
Petra Schwille

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5318262/publications.pdf Version: 2024-02-01

DETDA SCHWILLE

#	Article	IF	CITATIONS
1	Hidden protein functions and what they may teach us. Trends in Cell Biology, 2022, 32, 102-109.	7.9	5
2	CTP-controlled liquid–liquid phase separation of ParB. Journal of Molecular Biology, 2022, 434, 167401.	4.2	28
3	Elucidating mechanisms of protein self-organization on membranes. Biophysical Journal, 2022, 121, 319a.	0.5	0
4	Mass-Sensitive Particle Tracking to Characterize Membrane-Associated Macromolecule Dynamics. Journal of Visualized Experiments, 2022, , .	0.3	2
5	Tracing back variations in archaeal ESCRT-based cell division to protein domain architectures. PLoS ONE, 2022, 17, e0266395.	2.5	9
6	Dendrimersome Synthetic Cells Harbor Cell Division Machinery of Bacteria. Advanced Materials, 2022, 34, e2202364.	21.0	7
7	3D printed protein-based robotic structures actuated by molecular motor assemblies. Nature Materials, 2022, 21, 703-709.	27.5	12
8	Reversible membrane deformations by straight DNA origami filaments. Soft Matter, 2021, 17, 276-287.	2.7	38
9	Fineâ€Tuning Protein Selfâ€Organization by Orthogonal Chemoâ€Optogenetic Tools. Angewandte Chemie - International Edition, 2021, 60, 4501-4506.	13.8	12
10	Fineâ€Tuning Protein Selfâ€Organization by Orthogonal Chemoâ€Optogenetic Tools. Angewandte Chemie, 2021, 133, 4551-4556.	2.0	4
11	Nonâ€Equilibrium Largeâ€Scale Membrane Transformations Driven by MinDE Biochemical Reaction Cycles. Angewandte Chemie, 2021, 133, 6570-6576.	2.0	0
12	Nonâ€Equilibrium Largeâ€Scale Membrane Transformations Driven by MinDE Biochemical Reaction Cycles. Angewandte Chemie - International Edition, 2021, 60, 6496-6502.	13.8	10
13	Active shape oscillations of giant vesicles with cyclic closure and opening of membrane necks. Soft Matter, 2021, 17, 319-330.	2.7	20
14	Membrane-coated 3D architectures for bottom-up synthetic biology. Soft Matter, 2021, 17, 5456-5466.	2.7	11
15	De novo design of a reversible phosphorylation-dependent switch for membrane targeting. Nature Communications, 2021, 12, 1472.	12.8	25
16	Increasing MinD's Membrane Affinity Yields Standing Wave Oscillations and Functional Gradients on Flat Membranes. ACS Synthetic Biology, 2021, 10, 939-949.	3.8	11
17	Reconstitution of contractile actomyosin rings in vesicles. Nature Communications, 2021, 12, 2254.	12.8	74
18	A diffusiophoretic mechanism for ATP-driven transport without motor proteins. Nature Physics, 2021, 17, 850-858.	16.7	53

#	Article	IF	CITATIONS
19	Protein Reconstitution Inside Giant Unilamellar Vesicles. Annual Review of Biophysics, 2021, 50, 525-548.	10.0	39
20	FtsZ induces membrane deformations via torsional stress upon GTP hydrolysis. Nature Communications, 2021, 12, 3310.	12.8	27
21	Molecular-scale visualization of sarcomere contraction within native cardiomyocytes. Nature Communications, 2021, 12, 4086.	12.8	33
22	Tracking single particles for hours via continuous DNA-mediated fluorophore exchange. Nature Communications, 2021, 12, 4432.	12.8	18
23	Hydration Layer of Only a Few Molecules Controls Lipid Mobility in Biomimetic Membranes. Journal of the American Chemical Society, 2021, 143, 14551-14562.	13.7	24
24	Actin crosslinker competition and sorting drive emergent GUV size-dependent actin network architecture. Communications Biology, 2021, 4, 1136.	4.4	26
25	Self-organized protein patterns: The MinCDE and ParABS systems. Current Opinion in Cell Biology, 2021, 72, 106-115.	5.4	14
26	Membraneâ€Mediated Selfâ€Organization of Rod‣ike DNA Origami on Supported Lipid Bilayers. Advanced Materials Interfaces, 2021, 8, 2101094.	3.7	4
27	Mass-sensitive particle tracking to elucidate the membrane-associated MinDE reaction cycle. Nature Methods, 2021, 18, 1239-1246.	19.0	39
28	Probing Biomolecular Interactions by a Pattern-Forming Peptide–Conjugate Sensor. Bioconjugate Chemistry, 2021, 32, 172-181.	3.6	0
29	Design Features to Accelerate the Higher-Order Assembly of DNA Origami on Membranes. Journal of Physical Chemistry B, 2021, 125, 13181-13191.	2.6	3
30	Rapid Encapsulation of Reconstituted Cytoskeleton Inside Giant Unilamellar Vesicles. Journal of Visualized Experiments, 2021, , .	0.3	9
31	Calibration-free counting of low molecular copy numbers in single DNA-PAINT localization clusters. Biophysical Reports, 2021, 1, 100032.	1.2	2
32	How Can Microfluidic and Microfabrication Approaches Make Experiments More Physiologically Relevant?. Cell Systems, 2020, 11, 209-211.	6.2	11
33	The speed of FtsZ treadmilling is tightly regulated by membrane binding. Scientific Reports, 2020, 10, 10447.	3.3	10
34	3D Printing: Shaping Giant Membrane Vesicles in 3Dâ€Printed Protein Hydrogel Cages (Small 27/2020). Small, 2020, 16, 2070151.	10.0	0
35	FtsZ Reorganization Facilitates Deformation of Giant Vesicles in Microfluidic Traps**. Angewandte Chemie, 2020, 132, 21556-21560.	2.0	4
36	FtsZ Reorganization Facilitates Deformation of Giant Vesicles in Microfluidic Traps**. Angewandte Chemie - International Edition, 2020, 59, 21372-21376.	13.8	28

