
Antoinette S Perry

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5319237/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Plant-derived cannabinoids as anticancer agents. Trends in Cancer, 2022, 8, 350-357.	7.4	7
2	Longitudinal analysis of individual cfDNA methylome patterns in metastatic prostate cancer. Clinical Epigenetics, 2021, 13, 168.	4.1	14
3	Development of a multivariable risk model integrating urinary cell DNA methylation and cellâ€free RNA data for the detection of significant prostate cancer. Prostate, 2020, 80, 547-558.	2.3	17
4	Evaluating liquid biopsies for methylomic profiling of prostate cancer. Epigenetics, 2020, 15, 715-727.	2.7	13
5	A fourâ€group urine risk classifier for predicting outcomes in patients with prostate cancer. BJU International, 2019, 124, 609-620.	2.5	30
6	epiCaPture: A Urine DNA Methylation Test for Early Detection of Aggressive Prostate Cancer. JCO Precision Oncology, 2019, 2019, 1-18.	3.0	27
7	Holding a MIRror up to the robustness of the prostate cancer urinary transcriptome. Translational Andrology and Urology, 2019, 8, S488-S490.	1.4	0
8	Reasons for Discontinuing Active Surveillance: Assessment of 21 Centres in 12 Countries in the Movember GAP3 Consortium. European Urology, 2019, 75, 523-531.	1.9	58
9	Epigenetics of malignant melanoma. Seminars in Cancer Biology, 2018, 51, 80-88.	9.6	95
10	Assessing DNA Methylation in Cancer Stem Cells. Methods in Molecular Biology, 2018, 1692, 157-178.	0.9	4
11	A urine-based DNA methylation assay, ProCUrE, to identify clinically significant prostate cancer. Clinical Epigenetics, 2018, 10, 147.	4.1	26
12	Integrating biomarkers across omic platforms: an approach to improve stratification of patients with indolent and aggressive prostate cancer. Molecular Oncology, 2018, 12, 1513-1525.	4.6	41
13	Analysis of urinary PSA glycosylation is not indicative of high-risk prostate cancer. Clinica Chimica Acta, 2017, 470, 97-102.	1.1	10
14	Comparative analysis of prostateâ€specific antigen by twoâ€dimensional gel electrophoresis and capillary electrophoresis. Electrophoresis, 2017, 38, 408-416.	2.4	6
15	Hypoxia regulates Notch-3 mRNA and receptor activation in prostate cancer cells. Heliyon, 2016, 2, e00104.	3.2	10
16	Improving multivariable prostate cancer risk assessment using the Prostate Health Index. BJU International, 2016, 117, 409-417.	2.5	39
17	Expression of the TPα and TPβ isoforms of the thromboxane prostanoid receptor (TP) in prostate cancer: clinical significance and diagnostic potential. Oncotarget, 2016, 7, 73171-73187.	1.8	10
18	Multigene Methylation Biomarker Analysis in Prostate Cancer. Epigenetic Diagnosis & Therapy, 2015, 1, 19-27.	0.1	0

ANTOINETTE S PERRY

#	Article	IF	CITATIONS
19	Epigenetic Methodologies for the Study of Celiac Disease. Methods in Molecular Biology, 2015, 1326, 131-158.	0.9	8
20	Long noncoding RNAs and prostate carcinogenesis: the missing â€~linc'?. Trends in Molecular Medicine, 2014, 20, 428-436.	6.7	97
21	Noncoding RNAs in Prostate Cancer: The Long and the Short of It. Clinical Cancer Research, 2014, 20, 35-43.	7.0	59
22	Gene expression and epigenetic discovery screen reveal methylation of SFRP2 in prostate cancer. International Journal of Cancer, 2013, 132, 1771-1780.	5.1	40
23	Prostate Cancer Epigenomics. Journal of Urology, 2013, 189, 10-11.	0.4	6
24	Mining methylome databases. Trends in Genetics, 2013, 29, 63-65.	6.7	2
25	Manipulating the epigenome for the treatment of urological malignancies. , 2013, 138, 185-196.		17
26	Gene expression analysis in prostate cancer: The importance of the endogenous control. Prostate, 2013, 73, 382-390.	2.3	13
27	Gemcitabine reactivates epigenetically silenced genes and functions as a DNA methyltransferase inhibitor. International Journal of Molecular Medicine, 2012, 30, 1505-1511.	4.0	31
28	Docetaxel maintains its cytotoxic activity under hypoxic conditions in prostate cancer cells. Urologic Oncology: Seminars and Original Investigations, 2012, 30, 912-919.	1.6	16
29	IGFBP7 Promoter Methylation and Gene Expression Analysis in Prostate Cancer. Journal of Urology, 2012, 188, 1354-1360.	0.4	29
30	MicroRNAs as putative mediators of treatment response in prostate cancer. Nature Reviews Urology, 2012, 9, 397-407.	3.8	36
31	The role of secreted frizzled-related protein 2 expression in prostate cancer. Histopathology, 2011, 59, 1240-1248.	2.9	27
32	In silico analysis and DHPLC screening strategy identifies novel apoptotic gene targets of aberrant promoter hypermethylation in prostate cancer. Prostate, 2011, 71, 1-17.	2.3	15
33	Localized hypermutation and associated gene losses in legume chloroplast genomes. Genome Research, 2010, 20, 1700-1710.	5.5	244
34	MAD2 downregulation in hypoxia is independent of promoter hypermethylation. Cell Cycle, 2010, 9, 2928-2937.	2.6	9
35	The epigenome as a therapeutic target in prostate cancer. Nature Reviews Urology, 2010, 7, 668-680.	3.8	118
36	The HIF-1α C1772T polymorphism may be associated with susceptibility to clinically localized prostate cancer but not with elevated expression of hypoxic biomarkers. Cancer Biology and Therapy, 2009, 8, 118-124.	3.4	50

ANTOINETTE S PERRY

#	Article	IF	CITATIONS
37	The emergence of DNA methylation as a key modulator of aberrant cell death in prostate cancer. Endocrine-Related Cancer, 2008, 15, 11-25.	3.1	51
38	Discovery of DNA Hypermethylation Using a DHPLC Screening Strategy. Epigenetics, 2007, 2, 43-49.	2.7	11
39	In silico mining identifies IGFBP3 as a novel target of methylation in prostate cancer. British Journal of Cancer, 2007, 96, 1587-1594.	6.4	45
40	The emerging roles of DNA methylation in the clinical management of prostate cancer. Endocrine-Related Cancer, 2006, 13, 357-377.	3.1	80
41	Evolutionary Re-organisation of a Large Operon in Adzuki Bean Chloroplast DNA caused by Inverted Repeat Movement. DNA Research, 2002, 9, 157-162.	3.4	33
42	Nucleotide Substitution Rates in Legume Chloroplast DNA Depend on the Presence of the Inverted Repeat. Journal of Molecular Evolution, 2002, 55, 501-508.	1.8	168