Eleanor M Slade

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5319052/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Functional identity and diversity of animals predict ecosystem functioning better than species-based indices. Proceedings of the Royal Society B: Biological Sciences, 2015, 282, 20142620.	2.6	467
2	Higher predation risk for insect prey at low latitudes and elevations. Science, 2017, 356, 742-744.	12.6	353
3	Experimental evidence for the effects of dung beetle functional group richness and composition on ecosystem function in a tropical forest. Journal of Animal Ecology, 2007, 76, 1094-1104.	2.8	251
4	Research trends in ecosystem services provided by insects. Basic and Applied Ecology, 2018, 26, 8-23.	2.7	216
5	The database of the <scp>PREDICTS</scp> (Projecting Responses of Ecological Diversity In Changing) Tj ETQq1 1	0.784314	1 rgBT /Ove 186
6	The <scp>PREDICTS</scp> database: a global database of how local terrestrial biodiversity responds to human impacts. Ecology and Evolution, 2014, 4, 4701-4735.	1.9	178
7	Extinction filters mediate the global effects of habitat fragmentation on animals. Science, 2019, 366, 1236-1239.	12.6	164
8	Experimental evidence for the interacting effects of forest edge, moisture and soil macrofauna on leaf litter decomposition. Soil Biology and Biochemistry, 2012, 49, 124-131.	8.8	149
9	Biodiversity and ecosystem function of tropical forest dung beetles under contrasting logging regimes. Biological Conservation, 2011, 144, 166-174.	4.1	147
10	Support for the habitat amount hypothesis from a global synthesis of species density studies. Ecology Letters, 2020, 23, 674-681.	6.4	139
11	The environmental impacts of palm oil in context. Nature Plants, 2020, 6, 1418-1426.	9.3	133
12	Lifeâ€history traits and landscape characteristics predict macroâ€moth responses to forest fragmentation. Ecology, 2013, 94, 1519-1530.	3.2	110
13	Macroâ€moth families differ in their attraction to light: implications for lightâ€trap monitoring programmes. Insect Conservation and Diversity, 2014, 7, 453-461.	3.0	106
14	Traitâ€dependent response of dung beetle populations to tropical forest conversion at local and regional scales. Ecology, 2013, 94, 180-189.	3.2	100
15	Riparian buffers in tropical agriculture: Scientific support, effectiveness and directions for policy. Journal of Applied Ecology, 2019, 56, 85-92.	4.0	100
16	The role of dung beetles in reducing greenhouse gas emissions from cattle farming. Scientific Reports, 2016, 6, 18140.	3.3	91
17	Speciesâ€rich dung beetle communities buffer ecosystem services in perturbed agroâ€ecosystems. Journal of Applied Ecology, 2012, 49, 1365-1372.	4.0	88
18	Do riparian reserves support dung beetle biodiversity and ecosystem services in oil palmâ€dominated tropical landscapes?. Ecology and Evolution, 2014, 4, 1049-1060.	1.9	84

#	Article	IF	CITATIONS
19	Quantifying Beetle-Mediated Effects on Gas Fluxes from Dung Pats. PLoS ONE, 2013, 8, e71454.	2.5	75
20	Functionally rich dung beetle assemblages are required to provide multiple ecosystem services. Agriculture, Ecosystems and Environment, 2016, 218, 87-94.	5.3	75
21	Treating cattle with antibiotics affects greenhouse gas emissions, and microbiota in dung and dung beetles. Proceedings of the Royal Society B: Biological Sciences, 2016, 283, 20160150.	2.6	67
22	Specimens as primary data: museums and â€~open science'. Trends in Ecology and Evolution, 2015, 30, 237-238.	8.7	61
23	Impacts of logging on density-dependent predation of dipterocarp seeds in a South East Asian rainforest. Philosophical Transactions of the Royal Society B: Biological Sciences, 2011, 366, 3246-3255.	4.0	60
24	Dietary Shifts in Relation to Fruit Availability among Masked Palm Civets (Paguma larvata) in Central China. Journal of Mammalogy, 2008, 89, 435-447.	1.3	59
25	Effects of soil management practices on soil fauna feeding activity in an Indonesian oil palm plantation. Agriculture, Ecosystems and Environment, 2016, 218, 133-140.	5.3	59
26	The importance of species identity and interactions for multifunctionality depends on how ecosystem functions are valued. Ecology, 2017, 98, 2626-2639.	3.2	56
27	Quantifying the sampling error in tree census measurements by volunteers and its effect on carbon stock estimates. Ecological Applications, 2013, 23, 936-943.	3.8	53
28	Interacting effects of leaf litter species and macrofauna on decomposition in different litter environments. Basic and Applied Ecology, 2012, 13, 423-431.	2.7	50
29	Dung beetle–mammal associations: methods, research trends and future directions. Proceedings of the Royal Society B: Biological Sciences, 2019, 286, 20182002.	2.6	49
30	Disentangling the †brown world' faecal–detritus interaction web: dung beetle effects on soil microbial properties. Oikos, 2016, 125, 629-635.	2.7	47
31	Factors Affecting Soil Fauna Feeding Activity in a Fragmented Lowland Temperate Deciduous Woodland. PLoS ONE, 2012, 7, e29616.	2.5	47
32	Global dung webs: high trophic generalism of dung beetles along the latitudinal diversity gradient. Ecology Letters, 2018, 21, 1229-1236.	6.4	46
33	Are riparian forest reserves sources of invertebrate biodiversity spillover and associated ecosystem functions in oil palm landscapes?. Biological Conservation, 2016, 194, 176-183.	4.1	45
34	Spatial and temporal shifts in functional and taxonomic diversity of dung beetles in a human-modified tropical forest landscape. Ecological Indicators, 2018, 95, 518-526.	6.3	45
35	Functionally richer communities improve ecosystem functioning: Dung removal and secondary seed dispersal by dung beetles in the Western Palaearctic. Journal of Biogeography, 2019, 46, 70-82.	3.0	45
36	Macrofauna assemblage composition and soil moisture interact to affect soil ecosystem functions. Acta Oecologica, 2013, 47, 30-36.	1.1	43