#	Article	IF	CITATIONS
37	Symmetry Breaking and Emergence of Directional Flows in Minimal Actomyosin Cortices. Cells, 2020, 9, 1432.	4.1	7
38	Local Self-Enhancement of MinD Membrane Binding in Min Protein Pattern Formation. Journal of Molecular Biology, 2020, 432, 3191-3204.	4.2	14
39	Shaping Giant Membrane Vesicles in 3Dâ€Printed Protein Hydrogel Cages. Small, 2020, 16, e1906259.	10.0	12
40	Phosphoinositides regulate force-independent interactions between talin, vinculin, and actin. ELife, 2020, 9, .	6.0	39
41	Heated gas bubbles enrich, crystallize, dry, phosphorylate and encapsulate prebiotic molecules. Nature Chemistry, 2019, 11, 779-788.	13.6	66
42	Reconstitution and Coupling of DNA Replication and Segregation in a Biomimetic System. ChemBioChem, 2019, 20, 2633-2642.	2.6	7
43	The E. coli MinCDE system in the regulation of protein patterns and gradients. Cellular and Molecular Life Sciences, 2019, 76, 4245-4273.	5.4	81
44	Toward Absolute Molecular Numbers in DNA-PAINT. Nano Letters, 2019, 19, 8182-8190.	9.1	33
45	Cellâ€Free Protein Synthesis and Its Perspectives for Assembling Cells from the Bottomâ€Up. Advanced Biology, 2019, 3, e1800322.	3.0	19
46	Manfred Eigen (1927–2019). Angewandte Chemie - International Edition, 2019, 58, 9323-9324.	13.8	0
47	Synthetic cell division via membrane-transforming molecular assemblies. BMC Biology, 2019, 17, 43.	3.8	52
48	Fluorescence Correlation Spectroscopy to Examine Protein–Lipid Interactions in Membranes. Methods in Molecular Biology, 2019, 2003, 415-447.	0.9	6
49	Bottom-up synthetic biology: reconstitution in space and time. Current Opinion in Biotechnology, 2019, 60, 179-187.	6.6	75
50	Design of Sealable Custom-Shaped Cell Mimicries Based on Self-Assembled Monolayers on CYTOP Polymer. ACS Applied Materials & Interfaces, 2019, 11, 21372-21380.	8.0	8
51	Temperature-sensitive protein expression in protocells. Chemical Communications, 2019, 55, 6421-6424.	4.1	15
52	124-Color Super-resolution Imaging by Engineering DNA-PAINT Blinking Kinetics. Nano Letters, 2019, 19, 2641-2646.	9.1	82
53	Flat-top TIRF illumination boosts DNA-PAINT imaging and quantification. Nature Communications, 2019, 10, 1268.	12.8	67
54	Cytoskeletal and Actinâ€Based Polymerization Motors and Their Role in Minimal Cell Design. Advanced Biology, 2019, 3, 1800311.	3.0	7

#	Article	IF	CITATIONS
55	Functional Modules of Minimal Cell Division for Synthetic Biology. Advanced Biology, 2019, 3, 1800315.	3.0	15
56	More from less – bottom-up reconstitution of cell biology. Journal of Cell Science, 2019, 132, .	2.0	61
57	An order of magnitude faster DNA-PAINT imaging by optimized sequence design and buffer conditions. Nature Methods, 2019, 16, 1101-1104.	19.0	102
58	Single Particle Tracking and Super-Resolution Imaging of Membrane-Assisted Stop-and-Go Diffusion and Lattice Assembly of DNA Origami. ACS Nano, 2019, 13, 996-1002.	14.6	28
59	Stationary Patterns in a Two-Protein Reaction-Diffusion System. ACS Synthetic Biology, 2019, 8, 148-157.	3.8	43
60	<i>In vitro</i> reconstitution of the bacterial cytoskeleton: expected and unexpected new insights. Microbial Biotechnology, 2019, 12, 74-76.	4.2	1
61	Division in synthetic cells. Emerging Topics in Life Sciences, 2019, 3, 551-558.	2.6	20
62	Myosin-II activity generates a dynamic steady state with continuous actin turnover in a minimal actin cortex. Journal of Cell Science, 2019, 132, .	2.0	39
63	Optical manipulation of sphingolipid biosynthesis using photoswitchable ceramides. ELife, 2019, 8, .	6.0	27
64	Design of biochemical pattern forming systems from minimal motifs. ELife, 2019, 8, .	6.0	31
65	Membrane sculpting by curved DNA origami scaffolds. Nature Communications, 2018, 9, 811.	12.8	173
66	MinE conformational switching confers robustness on self-organized Min protein patterns. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 4553-4558.	7.1	65
67	Quantifying Reversible Surface Binding via Surface-Integrated Fluorescence Correlation Spectroscopy. Nano Letters, 2018, 18, 3185-3192.	9.1	32
68	Freeze-thaw cycles induce content exchange between cell-sized lipid vesicles. New Journal of Physics, 2018, 20, 055008.	2.9	46
69	Reverse and forward engineering of protein pattern formation. Philosophical Transactions of the Royal Society B: Biological Sciences, 2018, 373, 20170104.	4.0	11
70	Optical Control of a Biological Reaction–Diffusion System. Angewandte Chemie, 2018, 130, 2386-2390.	2.0	7
71	Optical Control of a Biological Reaction–Diffusion System. Angewandte Chemie - International Edition, 2018, 57, 2362-2366.	13.8	25
72	Photophysical Behavior of mNeonGreen, an Evolutionarily Distant Green Fluorescent Protein. Biophysical Journal, 2018, 114, 2419-2431.	0.5	25

