
Leucio Rossi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5318393/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Organosulfur volatile profiles in Italian red garlic (Allium Sativum L.) varieties investigated by HS-SPME/GC-MS and chemometrics. Food Control, 2022, 131, 108477.	5.5	22
2	Characterization of high value Italian chickpeas (Cicer arietinum L.) by means of ICP-OES multi-elemental analysis coupled with chemometrics. Food Control, 2022, 131, 108451.	5.5	7
3	Mixtures of choline chloride and tetrabutylammonium bromide with imidazole as examples of deep eutectic solvents: their structure by theoretical and experimental investigation. Journal of Molecular Liquids, 2022, 352, 118427.	4.9	6
4	Detection of Plant-Derived Adulterants in Saffron (Crocus sativus L.) by HS-SPME/GC-MS Profiling of Volatiles and Chemometrics. Food Analytical Methods, 2021, 14, 784-796.	2.6	14
5	HS-SPME/GC–MS volatile fraction determination and chemometrics for the discrimination of typical Italian Pecorino cheeses. Microchemical Journal, 2021, 165, 106133.	4.5	27
6	Multi-Elemental Composition Data Handled by Chemometrics for the Discrimination of High-Value Italian Pecorino Cheeses. Molecules, 2021, 26, 6875.	3.8	6
7	Green Diesel Production by Catalytic Hydrodeoxygenation of Vegetables Oils. International Journal of Environmental Research and Public Health, 2021, 18, 13041.	2.6	16
8	Selective Catalytic Hydrogenation of Vegetable Oils on Lindlar Catalyst. ACS Omega, 2020, 5, 22901-22913.	3.5	25
9	Geographical discrimination and authentication of lentils (Lens culinaris Medik.) by ICP-OES elemental analysis and chemometrics. Food Control, 2020, 118, 107438.	5.5	12
10	Geographical discrimination of red garlic (Allium sativum L.) produced in Italy by means of multivariate statistical analysis of ICP-OES data. Food Chemistry, 2019, 275, 333-338.	8.2	47
11	Hydrotalcite-supported palladium nanoparticles as catalysts for the hydroarylation of carbon–carbon multiple bonds. New Journal of Chemistry, 2018, 42, 1952-1957.	2.8	4
12	Optimization using chemometrics of HS-SPME/GC–MS profiling of saffron aroma and identification of geographical volatile markers. European Food Research and Technology, 2018, 244, 1605-1613.	3.3	27
13	Separation of carbon dioxide for biogas upgrading to biomethane. Journal of Cleaner Production, 2017, 164, 1205-1218.	9.3	84
14	BMIm HCO3: an ionic liquid with carboxylating properties. Synthesis of carbamate esters from amines. New Journal of Chemistry, 2016, 40, 9895-9898.	2.8	11
15	Synthesis of 3-Substituted 2,1-Benzisoxazoles by the Oxidative Cyclization of 2-Aminoacylbenzenes with Oxone. Synthesis, 2016, 48, 3017-3030.	2.3	13
16	CO2 Sorption by Hydrotalcite-Like Compounds in Dry and Wet Conditions. International Journal of Chemical Reactor Engineering, 2015, 13, 335-349.	1.1	5
17	Electrochemical Methodologies for the Carboxylation Reactions in Organic Synthesis. An Alternative Re-use of Carbon Dioxide. Current Green Chemistry, 2015, 2, 77-89.	1.1	16
18	CO2 Sorption-Enhanced Processes by Hydrotalcite-Like Compounds at Different Temperature Levels. International Journal of Chemical Reactor Engineering, 2015, 13, 143-152.	1.1	1