#	Article	IF	CITATIONS
37	Application of oil palm empty fruit bunch effects on soil biota and functions: A case study in Sumatra, Indonesia. Agriculture, Ecosystems and Environment, 2018, 256, 105-113.	5.3	36
38	Dung beetle community dynamics in undisturbed tropical forests: implications for ecological evaluations of landâ€use change. Insect Conservation and Diversity, 2017, 10, 94-106.	3.0	34
39	Living on the edge: quantifying the structure of a fragmented forest landscape in England. Landscape Ecology, 2014, 29, 949-961.	4.2	33
40	Tropical dung beetle morphological traits predict functional traits and show intraspecific differences across land uses. Ecology and Evolution, 2018, 8, 8686-8696.	1.9	33
41	A Research Agenda for Microclimate Ecology in Human-Modified Tropical Forests. Frontiers in Forests and Global Change, 2020, 2, .	2.3	33
42	Frugivory and seed dispersal by the yellow-throated marten, <i>Martes flavigula</i> , in a subtropical forest of China. Journal of Tropical Ecology, 2008, 24, 219-223.	1.1	32
43	Sexual selection predicts the persistence of populations within altered environments. Ecology Letters, 2019, 22, 1629-1637.	6.4	31
44	Dung beetle species interactions and multifunctionality are affected by an experimentally warmed climate. Oikos, 2016, 125, 1607-1616.	2.7	30
45	<scp>BIOFRAG</scp> – a new database for analyzing <scp>BIO</scp> diversity responses to forest <scp>FRAG</scp> mentation. Ecology and Evolution, 2014, 4, 1524-1537.	1.9	29
46	Managing Oil Palm Plantations More Sustainably: Large-Scale Experiments Within the Biodiversity and Ecosystem Function in Tropical Agriculture (BEFTA) Programme. Frontiers in Forests and Global Change, 2020, 2, .	2.3	29
47	Top 100 research questions for biodiversity conservation in Southeast Asia. Biological Conservation, 2019, 234, 211-220.	4.1	28
48	When Do More Species Maximize More Ecosystem Services?. Trends in Plant Science, 2019, 24, 790-793.	8.8	27
49	Riparian buffers act as microclimatic refugia in oil palm landscapes. Journal of Applied Ecology, 2021, 58, 431-442.	4.0	27
50	Effect of dung beetle species richness and chemical perturbation on multiple ecosystem functions. Ecological Entomology, 2017, 42, 577-586.	2.2	26
51	Landscape-Scale Implications of the Edge Effect on Soil Fauna Activity in a Temperate Forest. Ecosystems, 2016, 19, 534-544.	3.4	25
52	Effects of Replanting and Retention of Mature Oil Palm Riparian Buffers on Ecosystem Functioning in Oil Palm Plantations. Frontiers in Forests and Global Change, 2019, 2, .	2.3	24
53	Leech bloodâ€meal invertebrateâ€derived DNA reveals differences in Bornean mammal diversity across habitats. Molecular Ecology, 2021, 30, 3299-3312	3.9	24
54	The Importance of Microhabitat for Biodiversity Sampling. PLoS ONE, 2014, 9, e114015.	2.5	24