#	Article	IF	CITATIONS
73	FCS Analysis of Protein Mobility on Lipid Monolayers. Biophysical Journal, 2018, 114, 2444-2454.	0.5	10
74	There and back again: from the origin of life to single molecules. European Biophysics Journal, 2018, 47, 493-498.	2.2	7
75	High-Speed Atomic Force Microscopy Reveals the Inner Workings of the MinDE Protein Oscillator. Nano Letters, 2018, 18, 288-296.	9.1	22
76	Frontispiece: Beating Vesicles: Encapsulated Protein Oscillations Cause Dynamic Membrane Deformations. Angewandte Chemie - International Edition, 2018, 57, .	13.8	0
77	Frontispiz: Tanzende Vesikel: Proteinoszillationen führen zu periodischer Membranverformung. Angewandte Chemie, 2018, 130, .	2.0	0
78	Membrane association and remodeling by intraflagellar transport protein IFT172. Nature Communications, 2018, 9, 4684.	12.8	28
79	Tanzende Vesikel: Proteinoszillationen führen zu periodischer Membranverformung. Angewandte Chemie, 2018, 130, 16522-16527.	2.0	13
80	Protein Pattern Formation. , 2018, , 229-260.		16
81	Plasmonic Nanosensors Reveal a Height Dependence of MinDE Protein Oscillations on Membrane Features. Journal of the American Chemical Society, 2018, 140, 17901-17906.	13.7	26
82	Photo-Induced Depletion of Binding Sites in DNA-PAINT Microscopy. Molecules, 2018, 23, 3165.	3.8	43
83	The MinDE system is a generic spatial cue for membrane protein distribution in vitro. Nature Communications, 2018, 9, 3942.	12.8	49
84	Beating Vesicles: Encapsulated Protein Oscillations Cause Dynamic Membrane Deformations. Angewandte Chemie - International Edition, 2018, 57, 16286-16290.	13.8	142
85	Control of Membrane Binding and Diffusion of Cholesteryl-Modified DNA Origami Nanostructures by DNA Spacers. Langmuir, 2018, 34, 14921-14931.	3.5	39
86	Light-Induced Printing of Protein Structures on Membranes in Vitro. Nano Letters, 2018, 18, 7133-7140.	9.1	15
87	Switching protein patterns on membranes. Current Opinion in Colloid and Interface Science, 2018, 38, 100-107.	7.4	3
88	In Vitro Reconstitution of Self-Organizing Protein Patterns on Supported Lipid Bilayers. Journal of Visualized Experiments, 2018, , .	0.3	20
89	Liposomes and polymersomes: a comparative review towards cell mimicking. Chemical Society Reviews, 2018, 47, 8572-8610.	38.1	731
90	MaxSynBio: Wege zur Synthese einer Zelle aus nicht lebenden Komponenten. Angewandte Chemie, 2018, 130. 13566-13577.	2.0	27

#	Article	IF	CITATIONS
91	Treadmilling analysis reveals new insights into dynamic FtsZ ring architecture. PLoS Biology, 2018, 16, e2004845.	5.6	88
92	High-Speed AFM Correlation Spectroscopy (HS-AMF-CS): µS Protein Dynamics without Labels. Biophysical Journal, 2018, 114, 70a-71a.	0.5	0
93	MaxSynBio: Avenues Towards Creating Cells from the Bottom Up. Angewandte Chemie - International Edition, 2018, 57, 13382-13392.	13.8	234
94	Direct characterization of the evanescent field in objective-type total internal reflection fluorescence microscopy. Optics Express, 2018, 26, 20492.	3.4	19
95	Reconstitution of Protein Dynamics Involved in Bacterial Cell Division. Sub-Cellular Biochemistry, 2017, 84, 419-444.	2.4	7
96	How Simple Could Life Be?. Angewandte Chemie - International Edition, 2017, 56, 10998-11002.	13.8	20
97	Wie einfach kann Leben sein?. Angewandte Chemie, 2017, 129, 11142-11146.	2.0	2
98	Biology and the art of abstraction. Biophysical Reviews, 2017, 9, 273-275.	3.2	2
99	Cell-free protein synthesis in micro compartments: building a minimal cell from biobricks. New Biotechnology, 2017, 39, 199-205.	4.4	50
100	Revolving around constriction by ESCRT-III. Nature Cell Biology, 2017, 19, 754-756.	10.3	6
101	Diffusion of Single-Pass Transmembrane Receptors: From the Plasma Membrane into Giant Liposomes. Journal of Membrane Biology, 2017, 250, 393-406.	2.1	13
102	Large-scale modulation of reconstituted Min protein patterns and gradients by defined mutations in MinE's membrane targeting sequence. PLoS ONE, 2017, 12, e0179582.	2.5	28
103	Control of lipid domain organization by a biomimetic contractile actomyosin cortex. ELife, 2017, 6, .	6.0	46
104	Effect of anchor positioning on binding and diffusion of elongated 3D DNA nanostructures on lipid membranes. Journal Physics D: Applied Physics, 2016, 49, 194001.	2.8	31
105	DNA Nanostructures on Membranes as Tools for Synthetic Biology. Biophysical Journal, 2016, 110, 1698-1707.	0.5	73
106	Single Particle Plasmon Sensors as Label-Free Technique To Monitor MinDE Protein Wave Propagation on Membranes. Nano Letters, 2016, 16, 3540-3544.	9.1	24
107	In vitro Reconstitution of a Membrane Switch Mechanism for the Polarity Protein LGL. Journal of Molecular Biology, 2016, 428, 4828-4842.	4.2	15
108	Protein Patterns and Oscillations on Lipid Monolayers and in Microdroplets. Angewandte Chemie - International Edition, 2016, 55, 13455-13459.	13.8	53

#	Article	IF	CITATIONS
109	Optical Control of Lipid Rafts with Photoswitchable Ceramides. Journal of the American Chemical Society, 2016, 138, 12981-12986.	13.7	74
110	Transport efficiency of membrane-anchored kinesin-1 motors depends on motor density and diffusivity. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E7185-E7193.	7.1	69
111	Protein Patterns and Oscillations on Lipid Monolayers and in Microdroplets. Angewandte Chemie, 2016, 128, 13653-13657.	2.0	11
112	Innentitelbild: Protein Patterns and Oscillations on Lipid Monolayers and in Microdroplets (Angew.) Tj ETQq0 0 0	rgBT /Ove	erlock 10 Tf 5 O
113	Single DNA molecules on freestanding and supported cationic lipid bilayers: diverse conformational dynamics controlled by the local bilayer properties. Journal Physics D: Applied Physics, 2016, 49, 074001.	2.8	7
114	Pattern formation on membranes and its role in bacterial cell division. Current Opinion in Cell Biology, 2016, 38, 52-59.	5.4	52
115	Coordinated recruitment of Spir actin nucleators and myosin V motors to Rab11 vesicle membranes. ELife, 2016, 5, .	6.0	53
116	Diffusion coefficients and dissociation constants of enhanced green fluorescent protein binding to free standing membranes. Data in Brief, 2015, 5, 537-541.	1.0	7
117	Petra Schwille: Taking a minimalist approach to membranes. Journal of Cell Biology, 2015, 209, 320-321.	5.2	0
118	Membrane Targeting of the Spir·Formin Actin Nucleator Complex Requires a Sequential Handshake of Polar Interactions. Journal of Biological Chemistry, 2015, 290, 6428-6444.	3.4	22
119	Reconstituting geometry-modulated protein patterns in membrane compartments. Methods in Cell Biology, 2015, 128, 149-163.	1.1	9
120	Amphipathic DNA Origami Nanoparticles to Scaffold and Deform Lipid Membrane Vesicles. Angewandte Chemie - International Edition, 2015, 54, 6501-6505.	13.8	107
121	FtsZ Polymers Tethered to the Membrane by ZipA Are Susceptible to Spatial Regulation by Min Waves. Biophysical Journal, 2015, 108, 2371-2383.	0.5	33
122	Cytoskeletal Pinning Controls Phase Separation in Multicomponent Lipid Membranes. Biophysical Journal, 2015, 108, 1104-1113.	0.5	52
123	Essential role of endocytosis for Interleukin-4 receptor mediated JAK/STAT signalling. Journal of Cell Science, 2015, 128, 3781-95.	2.0	51
124	Jump-starting life? Fundamental aspects of synthetic biology. Journal of Cell Biology, 2015, 210, 687-690.	5.2	32
125	Introducing a fluorescence-based standard to quantify protein partitioning into membranes. Biochimica Et Biophysica Acta - Biomembranes, 2015, 1848, 2932-2941.	2.6	11
126	DNA Origami Nanoneedles on Freestanding Lipid Membranes as a Tool To Observe Isotropic–Nematic Transition in Two Dimensions. Nano Letters, 2015, 15, 649-655.	9.1	44