#	Article	IF	CITATIONS
19	H2 from SERP: CO2 Sorption by Double-Layered Hydroxide at Low and High Temperatures. , 2015, , 145-153.		Ο
20	Experimental evaluation of Mg- and Ca-based synthetic sorbents for CO2 capture. Chemical Engineering Research and Design, 2014, 92, 727-740.	5.6	19
21	The Double Role of Ionic Liquids in Electroorganic Synthesis: Green Solvents and Precursors of N-Heterocyclic Carbenes. Current Organic Synthesis, 2012, 9, 40-52.	1.3	22
22	Benzoin Condensation in Ionic Liquids via Electrochemical Generation of Carbene. ECS Transactions, 2010, 25, 13-18.	0.5	0
23	Product Selectivity Control in the Heteroannulation of <i>o</i> â€(1â€Alkynyl)benzamides. Advanced Synthesis and Catalysis, 2010, 352, 136-142.	4.3	71
24	Reaction of the Electrogenerated Cyanomethyl Anion with Carbonyl Compounds: A Clean and Safe Synthesis of βâ€Hydroxynitriles. European Journal of Organic Chemistry, 2009, 2009, 3863-3866.	2.4	11
25	The double role of ionic liquids in organic electrosynthesis: Precursors of N-heterocyclic carbenes and green solvents. Henry reaction. Electrochemistry Communications, 2009, 11, 1523-1526.	4.7	32
26	An electrochemical alternative strategy to the synthesis of β-lactams. Electrochimica Acta, 2008, 53, 7852-7858.	5.2	30
27	Electrochemicalâ€Mediated Cyclization of 2â€Alkynylanilines: A Clean and Safe Synthesis of Indole Derivatives. European Journal of Organic Chemistry, 2008, 2008, 783-787.	2.4	28
28	Activation of Elemental Sulfur by Electrogenerated Cyanomethyl Anion: Synthesis of Substituted 2â€Aminothiophenes by the Gewald Reaction. Advanced Synthesis and Catalysis, 2008, 350, 2740-2746.	4.3	41
29	Sequential Alkylation/Heterocyclization of β-(2-Aminophenyl)-α,β-ynones Promoted by Electrogenerated Carbanions: A New Approach to ÂFunctionalized 4-Alkylquinolines. Synlett, 2007, 2007, 1031-1036.	1.8	13
30	Electrochemically Induced Aza-Henry Reaction: A New, Mild, and Clean Synthesis of α-Nitroamines. Synlett, 2007, 2007, 2505-2508.	1.8	8
31	Electrochemically Promoted Câ^'N Bond Formation from Amines and CO2in Ionic Liquid BMImâ^'BF4:Â Synthesis of Carbamates. Journal of Organic Chemistry, 2007, 72, 200-203.	3.2	119
32	An Electrochemical Alternative Approach to the Cyclization of Alkynes Bearing Proximate Malonyl Moieties. European Journal of Organic Chemistry, 2007, 2007, 2430-2437.	2.4	13
33	An electrochemical alternative strategy to the synthesis of β-lactams. Electrochimica Acta, 2006, 51, 5540-5547.	5.2	21
34	Electrochemical Methods for the Synthesis and the N-Acryloylation of Oxazolidin-2-ones Chiral Auxiliaries. ChemInform, 2006, 37, no.	0.0	0
35	Electrochemically Promoted C—N Bond Formation from Acetylenic Amines and CO2. Synthesis of 5-Methylene-1,3-oxazolidin-2-ones ChemInform, 2006, 37, no.	0.0	0
36	A New Approach to the Synthesis of Highly Substituted 3-Pyrrolin-2-ones. Synthesis, 2006, 2006, 2019, 2019-2030.	2.3	1

#	Article	IF	CITATIONS
37	Electrochemical Synthesis of Selenocarbonates. Letters in Organic Chemistry, 2006, 3, 854-856.	0.5	3
38	An electrochemical alternative strategy to the synthesis of β-lactams via NC4 bond formation. Electrochimica Acta, 2005, 50, 2029-2036.	5.2	34
