Sumin Kang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/53184/publications.pdf Version: 2024-02-01

SUMIN KANC

#	Article	IF	CITATIONS
1	Phosphoglycerate Mutase 1 Coordinates Glycolysis and Biosynthesis to Promote Tumor Growth. Cancer Cell, 2012, 22, 585-600.	16.8	329
2	Tyrosine Phosphorylation of Mitochondrial Pyruvate Dehydrogenase Kinase 1 Is Important for Cancer Metabolism. Molecular Cell, 2011, 44, 864-877.	9.7	278
3	Glutamate Dehydrogenase 1 Signals through Antioxidant Glutathione Peroxidase 1 to Regulate Redox Homeostasis and Tumor Growth. Cancer Cell, 2015, 27, 257-270.	16.8	269
4	Tyr Phosphorylation of PDP1 Toggles Recruitment between ACAT1 and SIRT3 to Regulate the Pyruvate Dehydrogenase Complex. Molecular Cell, 2014, 53, 534-548.	9.7	247
5	6-Phosphogluconate dehydrogenase links oxidative PPP, lipogenesis and tumour growth by inhibiting LKB1–AMPK signalling. Nature Cell Biology, 2015, 17, 1484-1496.	10.3	224
6	The PLAG1-GDH1 Axis Promotes Anoikis Resistance and Tumor Metastasis through CamKK2-AMPK Signaling in LKB1-Deficient Lung Cancer. Molecular Cell, 2018, 69, 87-99.e7.	9.7	217
7	p90 ribosomal S6 kinase 2 promotes invasion and metastasis of human head and neck squamous cell carcinoma cells. Journal of Clinical Investigation, 2010, 120, 1165-1177.	8.2	133
8	FGFR3 Activates RSK2 to Mediate Hematopoietic Transformation through Tyrosine Phosphorylation of RSK2 and Activation of the MEK/ERK Pathway. Cancer Cell, 2007, 12, 201-214.	16.8	130
9	Metabolic Rewiring by Oncogenic BRAF V600E Links Ketogenesis Pathway to BRAF-MEK1 Signaling. Molecular Cell, 2015, 59, 345-358.	9.7	125
10	New Approaches to SCLC Therapy: From the Laboratory to the Clinic. Journal of Thoracic Oncology, 2020, 15, 520-540.	1.1	119
11	MAST1 Drives Cisplatin Resistance in Human Cancers by Rewiring cRaf-Independent MEK Activation. Cancer Cell, 2018, 34, 315-330.e7.	16.8	94
12	Tetrameric Acetyl-CoA Acetyltransferase 1 Is Important for Tumor Growth. Molecular Cell, 2016, 64, 859-874.	9.7	73
13	Critical role of ASCT2-mediated amino acid metabolism in promoting leukaemia development and progression. Nature Metabolism, 2019, 1, 390-403.	11.9	65
14	Tyr-301 Phosphorylation Inhibits Pyruvate Dehydrogenase by Blocking Substrate Binding and Promotes the Warburg Effect. Journal of Biological Chemistry, 2014, 289, 26533-26541.	3.4	61
15	Fibroblast Growth Factor Receptor 3 Associates with and Tyrosine Phosphorylates p90 RSK2, Leading to RSK2 Activation That Mediates Hematopoietic Transformation. Molecular and Cellular Biology, 2009, 29, 2105-2117.	2.3	53
16	The Prometastatic Ribosomal S6 Kinase 2-cAMP Response Element-binding Protein (RSK2-CREB) Signaling Pathway Up-regulates the Actin-binding Protein Fascin-1 to Promote Tumor Metastasis. Journal of Biological Chemistry, 2013, 288, 32528-32538.	3.4	45
17	Mitochondrial metabolism-mediated redox regulation in cancer progression. Redox Biology, 2021, 42, 101870.	9.0	40
18	DGKA Provides Platinum Resistance in Ovarian Cancer Through Activation of c-JUN–WEE1 Signaling. Clinical Cancer Research, 2020, 26, 3843-3855.	7.0	38

SUMIN KANG

#	Article	IF	CITATIONS
19	Epidermal Growth Factor Stimulates RSK2 Activation through Activation of the MEK/ERK Pathway and Src-dependent Tyrosine Phosphorylation of RSK2 at Tyr-529. Journal of Biological Chemistry, 2008, 283, 4652-4657.	3.4	37
20	Cisplatin-mediated activation of glucocorticoid receptor induces platinum resistance via MAST1. Nature Communications, 2021, 12, 4960.	12.8	32
21	A ERK/RSKâ€mediated negative feedback loop regulates Mâ€CSF–evoked PI3K/AKT activation in macrophages. FASEB Journal, 2018, 32, 875-887.	0.5	31
22	p90RSK2 is essential for FLT3-ITD– but dispensable for BCR-ABL–induced myeloid leukemia. Blood, 2011, 117, 6885-6894.	1.4	30
23	p90 RSK2 Mediates Antianoikis Signals by both Transcription-Dependent and -Independent Mechanisms. Molecular and Cellular Biology, 2013, 33, 2574-2585.	2.3	28
24	Inositol-triphosphate 3-kinase B confers cisplatin resistance by regulating NOX4-dependent redox balance. Journal of Clinical Investigation, 2019, 129, 2431-2445.	8.2	28
25	Targeting RSK2 in human malignancies. Expert Opinion on Therapeutic Targets, 2011, 15, 11-20.	3.4	26
26	Hsp90B enhances MAST1-mediated cisplatin resistance by protecting MAST1 from proteosomal degradation. Journal of Clinical Investigation, 2019, 129, 4110-4123.	8.2	22
27	Targeting RSK2 in myeloid leukemia: Right for FLT3 but wrong for BCR-ABL. Cell Cycle, 2011, 10, 3611-3612.	2.6	2
28	Tumor Progression of Breast Cancer during Hyperinsulinemic Obesity. Trends in Molecular Medicine, 2020, 26, 354-356.	6.7	2
29	Metabolic Contributions to Anoikis-Resistance in Metastatic Dissemination. , 2021, , 1-16.		0
30	Targeting 14-3-3 Sensitizes Native and Mutant BCR-ABL to Inhibition with U0126, Rapamycin and Bcl-2 Inhibitor GX15-070 Blood, 2007, 110, 2920-2920.	1.4	0
31	Leukemogenic Tyrosine Kinases Inhibit PKM2 to Promote the Warburg Effect and Tumor Growth. Blood, 2010, 116, 3142-3142.	1.4	0
32	p90RSK2 Is Essential for FLT3-ITD-, but Dispensable for BCR-ABL-Induced Myeloid Leukemia. Blood, 2010, 116, 1716-1716.	1.4	0