#	Article	IF	CITATIONS
127	Adaptive Lipid Packing and Bioactivity in Membrane Domains. PLoS ONE, 2015, 10, e0123930.	2.5	96
128	Toward Spatially Regulated Division of Protocells: Insights into the E. coli Min System from in Vitro Studies. Life, 2014, 4, 915-928.	2.4	15
129	MinCDE exploits the dynamic nature of FtsZ filaments for its spatial regulation. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, E1192-200.	7.1	66
130	ESCRT-III mediated cell division in Sulfolobus acidocaldarius ââ,¬â€œ a reconstitution perspective. Frontiers in Microbiology, 2014, 5, 257.	3.5	14
131	PyCorrFit—generic data evaluation for fluorescence correlation spectroscopy. Bioinformatics, 2014, 30, 2532-2533.	4.1	74
132	Highlight issue: membranes in motion. Biological Chemistry, 2014, 395, 251-251.	2.5	0
133	Dynamics and Interaction of Interleukin-4 Receptor Subunits in Living Cells. Biophysical Journal, 2014, 107, 2515-2527.	0.5	40
134	Reconstitution of cytoskeletal protein assemblies for large-scale membrane transformation. Current Opinion in Chemical Biology, 2014, 22, 18-26.	6.1	44
135	Bacterial Cell Division: A Swirling Ring to Rule Them All?. Current Biology, 2014, 24, R157-R159.	3.9	8
136	Cross-linked and pH sensitive supported polymer bilayers from polymersomes – studies concerning thickness, rigidity and fluidity. Soft Matter, 2014, 10, 75-82.	2.7	16
137	Surface topology assisted alignment of Min protein waves. FEBS Letters, 2014, 588, 2545-2549.	2.8	32
138	Fluorescence fluctuation microscopy: a diversified arsenal of methods to investigate molecular dynamics inside cells. Current Opinion in Structural Biology, 2014, 28, 69-76.	5.7	25
139	Asymmetric Supported Lipid Bilayer Formation via Methyl-β-Cyclodextrin Mediated Lipid Exchange: Influence of Asymmetry on Lipid Dynamics and Phase Behavior. Langmuir, 2014, 30, 7475-7484.	3.5	54
140	Lattice-Based Monte Carlo Simulations of Lipid Membranes: Correspondence between Triangular and Square Lattices. Biophysical Journal, 2014, 106, 290a-291a.	0.5	0
141	Reconstitution of self-organizing protein gradients as spatial cues in cell-free systems. ELife, 2014, 3, .	6.0	124
142	Single-stranded nucleic acids promote SAMHD1 complex formation. Journal of Molecular Medicine, 2013, 91, 759-770.	3.9	70
143	A Monolayer Assay Tailored to Investigate Lipid–Protein Systems. ChemPhysChem, 2013, 14, 1877-1881.	2.1	12
144	Lypd6 Enhances Wnt/β-Catenin Signaling by Promoting Lrp6 Phosphorylation in Raft Plasma Membrane Domains. Developmental Cell, 2013, 26, 331-345.	7.0	101

#	Article	IF	CITATIONS
145	The design of MACs (minimal actin cortices). Cytoskeleton, 2013, 70, 706-717.	2.0	24
146	High-resolution three-photon biomedical imaging using doped ZnS nanocrystals. Nature Materials, 2013, 12, 359-366.	27.5	240
147	Reconstitution of Poleâ€ŧoâ€Pole Oscillations of Min Proteins in Microengineered Polydimethylsiloxane Compartments. Angewandte Chemie - International Edition, 2013, 52, 459-462.	13.8	93
148	Cells must Accumulate Interleukin-4 Receptor Subunits within CorticalÂSignaling Endosomes to Drive Complex Formation and Signal Transduction. Biophysical Journal, 2013, 104, 610a.	0.5	0
149	Multimerizable HIV Gag derivative binds to the liquid-disordered phase in model membranes. Cellular Microbiology, 2013, 15, 237-247.	2.1	29
150	Influence of glycosaminoglycans on lipid dynamics in supported phospholipid bilayers. Soft Matter, 2013, 9, 3859.	2.7	14
151	Loss-of-function mutations in the IL-21 receptor gene cause a primary immunodeficiency syndrome. Journal of Experimental Medicine, 2013, 210, 433-443.	8.5	186
152	Dual-Color Fluorescence Cross-Correlation Spectroscopy with Continuous Laser Excitation in a Confocal Setup. Methods in Enzymology, 2013, 518, 43-70.	1.0	24
153	Editorial: Chemistry Needed: Synthetic Biology as a New Incentive for Interdisciplinarity. Angewandte Chemie - International Edition, 2013, 52, 2616-2617.	13.8	5
154	Lateral Membrane Diffusion Modulated by a Minimal Actin Cortex. Biophysical Journal, 2013, 104, 1465-1475.	0.5	75
155	Photoconversion of Bodipyâ€Labeled Lipid Analogues. ChemBioChem, 2013, 14, 695-698.	2.6	16
156	Switchable domain partitioning and diffusion of DNA origami rods on membranes. Faraday Discussions, 2013, 161, 31-43.	3.2	76
157	MinC, MinD, and MinE Drive Counter-oscillation of Early-Cell-Division Proteins Prior to Escherichia coli Septum Formation. MBio, 2013, 4, e00856-13.	4.1	45
158	Membrane Binding of MinE Allows for a Comprehensive Description of Min-Protein Pattern Formation. PLoS Computational Biology, 2013, 9, e1003347.	3.2	72
159	Propagation of <scp>M</scp> in <scp>CDE</scp> waves on freeâ€standing membranes. Environmental Microbiology, 2013, 15, 3319-3326.	3.8	20
160	Editorial: Mehr Chemie bitte: Synthesebiologie als neuer Impuls für die Interdisziplinaritä Angewandte Chemie, 2013, 125, 2678-2679.	2.0	2
161	Caspase-8 Binding to Cardiolipin in Giant Unilamellar Vesicles Provides a Functional Docking Platform for Bid. PLoS ONE, 2013, 8, e55250.	2.5	24
162	Myosin motors fragment and compact membrane-bound actin filaments. ELife, 2013, 2, e00116.	6.0	115