39	The Reaction of Acetylenic Amines with Tetraethylammonium Carbonate and Hydrogen Carbonate: Synthesis of 5-Methylene-1,3-oxazolidin-2-ones ChemInform, 2005, 36, no.	0.0	1
40	The Electrogenerated Cyanomethyl Anion in Organic Synthesis. ChemInform, 2005, 36, no.	0.0	0
41	The Electrogenerated Cyanomethyl Anion in Organic Synthesis. Mini-Reviews in Organic Chemistry, 2005, 2, 79-90.	1.3	29
42	The Reaction of Acetylenic Amines with Tetraethylammonium Carbonate and Hydrogen Carbonate; Synthesis of 5-Methylene-1,3-oxazolidin-2-ones. Synlett, 2005, 2005, 67-70.	1.8	1
43	Electrochemically Promoted Câ^'N Bond Formation from Acetylenic Amines and CO2. Synthesis of 5-Methylene-1,3-oxazolidin-2-ones. Journal of Organic Chemistry, 2005, 70, 7795-7798.	3.2	95
44	Electrogenerated Cyanomethyl Anion in Organic Synthesis. Synthesis of 1,3- Oxazolidine-2,4-Diones. Letters in Organic Chemistry, 2005, 2, 731-733.	0.5	11
45	A Safe and Mild Synthesis of Organic Carbonates from Alkyl Halides and Tetrabutylammonium Alkyl Carbonates ChemInform, 2003, 34, no.	0.0	0
46	A Safe and Mild Synthesis of Organic Carbonates from Alkyl Halides and Tetrabutylammonium Alkyl Carbonates. Journal of Organic Chemistry, 2002, 67, 8287-8289.	3.2	35
47	A SAFE SYNTHESIS OF SYMMETRICAL CARBONATES FROM ALKYL HALIDES AND TETRAETHYLAMMONIUM CARBONATE. Synthetic Communications, 2002, 32, 1205-1210.	2.1	6
48	Electrochemical generation of tetraethylammonium N-acetoacetyloxazolidin-2-one enolates: an easy access to α-alkylated acetoacetic derivatives. Tetrahedron Letters, 2002, 43, 2881-2884.	1.4	13
49	A Safe Synthesis of Symmetrical Carbonates from Alkyl Halides and Tetraethylammonium Carbonate ChemInform, 2002, 33, 93-93.	0.0	0
50	Electrogenerated Base-Induced N-Acylation of Chiral Oxazolidin-2-ones. Journal of Organic Chemistry, 2001, 66, 6185-6188.	3.2	18
51	Electrochemical generation of chiral oxazolidin-2-ones anions: a new procedure for the highly diastereoselective conjugate addition to nitroalkenes. Tetrahedron: Asymmetry, 2001, 12, 2331-2335.	1.8	17
52	Electrochemically Induced N-Acryloylation of Chiral Oxazolidin-2-ones. European Journal of Organic Chemistry, 2001, 2001, 2765-2769.	2.4	4
53	An efficient electrochemical method for N-acryloylation of oxazolidin-2-one chiral auxiliaries with α,α′-di- and trichloroketones. Journal of Electroanalytical Chemistry, 2001, 507, 89-95.	3.8	3
54	Electrochemically Induced N-Acryloylation of Chiral Oxazolidin-2-ones. European Journal of Organic Chemistry, 2001, 2001, 2765-2769.	2.4	0

#	Article	IF	CITATIONS
55	Electrogenerated Base-Promoted Synthesis of Organic Carbonates from Alcohols and Carbon Dioxide. European Journal of Organic Chemistry, 2000, 2000, 2445-2448.	2.4	26
56	The reaction of amines with an electrogenerated base. Improved synthesis of arylcarbamic esters. Tetrahedron Letters, 2000, 41, 963-966.	1.4	40
57	The Reaction of 1,2-Amino Alcohols with Carbon Dioxide in the Presence of 2-Pyrrolidone Electrogenerated Base. New Synthesis of Chiral Oxazolidin-2-ones. Journal of Organic Chemistry, 2000, 65, 4759-4761.	3.2	41
58	New synthesis of oxazolidin-2-ones. Tetrahedron Letters, 1999, 40, 6059-6060.	1.4	26
59	Tetraethylammonium hydrogen carbonate in organic synthesis: Synthesis of oxazolidine-2,4-diones. Tetrahedron, 1999, 55, 193-200.	1.9	21
