	7
121	Interface characterization of molecular-monolayer/SiO2 based molecular junctions. Solid-State Electronics, 2006, 50, 1088-1096.	1.4	17
122	A Comparison of Thickness Values for Very Thin SiO[sub 2] Films by Using Ellipsometric, Capacitance-Voltage, and HRTEM Measurements. Journal of the Electrochemical Society, 2006, 153, F12.	2.9	6
123	Combinatorial study of Ni–Ti–Pt ternary metal gate electrodes on HfO2 for the advanced gate stack. Applied Physics Letters, 2006, 89, 142108.	3.3	21
124	Spatial distributions of trapping centers in HfO2â^•SiO2 gate stacks. Applied Physics Letters, 2006, 88, 152907.	3.3	67
125	CHARACTERIZATION OF ELECTRICALLY ACTIVE DEFECTS IN HIGH-K GATE DIELECTRICS USING CHARGE PUMPING., 2006,, 85-96.		1
126	Metrology for Emerging Devices and Materials. AIP Conference Proceedings, 2005, , .	0.4	0

#	Article	lF	CITATIONS
127	Nanometre gaps in gold wires are formed by thermal migration. Nanotechnology, 2005, 16, 1294-1299.	2.6	16
128	Enhanced Channel Modulation in Dual-Gated Silicon Nanowire Transistors. Nano Letters, 2005, 5, 2519-2523.	9.1	129
129	Silicon nanowires as enhancement-mode Schottky barrier field-effect transistors. Nanotechnology, 2005, 16, 1482-1485.	2.6	126
130	Influence of buffer layer thickness on memory effects of SrBi2Ta2O9â^•SiNâ^•Si structures. Applied Physics Letters, 2004, 85, 1439-1441.	3.3	25
131	Molecular devices formed by direct monolayer attachment to silicon. Solid-State Electronics, 2004, 48, 1747-1752.	1.4	24
132	Asymmetric Energy Distribution of Interface Traps in n- and p-MOSFETs With <tex>\$hbox HfO _2\$</tex> Gate Dielectric on Ultrathin SiON Buffer Layer. IEEE Electron Device Letters, 2004, 25, 126-128.	3.9	34
133	High Inversion Current in Silicon Nanowire Field Effect Transistors. Nano Letters, 2004, 4, 2197-2201.	9.1	87
134	A capacitance–voltage model for polysilicon-gated MOS devices including substrate quantization effects based on modification of the total semiconductor charge. Solid-State Electronics, 2003, 47, 1589-1596.	1.4	21
135	Impact of substrate hot hole injection on ultrathin silicon dioxide breakdown. Applied Physics Letters, 2003, 82, 3242-3244.	3.3	12
136	Thickness Evaluation for 2nm SiO2 Films, a Comparison of Ellipsometric, Capacitance-Voltage and HRTEM Measurements. AIP Conference Proceedings, 2003, , .	0.4	5
137	Challenges of Electrical Measurements of Advanced Gate Dielectrics in Metal-Oxide-Semiconductor Devices. AIP Conference Proceedings, 2003, , .	0.4	3
138	Interaction between low-energy electrons and defects created by hot holes in ultrathin silicon dioxide. Applied Physics Letters, 2002, 80, 3343-3345.	3.3	3
139	Observation of latent reliability degradation in ultrathin oxides after heavy-ion irradiation. Applied Physics Letters, 2002, 80, 1282-1284.	3.3	42
140	A comparison of quantum-mechanical capacitance-voltage simulators. IEEE Electron Device Letters, 2001, 22, 35-37.	3.9	72
141	Heavy-ion-induced soft breakdown of thin gate oxides. IEEE Transactions on Nuclear Science, 2001, 48, 1913-1916.	2.0	46
142	Time-dependent breakdown of ultra-thin SiO2 gate dielectrics under pulsed biased stress. IEEE Electron Device Letters, 2001, 22, 224-226.	3.9	19
143	Reliability of ultra-thin silicon dioxide under substrate hot-electron, substrate hot-hole and tunneling stress. Microelectronic Engineering, 2001, 59, 73-83.	2.4	6
144	Study of low-frequency charge pumping on thin stacked dielectrics. IEEE Transactions on Electron Devices, 2001, 48, 2754-2762.	3.0	26

#	Article	lF	CITATION
145	Defect generation and breakdown of ultrathin silicon dioxide induced by substrate hot-hole injection. Journal of Applied Physics, 2001, 90, 2338-2346.	2.5	30
146	Limitations of conductance to the measurement of the interface state density of MOS capacitors with tunneling gate dielectrics. IEEE Transactions on Electron Devices, 2000, 47, 601-608.	3.0	98
147	Reliability of ultrathin silicon dioxide under combined substrate hot-electron and constant voltage tunneling stress. IEEE Transactions on Electron Devices, 2000, 47, 1183-1191.	3.0	54
148	Analysis of leakage currents and impact on off-state power consumption for CMOS technology in the 100-nm regime. IEEE Transactions on Electron Devices, 2000, 47, 1393-1400.	3.0	89
149	Estimating oxide thickness of tunnel oxides down to 1.4 nm using conventional capacitance-voltage measurements on MOS capacitors. IEEE Electron Device Letters, 1999, 20, 179-181.	3.9	147
150	Modeled tunnel currents for high dielectric constant dielectrics. IEEE Transactions on Electron Devices, 1998, 45, 1350-1355.	3.0	152
151	Low-frequency noise characterization of n- and p-MOSFET's with ultrathin oxynitride gate films. IEEE Electron Device Letters, 1996, 17, 395-397.	3.9	49
152	Low-pressure rapid thermal chemical vapor deposition of oxynitride gate dielectrics for n-channel and p-channel MOSFETs. IEEE Transactions on Electron Devices, 1996, 43, 15-22.	3.0	45
153	Mobility behaviour of n-channel and p-channel MOSFETs with oxynitride gate dielectrics formed by low-pressure rapid thermal chemical vapor deposition. IEEE Transactions on Electron Devices, 1996, 43, 753-758.	3.0	30