#	Article	IF	CITATIONS
163	Intracellular Localization and Routing of miRNA and RNAi Pathway Components. Current Topics in Medicinal Chemistry, 2012, 12, 79-88.	2.1	49
164	Cholesterol and Sphingomyelin Drive Ligand-independent T-cell Antigen Receptor Nanoclustering. Journal of Biological Chemistry, 2012, 287, 42664-42674.	3.4	145
165	Excitation Spectra and Brightness Optimization of Two-Photon Excited Probes. Biophysical Journal, 2012, 102, 934-944.	0.5	100
166	Effect of temperature on the formation of liquid phase-separating giant unilamellar vesicles (GUV). Chemistry and Physics of Lipids, 2012, 165, 630-637.	3.2	13
167	Correcting for Artifacts from Spectral Cross-Talk and Imperfect Detection Volume Overlap in Dual-Color Fluorescence Cross-Correlation Spectroscopy. Biophysical Journal, 2012, 102, 216a.	0.5	0
168	Efficient Electroformation of Supergiant Unilamellar Vesicles Containing Cationic Lipids on ITO-Coated Electrodes. Langmuir, 2012, 28, 5518-5521.	3.5	60
169	Penetration of Amphiphilic Quantum Dots through Model and Cellular Plasma Membranes. ACS Nano, 2012, 6, 2150-2156.	14.6	59
170	Quantifying Lipid Diffusion by Fluorescence Correlation Spectroscopy: A Critical Treatise. Langmuir, 2012, 28, 13395-13404.	3.5	43
171	Functional convergence of hopanoids and sterols in membrane ordering. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 14236-14240.	7.1	154
172	Geometry sensing by self-organized protein patterns. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 15283-15288.	7.1	115
173	Model membrane platforms to study protein-membrane interactions . Molecular Membrane Biology, 2012, 29, 144-154.	2.0	83
174	Partitioning, diffusion, and ligand binding of raft lipid analogs in model and cellular plasma membranes. Biochimica Et Biophysica Acta - Biomembranes, 2012, 1818, 1777-1784.	2.6	301
175	Surface Topology Engineering of Membranes for the Mechanical Investigation of the Tubulin Homologue FtsZ. Angewandte Chemie - International Edition, 2012, 51, 11858-11862.	13.8	53
176	The Role of Lipids in VDAC Oligomerization. Biophysical Journal, 2012, 102, 523-531.	0.5	92
177	Minimal systems to study membrane–cytoskeleton interactions. Current Opinion in Biotechnology, 2012, 23, 758-765.	6.6	39
178	Towards a bottom-up reconstitution of bacterial cell division. Trends in Cell Biology, 2012, 22, 634-643.	7.9	71
179	Translational and rotational diffusion of micrometer-sized solid domains in lipid membranes. Soft Matter, 2012, 8, 7552.	2.7	62
180	Elucidating membrane structure and protein behavior using giant plasma membrane vesicles. Nature Protocols, 2012, 7, 1042-1051.	12.0	461

#	Article	IF	CITATIONS
181	Fluorescence correlation spectroscopy. BioEssays, 2012, 34, 361-368.	2.5	207
182	Longâ€Range Transport of Giant Vesicles along Microtubule Networks. ChemPhysChem, 2012, 13, 1001-1006.	2.1	28
183	Correcting for Spectral Crossâ€Talk in Dualâ€Color Fluorescence Crossâ€Correlation Spectroscopy. ChemPhysChem, 2012, 13, 1221-1231.	2.1	43
184	Bottom-Up Synthetic Biology: Engineering in a Tinkerer's World. Science, 2011, 333, 1252-1254.	12.6	203
185	Near-Critical Fluctuations and Cytoskeleton-Assisted Phase Separation Lead to Subdiffusion in Cell Membranes. Biophysical Journal, 2011, 100, 80-89.	0.5	98
186	Asymmetric GUVs Prepared by MβCD-Mediated Lipid Exchange: An FCS Study. Biophysical Journal, 2011, 100, L1-L3.	0.5	109
187	Fluorescence Cross-Correlation Spectroscopy Reveals Mechanistic Insights into the Effect of 2′-O-Methyl Modified siRNAs in Living Cells. Biophysical Journal, 2011, 100, 2981-2990.	0.5	12
188	Single Cell Analysis of Ligand Binding and Complex Formation ofÂInterleukin-4 Receptor Subunits. Biophysical Journal, 2011, 101, 2360-2369.	0.5	32
189	Protein Self-Organization: Lessons from the Min System. Annual Review of Biophysics, 2011, 40, 315-336.	10.0	124
190	Circular scanning fluorescence correlation spectroscopy on membranes. Optics Express, 2011, 19, 25006.	3.4	17
191	Anti-HIV-1 antibodies 2F5 and 4E10 interact differently with lipids to bind their epitopes. Aids, 2011, 25, 419-428.	2.2	20
192	Min protein patterns emerge from rapid rebinding and membrane interaction of MinE. Nature Structural and Molecular Biology, 2011, 18, 577-583.	8.2	182
193	Oligomerization and Pore Formation by Equinatoxin II Inhibit Endocytosis and Lead to Plasma Membrane Reorganization. Journal of Biological Chemistry, 2011, 286, 37768-37777.	3.4	52
194	Time correlated fluorescence characterization of an asymmetrically focused flow in a microfluidic device. Microfluidics and Nanofluidics, 2011, 10, 551-561.	2.2	10
195	Protein-membrane interactions: the virtue of minimal systems in systems biology. Wiley Interdisciplinary Reviews: Systems Biology and Medicine, 2011, 3, 269-280.	6.6	19
196	FRET and FCS—Friends or Foes?. ChemPhysChem, 2011, 12, 532-541.	2.1	35
197	Preparation of Micrometerâ€Sized Freeâ€Standing Membranes. ChemPhysChem, 2011, 12, 2568-2571.	2.1	37
198	Fluorescence Techniques to Study Lipid Dynamics. Cold Spring Harbor Perspectives in Biology, 2011, 3, a009803-a009803.	5.5	87