#	Article	IF	CITATIONS
55	Woodland Recovery after Suppression of Deer: Cascade effects for Small Mammals, Wood Mice (Apodemus sylvaticus) and Bank Voles (Myodes glareolus). PLoS ONE, 2012, 7, e31404.	2.5	23
56	Joint species movement modeling: how do traits influence movements?. Ecology, 2019, 100, e02622.	3.2	22
57	Litter Inputs, but Not Litter Diversity, Maintain Soil Processes in Degraded Tropical Forests—A Cross-Continental Comparison. Frontiers in Forests and Global Change, 2020, 2, .	2.3	22
58	Identifying the anthropogenic drivers of declines in tropical dung beetle communities and functions. Biological Conservation, 2021, 256, 109063.	4.1	22
59	Long-term crop residue application maintains oil palm yield and temporal stability of production. Agronomy for Sustainable Development, 2017, 37, 33.	5.3	21
60	Extinctions of interactions: quantifying a dung beetle–mammal network. Ecosphere, 2018, 9, e02491.	2.2	21
61	Dung beetles as samplers of mammals in Malaysian Borneo—a test of high throughput metabarcoding of iDNA. PeerJ, 2021, 9, e11897.	2.0	21
62	Ground based LiDAR demonstrates the legacy of management history to canopy structure and composition across a fragmented temperate woodland. Forest Ecology and Management, 2015, 335, 255-260.	3.2	14
63	Biodiversity in tropical plantations is influenced by surrounding native vegetation but not yield: A case study with dung beetles in Amazonia. Forest Ecology and Management, 2019, 444, 107-114.	3.2	13
64	Movement of Moths Through Riparian Reserves Within Oil Palm Plantations. Frontiers in Forests and Global Change, 2019, 2, .	2.3	12
65	Linking dung beetleâ€mediated functions to interactions in the Atlantic Forest: Sampling design matters. Biotropica, 2020, 52, 215-220.	1.6	12
66	<scp>MESOCLOSURES</scp> – increasing realism in mesocosm studies of ecosystem functioning. Methods in Ecology and Evolution, 2015, 6, 916-924.	5.2	11
67	Interspecific and intraspecific variation in diet preference in five Atlantic forest dung beetle species. Ecological Entomology, 2019, 44, 436-439.	2.2	10
68	Riparian buffers can help mitigate biodiversity declines in oil palm agriculture. Frontiers in Ecology and the Environment, 2022, 20, 459-466.	4.0	9
69	Frag SAD : A database of diversity and species abundance distributions from habitat fragments. Ecology, 2019, 100, e02861.	3.2	8
70	Localâ€scale temperature gradients driven by human disturbance shape the physiological and morphological traits of dung beetle communities in a Bornean oil palm–forest mosaic. Functional Ecology, 2022, 36, 1655-1667.	3.6	7
71	Evidence of forest restoration success and the conservation value of community-owned forests in Southwest China using dung beetles as indicators. PLoS ONE, 2018, 13, e0204764.	2.5	6
72	Dung beetle assemblages, dung removal and secondary seed dispersal: data from a large-scale, multi-site experiment in the Western Palaearctic. Frontiers of Biogeography, 2018, 10, .	1.8	6

#	Article	IF	CITATIONS
73	Drivers of Bornean Orangutan Distribution across a Multiple-Use Tropical Landscape. Remote Sensing, 2021, 13, 458.	4.0	6
74	Trap type affects dung beetle taxonomic and functional diversity in Bornean tropical forests. Austral Ecology, 2022, 47, 68-78.	1.5	6
75	Dung beetles as hydrological engineers: effects of tunnelling on soil infiltration. Ecological Entomology, 2022, 47, 84-94.	2.2	6
76	Tropical forest dung beetle–mammal dung interaction networks remain similar across an environmental disturbance gradient. Journal of Animal Ecology, 2022, 91, 604-617.	2.8	6
77	Dung beetleâ€megafauna trophic networks in Singapore's fragmented forests. Biotropica, 2020, 52, 818-824.	1.6	5
78	Complexity within an oil palm monoculture: The effects of habitat variability and rainfall on adult dragonfly (Odonata) communities. Biotropica, 2020, 52, 366-378.	1.6	5
79	Movement of forestâ€dependent dung beetles through riparian buffers in Bornean oil palm plantations. Journal of Applied Ecology, 2022, 59, 238-250.	4.0	5
80	Dung Beetles Help Keep Ecosystems Healthy. Frontiers for Young Minds, 0, 9, .	0.8	1
81	Value coordinating roles in research. Nature, 2017, 546, 33-33.	27.8	0
82	Biotropica requests permit numbers. Biotropica, 2020, 52, 794-794.	1.6	0
83	Local and landscape-scale impacts of woodland management on wildlife. , 2015, , 224-240.		Ο