60	Electrochemically InducedN-Alkylation of Pyrroles. European Journal of Organic Chemistry, 1999, 1999, 955-958.	2.4	12
61	A Simple and Convenient Method for Preparation of Sulfides. Synthetic Communications, 1999, 29, 2611-2615.	2.1	9
62	Electrochemically Induced N-Alkylation of Pyrroles. European Journal of Organic Chemistry, 1999, 1999, 1999, 955-958.	2.4	0
63	Electrochemically induced Favorskii rearrangement. α,β-Unsaturated amides and esters in the electrochemical reduction of polyhaloketones. New Journal of Chemistry, 1998, 22, 57-61.	2.8	13
64	Electrochemical Activation of Carbon Dioxide. Synthesis of Organic Carbonates and Carbamates. , 1998, , 193-196.		2
65	A Convenient Method for the Synthesis of Carbamate Esters from Amines and Tetraethylammonium Hydrogen Carbonate. Journal of Organic Chemistry, 1998, 63, 1337-1338.	3.2	55
66	Electrogenerated Superoxide-Activated Carbon Dioxide. A New Mild and Safe Approach to Organic Carbamates. Journal of Organic Chemistry, 1997, 62, 6754-6759.	3.2	73
67	The system as mild and safe carboxylating reagent synthesis of organic carbonates. Tetrahedron, 1997, 53, 167-176.	1.9	44
68	Electrochemical activation of carbon dioxide: Synthesis of organic carbonates. Tetrahedron Letters, 1997, 38, 3565-3568.	1.4	51
69	Electrochemical activation of carbon dioxide: synthesis of carbamates. Chemical Communications, 1996, , 2575.	4.1	36
70	Mild Regioselective Catalytic Hydrogenation of α,β-Unsaturated Carbonyl Compounds with Lindlar Catalyst. Synthetic Communications, 1996, 26, 1321-1327.	2.1	17
71	Enantio and stereoselective synthesis of (5R,6S)-6-acetoxy-hexadecanolide, a mosquito oviposition attractant pheromone. Tetrahedron, 1995, 51, 4111-4116.	1.9	27
72	Chiral Sulfoxides in Asymmetric Synthesis: Enantioselective Synthesis of the Lactonic Moiety of (+)-Compactin and (+)-Mevinolin. Application to a Compactin Analog. Journal of Organic Chemistry, 1995, 60, 7774-7777.	3.2	40

#	Article	IF	CITATIONS
73	C-1 Reactivity of 2,3-Epoxy Alcohols via Oxirane Opening with Metal Halides: Applications and Synthesis of Naturally Occurring 2,3-Octanediol, Muricatacin, 3-Octanol, and 4-Dodecanolide. Journal of Organic Chemistry, 1995, 60, 4803-4812.	3.2	63
74	Ring opening of 2,3-epoxy 1-tosylates to halohydrins and subsequent elaboration to asymmetrical alcohols. Tetrahedron Letters, 1994, 35, 797-800.	1.4	21
75	Boron mediated one-pot aldol-reduction sequence: Enantio and diastereoselective synthesis of typical polyketide fragments. Tetrahedron: Asymmetry, 1994, 5, 173-176.	1.8	15
76	Enzyme-catalyzed desymmetrization of meso-skipped polyols to useful chiral building blocks. Tetrahedron: Asymmetry, 1993, 4, 793-805.	1.8	32
77	An Easy Procedure for the Highly Regioselective Conversion of Epoxides to Halohydrins. Synthetic Communications, 1992, 22, 1863-1870.	2.1	33
78	Iterative diastereoselective reduction of hydroxy diketoesters to all 1,3,5 syn triols: synthesis of C1-C10 fragment of Nystatin A1. Tetrahedron, 1992, 48, 9801-9808.	1.9	13
79	A new unusual C-1 substitution of 2,3 epoxy alcohols with Lil: regio and stereoselective obtaining of 1-iodo 2,3 diols and 2,3-diols. Tetrahedron Letters, 1992, 33, 7429-7432.	1.4	16