#	Article	IF	CITATIONS
199	Stability of lipid domains. FEBS Letters, 2010, 584, 1653-1658.	2.8	49
200	Confocal microscopy of giant vesicles supports the absence of HIVâ€1 neutralizing 2F5 antibody reactivity to plasma membrane phospholipids. FEBS Letters, 2010, 584, 1591-1596.	2.8	19
201	Focus on composition and interaction potential of singleâ€pass transmembrane domains. Proteomics, 2010, 10, 4196-4208.	2.2	44
202	GM1 structure determines SV40-induced membrane invagination and infection. Nature Cell Biology, 2010, 12, 11-18.	10.3	535
203	A comprehensive framework for fluorescence cross-correlation spectroscopy. New Journal of Physics, 2010, 12, 113009.	2.9	44
204	Fluorescence Correlation Spectroscopy for the Study of Membrane Dynamics and Organization in Giant Unilamellar Vesicles. Methods in Molecular Biology, 2010, 606, 493-508.	0.9	40
205	Quantifying Translational Mobility in Neurons: Comparison between Current Optical Techniques. Journal of Neuroscience, 2010, 30, 16409-16416.	3.6	18
206	Yeast Lipids Can Phase-separate into Micrometer-scale Membrane Domains. Journal of Biological Chemistry, 2010, 285, 30224-30232.	3.4	96
207	Scanning FCS for the Characterization of Protein Dynamics in Live Cells. Methods in Enzymology, 2010, 472, 317-343.	1.0	35
208	Pores Formed by Baxα5 Relax to a Smaller Size and Keep at Equilibrium. Biophysical Journal, 2010, 99, 2917-2925.	0.5	77
209	All-or-None versus Graded: Single-Vesicle Analysis Reveals Lipid Composition Effects on Membrane Permeabilization. Biophysical Journal, 2010, 99, 3619-3628.	0.5	71
210	Cholesterol Slows down the Lateral Mobility of an Oxidized Phospholipid in a Supported Lipid Bilayer. Langmuir, 2010, 26, 17322-17329.	3.5	32
211	Automated suppression of sample-related artifacts in Fluorescence Correlation Spectroscopy. Optics Express, 2010, 18, 11073.	3.4	26
212	Cholesterol Effect on The Lipid Bilayer Perturbation Induced by Peptides Derived from the Membrane-Proximal External Region of HIV-1 gp41. Biophysical Journal, 2010, 98, 217a.	0.5	0
213	The Mechanism of E-Ring Formation During Min Oscillations. Biophysical Journal, 2010, 98, 556a.	0.5	0
214	Ceramide kinase regulates phospholipase C and phosphatidylinositol 4, 5, bisphosphate in phototransduction. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 20063-20068.	7.1	45
215	Detergent-activated BAX Protein Is a Monomer. Journal of Biological Chemistry, 2009, 284, 23935-23946.	3.4	26
216	PI(4,5)P ₂ Degradation Promotes the Formation of Cytoskeletonâ€Free Model Membrane Systems. ChemPhysChem, 2009, 10, 2805-2812.	2.1	56

#	Article	IF	CITATIONS
217	Fgf8 morphogen gradient forms by a source-sink mechanism with freely diffusing molecules. Nature, 2009, 461, 533-536.	27.8	335
218	Modular scanning FCS quantifies receptor-ligand interactions in living multicellular organisms. Nature Methods, 2009, 6, 643-645.	19.0	132
219	Membrane promotes tBID interaction with BCLXL. Nature Structural and Molecular Biology, 2009, 16, 1178-1185.	8.2	116
220	Importin 8 Is a Gene Silencing Factor that Targets Argonaute Proteins to Distinct mRNAs. Cell, 2009, 136, 496-507.	28.9	306
221	Accurate Determination of Membrane Dynamics with Line-Scan FCS. Biophysical Journal, 2009, 96, 1999-2008.	0.5	166
222	Asymmetry determines the effects of natural ceramides on model membranes. Soft Matter, 2009, 5, 3279.	2.7	20
223	Synthetic biology of minimal systems. Critical Reviews in Biochemistry and Molecular Biology, 2009, 44, 223-242.	5.2	111
224	Protein BAX During Detergent Activation: Characterization by Fluorescence Correlation Spectroscopy and Fluorescence Intensity Distribution Analysis. Biophysical Journal, 2009, 96, 425a-426a.	0.5	0
225	Electrostatic Selfâ€Assembly of Charged Colloids and Macromolecules in a Fluidic Nanoslit. Small, 2008, 4, 1900-1906.	10.0	21
226	Cellular Dynamics of Ku: Characterization and Purification of Kuâ€eGFP. ChemBioChem, 2008, 9, 1251-1259.	2.6	11
227	Reconstitution and Anchoring of Cytoskeleton inside Giant Unilamellar Vesicles. ChemBioChem, 2008, 9, 2673-2681.	2.6	85
228	Photobleaching in Twoâ€Photon Scanning Fluorescence Correlation Spectroscopy. ChemPhysChem, 2008, 9, 147-158.	2.1	35
229	Accumulation and filtering of nanoparticles in microchannels using electrohydrodynamically induced vortical flows. Electrophoresis, 2008, 29, 2987-2996.	2.4	26
230	Precise Measurement of Diffusion Coefficients using Scanning Fluorescence Correlation Spectroscopy. Biophysical Journal, 2008, 94, 1437-1448.	0.5	442
231	Supercritical Angle Fluorescence Correlation Spectroscopy. Biophysical Journal, 2008, 94, 221-229.	0.5	49
232	Total Internal Reflection Fluorescence Correlation Spectroscopy: Effects of Lateral Diffusion and Surface-Generated Fluorescence. Biophysical Journal, 2008, 95, 390-399.	0.5	44
233	Translational Diffusion in Lipid Membranes beyond the Saffman-Delbrück Approximation. Biophysical Journal, 2008, 94, L41-L43.	0.5	160
234	Equinatoxin II Permeabilizing Activity Depends on the Presence of Sphingomyelin and Lipid Phase Coexistence. Biophysical Journal, 2008, 95, 691-698.	0.5	125

#	Article	IF	CITATIONS
235	Characterization of Protein Dynamics in Asymmetric Cell Division by Scanning Fluorescence Correlation Spectroscopy. Biophysical Journal, 2008, 95, 5476-5486.	0.5	52
236	Efficient Inhibition of the Alzheimer's Disease β-Secretase by Membrane Targeting. Science, 2008, 320, 520-523.	12.6	254
237	Ceramide Triggers Budding of Exosome Vesicles into Multivesicular Endosomes. Science, 2008, 319, 1244-1247.	12.6	2,800
238	Role of ceramide in membrane protein organization investigated by combined AFM and FCS. Biochimica Et Biophysica Acta - Biomembranes, 2008, 1778, 1356-1364.	2.6	87
239	New concepts for fluorescence correlation spectroscopy on membranes. Physical Chemistry Chemical Physics, 2008, 10, 3487.	2.8	117
240	Membrane Domain-Disrupting Effects of 4-Substitued Cholesterol Derivatives. Langmuir, 2008, 24, 8807-8812.	3.5	11
241	Supported Lipid Bilayers on Spacious and pH-Responsive Polymer Cushions with Varied Hydrophilicity. Journal of Physical Chemistry B, 2008, 112, 6373-6378.	2.6	41
242	Fluorescence correlation spectroscopy and fluorescence cross-correlation spectroscopy reveal the cytoplasmic origination of loaded nuclear RISC in vivo in human cells. Nucleic Acids Research, 2008, 36, 6439-6449.	14.5	173
243	Spatial Regulators for Bacterial Cell Division Self-Organize into Surface Waves in Vitro. Science, 2008, 320, 789-792.	12.6	499
244	Plasma membranes are poised for activation of raft phase coalescence at physiological temperature. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 10005-10010.	7.1	338
245	Phosphatidylethanolamine critically supports internalization of cell-penetrating protein C inhibitor. Journal of Cell Biology, 2007, 179, 793-804.	5.2	41
246	Effect of Line Tension on the Lateral Organization of Lipid Membranes. Journal of Biological Chemistry, 2007, 282, 33537-33544.	3.4	352
247	Raft Domain Reorganization Driven by Short- and Long-Chain Ceramide:  A Combined AFM and FCS Study. Langmuir, 2007, 23, 7659-7665.	3.5	112
248	Spontaneous Stretching of DNA in a Two-Dimensional Nanoslit. Nano Letters, 2007, 7, 1270-1275.	9.1	70
249	Pore Formation by a Bax-Derived Peptide: Effect on the Line Tension of the Membrane Probed by AFM. Biophysical Journal, 2007, 93, 103-112.	0.5	128
250	Simultaneous two-photon fluorescence correlation spectroscopy and lifetime imaging of dye molecules in submicrometer fluidic structures. Microscopy Research and Technique, 2007, 70, 459-466.	2.2	18
251	Fluorescence correlation spectroscopy in living cells. Nature Methods, 2007, 4, 963-973.	19.0	393
252	Practical guidelines for dual-color fluorescence cross-correlation spectroscopy. Nature Protocols, 2007, 2, 2842-2856.	12.0	258

#	Article	IF	CITATIONS
253	Single molecule techniques for the study of membrane proteins. Applied Microbiology and Biotechnology, 2007, 76, 257-266.	3.6	46
254	Independence of Maximum Single Molecule Fluorescence Count Rate on the Temporal and Spectral Laser Pulse Width in Two-Photon FCS. Journal of Fluorescence, 2007, 17, 805-810.	2.5	13
255	Effects of Ceramide on Liquid-Ordered Domains Investigated by Simultaneous AFM and FCS. Biophysical Journal, 2006, 90, 4500-4508.	0.5	225
256	Studying Slow Membrane Dynamics with Continuous Wave Scanning Fluorescence Correlation Spectroscopy. Biophysical Journal, 2006, 91, 1915-1924.	0.5	179
257	Fluorescence correlation studies of lipid domains in model membranes (Review). Molecular Membrane Biology, 2006, 23, 29-39.	2.0	88
258	Electron multiplying CCD based detection for spatially resolved fluorescence correlation spectroscopy. Optics Express, 2006, 14, 5013.	3.4	83
259	Fluorescence cross-correlation spectroscopy in living cells. Nature Methods, 2006, 3, 83-89.	19.0	570
260	How Phospholipid-Cholesterol Interactions Modulate Lipid Lateral Diffusion, as Revealed by Fluorescence Correlation Spectroscopy. Journal of Fluorescence, 2006, 16, 671-678.	2.5	68
261	C-Terminal Fluorescence Labeling of Proteins for Interaction Studies on the Single-Molecule Level. ChemBioChem, 2006, 7, 891-895.	2.6	22
262	Combined AFM and Two-Focus SFCS Study of Raft-Exhibiting Model Membranes. ChemPhysChem, 2006, 7, 2409-2418.	2.1	197
263	In situ fluorescence analysis demonstrates active siRNA exclusion from the nucleus by Exportin 5. Nucleic Acids Research, 2006, 34, 1369-1380.	14.5	87
264	A New Embedded Process for Compartmentalized Cell-Free Protein Expression and On-line Detection in Microfluidic Devices. ChemBioChem, 2005, 6, 811-814.	2.6	180
265	A Novel Homogenous Assay for Topoisomerase II Action and Inhibition. ChemBioChem, 2005, 6, 920-926.	2.6	5
266	Differential lipid packing abilities and dynamics in giant unilamellar vesicles composed of short-chain saturated glycerol-phospholipids, sphingomyelin and cholesterol. Chemistry and Physics of Lipids, 2005, 135, 169-180.	3.2	47
267	Lipids as Modulators of Proteolytic Activity of BACE. Journal of Biological Chemistry, 2005, 280, 36815-36823.	3.4	260
268	From The Cover: Sterol structure determines the separation of phases and the curvature of the liquid-ordered phase in model membranes. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 3272-3277.	7.1	381
269	Breakdown of Axonal Synaptic Vesicle Precursor Transport by Microglial Nitric Oxide. Journal of Neuroscience, 2005, 25, 352-362.	3.6	71
270	An ultrasensitive site-specific DNA recombination assay based on dual-color fluorescence cross-correlation spectroscopy. Nucleic Acids Research, 2005, 33, e60-e60.	14.5	17

#	Article	IF	CITATIONS
271	Dehydration Damage of Domain-Exhibiting Supported Bilayers:  An AFM Study on the Protective Effects of Disaccharides and Other Stabilizing Substances. Langmuir, 2005, 21, 6317-6323.	3.5	54
272	Four-color fluorescence correlation spectroscopy realized in a grating-based detection platform. Optics Letters, 2005, 30, 2266.	3.3	37
273	Characterization of Interaction between Cationic Lipid-Oligonucleotide Complexes and Cellular Membrane Lipids Using Confocal Imaging and Fluorescence Correlation Spectroscopy. Biophysical Journal, 2005, 88, 305-316.	0.5	22
274	Two-Photon Cross-Correlation Analysis of Intracellular Reactions with Variable Stoichiometry. Biophysical Journal, 2005, 88, 4319-4336.	0.5	115
275	Determining Protease Activity In Vivo by Fluorescence Cross-Correlation Analysis. Biophysical Journal, 2005, 89, 2770-2782.	0.5	70
276	Intracellular calmodulin availability accessed with two-photon cross-correlation. Proceedings of the United States of America, 2004, 101, 105-110.	7.1	123
277	SNAREs Prefer Liquid-disordered over "Raft―(Liquid-ordered) Domains When Reconstituted into Giant Unilamellar Vesicles. Journal of Biological Chemistry, 2004, 279, 37951-37955.	3.4	145
278	Studying reaction kinetics by simultaneous FRET and cross-correlation analysis in a miniaturized continuous flow reactor. Physical Chemistry Chemical Physics, 2004, 6, 4416-4420.	2.8	25
279	The Mobility of Phytochrome within Protonemal Tip Cells of the Moss Ceratodon purpureus, Monitored by Fluorescence Correlation Spectroscopy. Biophysical Journal, 2004, 87, 2013-2021.	0.5	17
280	Fluorescence Correlation Spectroscopy Relates Rafts in Model and Native Membranes. Biophysical Journal, 2004, 87, 1034-1043.	0.5	299
281	Triple-Color Coincidence Analysis: One Step Further in Following Higher Order Molecular Complex Formation. Biophysical Journal, 2004, 86, 506-516.	0.5	88
282	Intracellular applications of fluorescence correlation spectroscopy: prospects for neuroscience. Current Opinion in Neurobiology, 2003, 13, 583-590.	4.2	77
283	Triple FRET: A tool for Studying Long-Range Molecular Interactions. ChemPhysChem, 2003, 4, 745-748.	2.1	72
284	Probing Lipid Mobility of Raft-exhibiting Model Membranes by Fluorescence Correlation Spectroscopy. Journal of Biological Chemistry, 2003, 278, 28109-28115.	3.4	451
285	Lateral Diffusion of Membrane Lipid-Anchored Probes before and after Aggregation of Cell Surface IgE-Receptorsâ€. Journal of Physical Chemistry A, 2003, 107, 8310-8318.	2.5	35
286	An Integrated Microfluidic System for Reaction, High-Sensitivity Detection, and Sorting of Fluorescent Cells and Particles. Analytical Chemistry, 2003, 75, 5767-5774.	6.5	224
287	TIR-FCS: Staying on the Surface Can Sometimes Be Better. Biophysical Journal, 2003, 85, 2783-2784.	0.5	17
288	Lipid Dynamics and Domain Formation in Model Membranes Composed of Ternary Mixtures of Unsaturated and Saturated Phosphatidylcholines and Cholesterol. Biophysical Journal, 2003, 85, 3758-3768.	0.5	211

#	Article	IF	CITATIONS
289	A protease assay for two-photon crosscorrelation and FRET analysis based solely on fluorescent proteins. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 12161-12166.	7.1	131
290	Spatial Two-Photon Fluorescence Cross-Correlation Spectroscopy for Controlling Molecular Transport in Microfluidic Structures. Analytical Chemistry, 2002, 74, 4472-4479.	6.5	125
291	Two-Photon Fluorescence Coincidence Analysis: Rapid Measurements of Enzyme Kinetics. Biophysical Journal, 2002, 83, 1671-1681.	0.5	52
292	Probing the Endocytic Pathway in Live Cells Using Dual-Color Fluorescence Cross-Correlation Analysis. Biophysical Journal, 2002, 83, 1184-1193.	0.5	165
293	Scanning Dual-Color Cross-Correlation Analysis for Dynamic Co-Localization Studies of Immobile Molecules. Single Molecules, 2002, 3, 201-210.	0.9	32
294	Fluorescence correlation spectroscopy for the detection and study of single molecules in biology. BioEssays, 2002, 24, 758-764.	2.5	159
295	Light-Induced Flickering of DsRed Provides Evidence for Distinct and Interconvertible Fluorescent States. Biophysical Journal, 2001, 81, 1776-1785.	0.5	96
296	Analyzing single protein molecules using optical methods. Current Opinion in Biotechnology, 2001, 12, 382-386.	6.6	28
297	Two-Photon Fluorescence Cross-Correlation Spectroscopy. ChemPhysChem, 2001, 2, 269-272.	2.1	27
298	Fluorescence Correlation Spectroscopy and Its Potential for Intracellular Applications. Cell Biochemistry and Biophysics, 2001, 34, 383-408.	1.8	318
299	Characterization of Photoinduced Isomerization and Back-Isomerization of the Cyanine Dye Cy5 by Fluorescence Correlation Spectroscopy. Journal of Physical Chemistry A, 2000, 104, 6416-6428.	2.5	347
300	Molecular Dynamics in Living Cells Observed by Fluorescence Correlation Spectroscopy with One- and Two-Photon Excitation. Biophysical Journal, 1999, 77, 2251-2265.	0.5	688
301	Kinetic investigations by fluorescence correlation spectroscopy: The analytical and diagnostic potential of diffusion studies. Biophysical Chemistry, 1997, 66, 211-228.	2.8	174
302	Techniques for single molecule sequencing. Bioimaging, 1997, 5, 139-152.	1.3	73